Advertisement

Optical Properties of Semiconductors

Abstract

We first introduce the Maxwell’s equations about the electromagnetic field and the Hamiltonian of electron in the electromagnetic field from which we obtain the formula for light-matter interaction which forms the base for the optical electronics. We discuss the general absorption and emission spectra of nanostructure materials. Major focus of the rest of the chapter is about electron-hole pair, i.e., exciton in nanostructures which is the base for the fast developing nanophotonics.

Keywords

Exciton State Effective Mass Approximation Photon Field Total Wave Function Exciton Bohr Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York, p 32 Google Scholar
  2. 2.
    Goeppert Mayer M (1931) Elementary processes with two quantum jumps. Ann Phys (Leipz) 9:273–294 ADSCrossRefGoogle Scholar
  3. 3.
    Lami J-F, Gilliot P, Hirlimann C (1996) Observation of interband two-photon absorption saturation in CdS. Phys Rev Lett 77:1632–1635 ADSCrossRefGoogle Scholar
  4. 4.
    Helmchen F, Svododa K, Denk W, Kleinfeld D, Tank DW (1996) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996 CrossRefGoogle Scholar
  5. 5.
    Yokoyama H, Guo H, Yoda T, Takashima K, Sato K-I, Taniguchi H, Ito H (2006) Two-photon bioimaging with picosecond optical pulses from a semiconductor laser. Opt Express 14:3467–3471 ADSCrossRefGoogle Scholar
  6. 6.
    Wherrett BS (1984) Scaling rules for multiphoton interband absorption in semiconductors. J Opt Soc Am B 1:67–72 ADSCrossRefGoogle Scholar
  7. 7.
    Schmidt ME, Blanton SA, Hines MA, Guyot-Sionnest P (1996) Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals. Phys Rev B 53:12629–12632 ADSCrossRefGoogle Scholar
  8. 8.
    Haken H (1963) Theory of exciton II. In: Kuper CG, Whitfield GD (eds) Polarons and excitons. Plenum, New York, p 295 Google Scholar
  9. 9.
    Dimmock JO (1967) Introduction to the theory of exciton states in semiconductors. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 3. Academic Press, New York, pp 259–319, Chap. 7 Google Scholar
  10. 10.
    Haken H (1983) Quantum field theory of solids. North-Holland, Amsterdam, p 151 Google Scholar
  11. 11.
    Lawaetz P (1971) Valence-band parameters in cubic semiconductors. Phys Rev B 4:3460–3467 ADSCrossRefGoogle Scholar
  12. 12.
    Madelung O (ed) (1991) Semiconductors group IV elements and III–V compounds. Springer, Berlin Google Scholar
  13. 13.
    Miller DAB, Chemla DS, Eilenberg DJ, Smith PW, Gossard AC, Tsang WT (1982) Large room-temperature optical nonlinearity in GaAs/Ga1−xAlxAs multiple quantum well structures. Appl Phys Lett 41:679–681 ADSCrossRefGoogle Scholar
  14. 14.
    Sun HD, Makino T, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H (2002) Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. J Appl Phys 91:1993–1997 ADSCrossRefGoogle Scholar
  15. 15.
    Sapra S, Sarma DD (2004) Evolution of the electronic structure with size in II–VI semiconductor nanocrystals. Phys Rev B 69:125304 ADSCrossRefGoogle Scholar
  16. 16.
    Lippens PE, Lannoo M (1990) Comparison between calculated and experimental values of the lowest excited electronic state of small CdSe crystallites. Phys Rev B 41:6079–6081 ADSCrossRefGoogle Scholar
  17. 17.
    Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409 ADSCrossRefGoogle Scholar
  18. 18.
    Nair SV, Sinha S, Rustagi KC (1987) Quantum size effects in spherical semiconductor microcrystals. Phys Rev B 35:4098–4101 ADSCrossRefGoogle Scholar
  19. 19.
    Kayanuma Y, Momiji H (1990) Incomplete confinement of electrons and holes in microcrystals. Phys Rev B 41:10261–10263 ADSCrossRefGoogle Scholar
  20. 20.
    Grabovskis VYa, Dzenis YaYa, Ekimov AI, Kudryavtsev IA, Tolstoi MN, Rogulis UT (1989) Photoionization of semiconducting microcrystals in glass [luminescence studies]. Fiz Tverd Tela 31:272–275 Google Scholar
  21. 21.
    Grabovskis VYa, Dzenis YaYa, Ekimov AI, Kudryavtsev IA, Tolstoi MN, Rogulis UT (1989) Sov Phys, Solid State 31:149–151 Google Scholar
  22. 22.
    Swank RK (1967) Surface properties of II–VI compounds. Phys Rev 153:844–849 ADSCrossRefGoogle Scholar
  23. 23.
    Bujatti M (1968) CdS-metal barriers from photovoltage measurements. Brit J Appl Phys (J Phys D), Ser 2 1:581–584 ADSCrossRefGoogle Scholar
  24. 24.
    Lippens PE, Lannoo M (1989) Calculation of the bandgap for small CdS and ZnS crystallites. Phys Rev B 39:10935–10942 ADSCrossRefGoogle Scholar
  25. 25.
    Madelung O (ed) (1992) Data in science and technology: semiconductors other than group IV elements and III–V compounds. Springer, Boston Google Scholar
  26. 26.
    Einevoll GT (1992) Confinement of excitons in quantum dots. Phys Rev B 45:3410–3417 ADSCrossRefGoogle Scholar
  27. 27.
    Nair SV, Ramaniah LM, Rustagi KC (1992) Electron states in a quantum dot in an effective-bond-orbital model. Phys Rev B 45:5969–5979 ADSCrossRefGoogle Scholar
  28. 28.
    Vogl P, Hjalmarson HP, Dow JD (1983) A semi-empirical tight-binding theory of the electronic structure of semiconductor. J Phys Chem Solids 44:365–378 ADSCrossRefGoogle Scholar
  29. 29.
    Sapra S, Shanthi N, Sarma DD (2002) Realistic tight-binding model for the electronic structure of II–VI semiconductors. Phys Rev B 66:205202 ADSCrossRefGoogle Scholar
  30. 30.
    Jiang J, Gao B, Han T-T, Fu Y (2009) Ab initio study of energy band structures of GaAs nanoclusters. Appl Phys Lett 94, 092110 ADSCrossRefGoogle Scholar
  31. 31.
    van der Waerden BL (1932) Die Gruppentheoretische Methode in der Quantenmechanik. Springer, Berlin CrossRefGoogle Scholar
  32. 32.
    Racah G (1942) Theory of complex spectra. II. Phys Rev 62:438–462 ADSCrossRefGoogle Scholar
  33. 33.
    Fu Y, Willander M, Ivchenko EL (2000) Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices. Superlattices Microstruct 27:255–264 ADSCrossRefGoogle Scholar
  34. 34.
    Jacobini C, Reggiani L (1983) The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev Mod Phys 55:645–705 ADSCrossRefGoogle Scholar
  35. 35.
    Ridley BK (1988) Quantum processes in semiconductors, 2nd edn. Clarendon, Oxford Google Scholar
  36. 36.
    Han T-T, Fu Y, Ågren H (2008) Dynamic photon emission from multiphoton-excited semiconductor quantum dot. J Appl Phys 103:93703(6) Google Scholar
  37. 37.
    Reynolds DC, Litton CW, Collins TC (1971) Bound-phonon quasiparticle in CdS. Phys Rev B 4:1868–1872 ADSCrossRefGoogle Scholar
  38. 38.
    Pan AL, Liu RB, Zou BS (2006) Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature. Appl Phys Lett 88:173102(3) ADSGoogle Scholar
  39. 39.
    Rustagi KC, Weber W (1976) Adiabatic bond charge model for the phonons in A 3 B 5 semiconductors. Solid State Commun 18:673–675 ADSCrossRefGoogle Scholar
  40. 40.
    Sugawara M, Mukai K, Shoji H (1997) Effect of phonon bottleneck on quantum-dot laser performance. Appl Phys Lett 71:2791 ADSCrossRefGoogle Scholar
  41. 41.
    Murdin BN, Hollingworth AR, Kamal-Saadi M, Kotitschke RT, Ciesla CM, Pidgeon CR, Findlay PC, Pellemans HPM, Langerak CJGM, Rowe AC, Stradling RA, Gornik E (1999) Suppression of LO phonon scattering in Landau quantized quantum dots. Phys Rev B 59:R7817–R7820 ADSCrossRefGoogle Scholar
  42. 42.
    Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115–120 ADSCrossRefGoogle Scholar
  43. 43.
    Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601 ADSCrossRefGoogle Scholar
  44. 44.
    Hanna M, Ellingson RJ, Beard M, Yu P, Nozik AJ (2004) Quantum dot solar cells: high efficiency through impact ionization. In: DOE solar energy technologies program review meeting, October 25–28, 2004, Denver, USA Google Scholar
  45. 45.
    Kim SJ, Kim WJ, Sahoo Y, Cartwright AN, Prasad PN (2008) Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Appl Phys Lett 92:31107(3) ADSGoogle Scholar
  46. 46.
    Trinh MT, Houtepen AJ, Schins JM, Hanrath T, Piris J, Knulst W, Goossens APLM, Siebbeles LDA (2008) In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett 8:1713–1718 ADSCrossRefGoogle Scholar
  47. 47.
    Landau LD, Lifshitz EM (1962) Quantum mechanics, 3rd edn. Pergamon, Oxford, p 278 Google Scholar
  48. 48.
    Ridley BK (1988) Quantum processes in semiconductors. Clarendon, Oxford, pp 269–278 Google Scholar
  49. 49.
    Landsberg PT, Adams MJ (1973) Theory of donor-acceptor radiative and Auger recombination in simple semiconductors. Proc R Soc Lond A 334:523–539 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ying Fu
    • 1
  1. 1.Royal Institute of TechnologyStockholmSweden

Personalised recommendations