Skip to main content

Semiconductor Materials

  • Chapter
  • 2014 Accesses

Abstract

In this chapter we present a brief introduction and description of electrons in semiconductor materials of which devices are made. The chapter starts with the basic electronic energy band structure of a single atom, the modifications of the energy band structure when more atoms are brought together to form bulk materials, i.e., solid states, which is the basis for understanding the electronic and optical properties of semiconductor materials. We then focus on the theoretical descriptions of electron states at the conduction and valence bandedges of both bulk and heterostructure materials. Key contents: Bloch theorem and Schrödinger equation for the envelope function of electrons in solids.

Keywords

  • Valence Band
  • Effective Mass
  • Molecular Beam Epitaxy
  • Metal Organic Chemical Vapor Deposition
  • Envelope Function

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-7174-1_1
  • Chapter length: 66 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-7174-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11
Fig. 1.12
Fig. 1.13
Fig. 1.14
Fig. 1.15
Fig. 1.16
Fig. 1.17
Fig. 1.18
Fig. 1.19
Fig. 1.20
Fig. 1.21
Fig. 1.22
Fig. 1.23
Fig. 1.24

References

  1. Dennard RH, Gaensslen FH, Yu HN, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits sc9:256–268

    CrossRef  Google Scholar 

  2. Sai-Halasz GA, Wordeman MR, Kern DP, Ganin E, Rishton S, Zicherman DS, Schmidt H, Polcari MR, Ng HY, Restle PJ, Chang THP, Dennard RH (1987) Design and experimental technology for 0.1-μm gate-length low-temperature operation FETs. IEEE Electron Device Lett 8:463–466

    CrossRef  Google Scholar 

  3. Hashimoto T, Sudoh Y, Kurino H, Narai A, Yokoyama S, Horiike Y, Koyanagi M (1992) 3 V operation of 70 nm gate length MOSFET with new double punchthrough stopper structure. In: Ext abs 1992, int conf solid state devices materials, Tokyo Japan, pp 490–492

    Google Scholar 

  4. Ono M, Saito M, Yoshitomi T, Fiegna C, Ohguro T, Iwai H (1995) A 40 nm gate length n-MOSFET. IEEE Trans Electron Devices 42:1822–1830

    ADS  CrossRef  Google Scholar 

  5. Kawaura H, Sakamoto T, Baba T, Ochiai Y, Fujita J, Matsui S, Sone J (1998) Transistor operation of 30 nm gate length EJ-MOSFETs. IEEE Electron Device Lett 19:74–76

    ADS  CrossRef  Google Scholar 

  6. Langen W, Hardtdegen H, Luth H, Kordos P (1995) Selectively grown vertical sub-100 nm dual-gate GaAs FETs. In: Compound semiconductors 1994, proceedings of 21st international symposium. IOP Publishing, Bristol, pp 183–188

    Google Scholar 

  7. Behammer D, Vescan L, Loo R, Moers J, Mück A, Lüth H, Grabolla T (1996) Selectively grown vertical Si-p MOS transistor with short channel lengths 130 nm. Electron Lett 32:406–407

    CrossRef  Google Scholar 

  8. Langen W, Vescan L, Loo R, Luth H, Kordos P (1996) Vertical 100 nm Si-p channel JFET grown by selective epitaxy. Appl Surf Sci 102:252–254

    ADS  CrossRef  Google Scholar 

  9. Klaes D, Moers J, Tonnesmann A, Wickenhauser S, Vescan L, Marso M, Grabolla T, Grimm M, Luth H (1998) Selectively grown vertical Si MOS transistor with reduced overlap capacitances. Thin Solid Films 336:306–308

    ADS  CrossRef  Google Scholar 

  10. Moers J, Klaes D, Tonnesmann A, Vescan L, Wickenhauser S, Marso M, Kordos P, Luth H (1999) 19 GHz vertical Si p-channel MOSFET. Electron Lett 35:239–240

    CrossRef  Google Scholar 

  11. Moers J, Klaes D, Tonnesmann A, Vescan V, Wickenhauser S, Grabolla T, Marso M, Kordos P, Luth H (1999) Vertical p-MOSFETs with gate oxide deposition before selective epitaxial growth. Solid-State Electron 43:529–535

    ADS  CrossRef  Google Scholar 

  12. Murotani T, Naritake I, Matano T, Ohtsuki T, Kasai N, Koga H, Koyama K, Nakajima K, Yamaguchi H, Watanabe H, Okuda T (1997) A 4-level storage 4 Gb DRAM. In: 1997 IEEE int solid-state circuits conf dig, San Francisco, CA, p 74

    CrossRef  Google Scholar 

  13. Yasuda H (1997) Multimedia impact on devices in the 21st century. In: 1997 IEEE int solid-state circuits conf dig, San Francisco, CA, p 28

    CrossRef  Google Scholar 

  14. Mitin VV, Gribnikov ZS, Korshak AN (1998) Quantum heterostructures for micro- and opto-electronics. In: Physics of semiconductor devices, vol 1. Narosa Publishing House, Delhi, pp 134–141; 2 vol, xxviii+1322 pp

    Google Scholar 

  15. Appenzeller J, Schroer CH, Schapers TH, van der Hart A, Forster A, Lengeler B, Luth H (1996) Electron interference in a T-shaped quantum transistor based on Schottky-gate technology. Phys Rev B 53:9959–9963

    ADS  CrossRef  Google Scholar 

  16. Smith CG, Pepper M, Newbury R, Ahmed H, Hasko DG, Peacock DC, Frost JEP, Ritchie DA, Jones GAC, Hill G (1989) One-dimensional quantised ballistics resistors in parallel configuration. J Phys Condens Matter 1:6763–6770

    ADS  CrossRef  Google Scholar 

  17. Avishai Y, Kaveh M, Shatz S, Band YB (1989) Ballistic electronic conductance of two parallel channels. J Phys Condens Matter 1:6907–6912

    ADS  CrossRef  Google Scholar 

  18. Castaño E, Kirczenow G (1990) Theory of the conductance of parallel ballistic constrictions. Phys Rev B 41:5055–5060

    ADS  CrossRef  Google Scholar 

  19. Baie X, Colinge JP, Bayot V, Grivei E (1995) Quantum-wire effects in thin and narrow SOI MOSFETs. In: IEEE international SOI conference proceedings. IEEE Press, New York, pp 66–67; xiv+183 pp (cat no 95CH35763)

    Google Scholar 

  20. Colinge JP, Baie X, Bayot V, Grivei E (1996) A silicon-on-insulator quantum wire. Solid-State Electron 39:49–51

    ADS  CrossRef  Google Scholar 

  21. Kirczenow G, Sachrajda AS, Feng Y, Taylor RP, Henning L, Wang J, Zawadzki P, Coleridge PT (1994) Artificial impurities in quantum wires: from classical to quantum behaviour. Phys Rev Lett 72:2069–2072

    ADS  CrossRef  Google Scholar 

  22. Kirczenow G (1994) Scattering models of conduction around an antidot in a magnetic field. Phys Rev B 50:1649–1655 and references therein

    ADS  CrossRef  Google Scholar 

  23. Sun JP, Haddad GI, Mazumder P, Shulman JN (1998) Resonant tunneling diodes: models and properties. Proc IEEE 86:641–661

    CrossRef  Google Scholar 

  24. Mazumder P, Kulkarni S, Bhattacharya M, Sun JP, Haddad GI (1998) Digital circuit applications of resonant tunneling diodes. Proc IEEE 86:664–686

    CrossRef  Google Scholar 

  25. Andersson JY, Alverbro J, Borglind J, Helander P, Martin H, Ostlund M (1997) 320∗240 pixels quantum well infrared photodetector (QWIP) array for thermal imaging: fabrication and evaluation. Proc SPIE 3061:740–748

    ADS  CrossRef  Google Scholar 

  26. Brill B, Sarusi G (1997) QWIP research and development of 320∗256 QWIP arrays in EL-OP. Proc SPIE 3061:781–788

    ADS  CrossRef  Google Scholar 

  27. Allee DA, Broers AN, Pease RFW (1991) Limits of nano-gate fabrication. Proc IEEE 79:1093–1105

    CrossRef  Google Scholar 

  28. Ahmed H (1991) Nanostructure fabrication. Proc IEEE 79:1140–1148

    CrossRef  Google Scholar 

  29. Brittain S, Paul K, Zhao X-M, Whitesides G (1998) Soft lithography and microfabrication. Phys World 11:31–36

    Google Scholar 

  30. Luth H (1996) Tunneling in semiconductor nanostructures: physics and devices. Acta Phys Pol A 90:667–679

    Google Scholar 

  31. Luth H (1998) Semiconductor nanostructures for device applications. In: Physics of semiconductor devices, vol 1. Narosa Publishing House, Delhi, pp 18–25; 2 vol, xxviii+1322

    Google Scholar 

  32. Luth H (1998) Semiconductor nanostructures: a new impact on electronics. Appl Surf Sci 130–132:855–865

    CrossRef  Google Scholar 

  33. Callaway J (1974) Quantum theory of the solid state. Academic Press, New York, p 233

    Google Scholar 

  34. Vogl P, Hjalmarson HP, Dow JD (1983) A semi-empirical tight-binding theory of the electronic structure of semiconductors. J Phys Chem Solids 44:365–378

    ADS  CrossRef  Google Scholar 

  35. Harrison WA (1980) Electronic structure and the properties of solids. Freeman, San Francisco

    Google Scholar 

  36. Bean JC (1992) Silicon-based semiconductor heterostructures: column IV bandgap engineering. Proc IEEE 80:571

    ADS  CrossRef  Google Scholar 

  37. Soref RA (1993) Silicon-based optoelectronics. Proc IEEE 81:1687

    CrossRef  Google Scholar 

  38. Geis MW, Gregory JA, Pate BB (1991) Capacitance-voltage measurements on metal-SiO2-diamond structures fabricated with (100)- and (111)-oriented substrates. IEEE Trans Electron Devices 38:619

    ADS  CrossRef  Google Scholar 

  39. Xu W, Fu Y, Willander M, Shen SC (1994) Theory of normal-incidence absorption for the intersubband transition in n-type indirect-gap semiconductor quantum wells. Phys Rev B 49:13760–13766

    ADS  CrossRef  Google Scholar 

  40. Hensel JC, Hasegawa H, Nakayama M (1965) Cyclotron resonance in uniaxially stressed silicon. II. Nature of the covalent bond. Phys Rev 138:A225–A238

    ADS  CrossRef  Google Scholar 

  41. Dresselhaus G, Kip AF, Kittel C (1955) Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys Rev 98:368–384

    ADS  CrossRef  Google Scholar 

  42. Tiersten M (1961) Acoustic-mode scattering of holes. IBM J Res Dev 5:122–131

    MATH  CrossRef  Google Scholar 

  43. Bir GL, Pikus GE (1960) Theory of the deformation potential for semiconductors with a complex band structure. Sov Phys, Solid State 2:2039

    MathSciNet  Google Scholar 

  44. Kane EO (1966) The kp method. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals. Physics of III–V compound, vol 1. Academic Press, New York, pp 75–100, Chap. 3

    Google Scholar 

  45. Enders P, Bärwolff A, Woerner M, Suisky D (1995) kp theory of energy bands, wave functions, and optical selection rules in strained tetrahedral semiconductors. Phys Rev B 51:16695–16704

    ADS  CrossRef  Google Scholar 

  46. Stier O, Grundmann M, Bimberg D (1999) Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys Rev B 59:5688–5701

    ADS  CrossRef  Google Scholar 

  47. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89:5815–5875

    ADS  CrossRef  Google Scholar 

  48. Yu ET, McCaldin JO, McGill TC (1992) Band offsets in semiconductor heterojunctions. Solid State Phys 46:1–146

    CrossRef  Google Scholar 

  49. Madelung O (ed) (1991) Semiconductors group IV elements and III–V compounds. Springer, Berlin

    Google Scholar 

  50. Kent PRC, Hart GLW, Zunger A (2002) Biaxial strain-modified valence and conduction band offsets of zincblende GaN, GaP, GaAs, InN, InP, and InAs, and optical bowing of strained epitaxial InGaN alloys. Appl Phys Lett 81:4377–4379

    ADS  CrossRef  Google Scholar 

  51. Egorov AYu, Bernklau D, Borchert B, Illek S, Livshits D, Rucki A, Schuster M, Kaschner A, Hoffmann A, Dumitras Gh, Amann MC, Riechert H (2001) Growth of high quality InGaAsN heterostructures and their laser application. J Cryst Growth 227–228:545–552

    CrossRef  Google Scholar 

  52. Yang T, Nakajima S, Sakai S (1997) Tight-binding calculation of electronic structures of InNAs ordered alloys. Jpn J Appl Phys 36:L320–L322

    ADS  CrossRef  Google Scholar 

  53. Muller DA, Sorsch T, Moccio S, Baumann FH, Evans-Lutterodt K, Timp G (1999) The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399:758–761

    ADS  CrossRef  Google Scholar 

  54. Fu Y, Willander M (1997) Valence-band structure of heavily doped silicon. Phys Lett A 234:483–487

    ADS  CrossRef  Google Scholar 

  55. Van de Walle CG, Martin RM (1986) Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys Rev B 34:5621–5634

    ADS  CrossRef  Google Scholar 

  56. Alferov ZI (2001) Nobel lecture: the double heterostructure concept and its applications in physics, electronics, and technology. Rev Mod Phys 73:767–782

    ADS  CrossRef  Google Scholar 

  57. Stranski IN, Krastanov LV (1939) Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse. Akad Wiss Lit (Mainz) 146:797

    Google Scholar 

  58. Moll N, Scheffler M, Pehlke E (1998) Influence of surface stress on the equilibrium shape of strained quantum dots. Phys Rev B 58:4566–4571

    ADS  CrossRef  Google Scholar 

  59. Shklyaev OE, Beck MJ, Asta M, Miksis MJ, Voorhees PW (2005) Role of strain-dependent surface energies in Ge/Si(100) island formation. Phys Rev Lett 94:176102(4)

    ADS  CrossRef  Google Scholar 

  60. Wise SM, Lowengrub JS, Kim JS, Thornton K, Voorhees PW (2005) Quantum dot formation on a strain-patterned epitaxial thin film. Appl Phys Lett 87:133102(3)

    ADS  CrossRef  Google Scholar 

  61. Fu K, Fu Y (2008) Kinetic Monte Carlo study of metal organic chemical vapor deposition growth mechanism of GaSb quantum dots. Appl Phys Lett 93:101906

    ADS  CrossRef  Google Scholar 

  62. Birman JL (1958) Theory of the piezoelectric effect in the zincblende structure. Phys Rev 111:1510–1514

    ADS  CrossRef  Google Scholar 

  63. Musgrave MJP, Pople JA (1962) A general valence force field for diamond. Proc R Soc Lond A 268:474–484

    ADS  CrossRef  Google Scholar 

  64. Nusimovici MA, Birman JL (1967) Lattice dynamics of wurtzite: CdS. Phys Rev 156:925–938

    ADS  CrossRef  Google Scholar 

  65. Martin RM (1970) Elastic properties of ZnS structure semiconductors. Phys Rev B 1:4005–4011

    ADS  CrossRef  Google Scholar 

  66. Ramani R, Mani KK, Singh RP (1976) Valence force fields and the lattice dynamics of beryllium oxide. Phys Rev B 14:2659–2663

    ADS  CrossRef  Google Scholar 

  67. Saito T, Arakawa Y (1999) Atomic structure and phase stability of In x Ga1−x N random alloys calculated using a valence-force-field method. Phys Rev B 60:1701–1706

    ADS  CrossRef  Google Scholar 

  68. Takayama T, Yuri M, Itoh K, Baba T, Harris JS Jr (2000) Theoretical analysis of unstable two-phase region and microscopic structure in wurtzite and zinc-blende InGaN using modified valence force field model. J Appl Phys 88:1104–1110

    ADS  CrossRef  Google Scholar 

  69. Nabetani Y, Matsumoto T, Sasikala G, Suemune I (2005) Theory of strain states in InAs quantum dots and dependence on their capping layers. J Appl Phys 98:63502(7)

    CrossRef  Google Scholar 

  70. Jiang H, Singh J (1997) Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: an eight-band study. Phys Rev B 56:4696–4701

    ADS  CrossRef  Google Scholar 

  71. Stier O, Grundmann M, Bimberg D (1999) Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys Rev B 59:5688–5701

    ADS  CrossRef  Google Scholar 

  72. Bernard JE, Zunger A (1991) Strain energy and stability of Si-Ge compounds, alloys, and superlattices. Phys Rev B 44:1663–1681

    ADS  CrossRef  Google Scholar 

  73. Ito T, Khor KE, Das Sarma S (1989) Empirical potential-based Si-Ge interatomic potential and its application to superlattice stability. Phys Rev B 40:9715–9722

    ADS  CrossRef  Google Scholar 

  74. Kroemer H, Polasko KJ, Wight SC (1980) On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs or Ge, GaP on Si, and similar zincblende-on-diamond systems. Appl Phys Lett 36:763–765

    ADS  CrossRef  Google Scholar 

  75. Casey HC Jr, Panish MB (1978) Heterostructure lasers, Part B: materials and operating characteristics. Academic Press, New York

    Google Scholar 

  76. Margaritondo G, Katnani AD, Stoffel NG, Daniels RR, Zhao T-X (1982) Nature of the band discontinuities at semiconductor heterojunction interfaces. Solid State Commun 43:163–166

    ADS  CrossRef  Google Scholar 

  77. White SR, Sham JL (1981) Electronic properties of flat-band semiconductor heterostructures. Phys Rev Lett 47:879–882

    ADS  CrossRef  Google Scholar 

  78. Ando T, Mori S (1982) Effective-mass theory of semiconductor heterojunctions and superlattices. Surf Sci 113:124–130

    ADS  CrossRef  Google Scholar 

  79. Zhu QG, Kroemer H (1983) Interface connection rules for effective-mass wave functions at an abrupt heterojunction between two different semiconductors. Phys Rev B 27:3519–3527

    ADS  CrossRef  Google Scholar 

  80. Kahen KB, Leburton JP (1986) Optical constants of GaAs-Al x Ga1−x As superlattices and multiple quantum wells. Phys Rev B 33:5465–5472

    ADS  CrossRef  Google Scholar 

  81. Morrow RA (1987) Establishment of an effective-mass Hamiltonian for abrupt heterojunctions. Phys Rev B 35:8074–8079

    ADS  CrossRef  Google Scholar 

  82. Fu Y, Chao KA (1989) Subband structures of GaAs/Al x Ga1−x As multiple quantum wells. Phys Rev B 40:8349–8356

    ADS  CrossRef  Google Scholar 

  83. Fu Y, Chao KA (1991) Band offset in GaAs/Al x Ga1−x As multiple quantum wells calculated with the sp 3 s tight-binding model. Phys Rev B 43:4119–4124

    ADS  CrossRef  Google Scholar 

  84. Fu Y, Willander M, Ivchenko EL, Kiselev AA (1993) Valley mixing in GaAs/AlAs multilayer structures in the effective mass method. Phys Rev B 47:13498–13507

    ADS  CrossRef  Google Scholar 

  85. Fu Y, Chao KA (1991) Band-offset in GaAs/AlGaAs multiple quantum wells calculated with the sp3s tight-binding model. Phys Rev B 43:4119–4124

    ADS  CrossRef  Google Scholar 

  86. Adachi S (1985) GaAs, AlAs, and Al x Ga1−x As: material parameters for use in research and device applications. J Appl Phys 58:R1–R29

    ADS  CrossRef  Google Scholar 

  87. Crank J (1956) The mathematics of diffusion. Clarendon, Oxford, pp 9–14

    MATH  Google Scholar 

  88. Redinbo GF, Craighead HG, Hong JM (1993) Proton implantation intermixing of GaAs/AlGaAs quantum well. J Appl Phys 74:3099–3102

    ADS  CrossRef  Google Scholar 

  89. Feng W, Chen F, Cheng WQ, Huang Q, Zhou JM (1997) Influence of growth conditions on Al-Ga interdiffusion in low-temperature grown AlGaAs/GaAs quantum wells. Appl Phys Lett 71:1676–1678

    ADS  CrossRef  Google Scholar 

  90. Li N, Li N, Lu W, Liu XQ, Yuan XZ, Li ZF, Dou HF, Shen SC, Fu Y, Willander M, Fu L, Tan HH, Jagadish C, Johnston MB, Gal M (1999) Proton implantation and rapid thermal annealing effects on GaAs/AlGaAs quantum well infrared photodetector. Superlattices Microstruct 26:317–324

    ADS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fu, Y. (2014). Semiconductor Materials. In: Physical Models of Semiconductor Quantum Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7174-1_1

Download citation