Skip to main content

Animals as Habitats

  • Chapter
  • First Online:

Abstract

To most non-biologists, a ‘mite’ is an almost invisible creature that lives in the carpet and gives you asthma or that burrows in your skin to produce socially unacceptable scabies. Cat owners may curse the ear mites that infest their pets and those who know that ticks are mites may mention Lyme Disease. Such medically important associations between mites and mammals are discussed in most parasitology texts, and mites associated with human diseases are discussed in our Chap. 10; therefore, in this chapter we cover ticks and other human- and livestock-associated mites superficially, concentrating instead on lesser known relationships between mites and the animals they use for room and board. These associations are not always negative; in fact, many seemingly parasitic mites have no impact on their hosts or may even be beneficial (see section “Mutualism”, below) (Fig. 9.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Åbro, A. (1982). The effects of parasitic water mite larvae (Arrenurus spp.) on zygopteran imagoes (Odonata). Journal of Invertebrate Pathology, 39, 373–381.

    Google Scholar 

  • Åbro, A. (1984). The initial stylostome formation by parasitic larvae of the water-mite genus Arrenurus on zygopteran imagines. Acarologia, 25, 33–44.

    Google Scholar 

  • Åbro, A. (1988). The mode of attachment of mite larvae (Leptus sp.) to harvestmen (Opiliones). Journal of Natural History, 22, 123–130.

    Google Scholar 

  • Åbro, A. (1991). The incipient stylostome of parasitic water mite larvae (Arrenurus spp.). Journal of Parasitology, 77, 313–314.

    Google Scholar 

  • Aeschlimann, A. (1991). Ticks and disease: Susceptible hosts, reservoir hosts, and vectors. In A. Toft, A. Aeschlimann, & L. Bolis (Eds.), Parasite–host associations: Coexistence or conflict? (pp. 148–156). Oxford: Oxford Science.

    Google Scholar 

  • Alasaad, S., Soglia, D., Spalenza, V., Maione, S., Soriguer, R. C., Pérez, J. M., Rasero, R., Ryser Degiorgis, M. P., Nimmervoll, H., Zhu, X. Q., & Rossi, L. (2012). Is ITS-2 rDNA suitable marker for genetic characterization of Sarcoptes mites from different wild animals in different geographic areas? Veterinary Parasitology, 159, 181–185.

    Google Scholar 

  • Aoki, J.-I., Takaku, G., & Ito, F. (1994). Aribatidae, a new myrmecophilous oribatid mite family from Java. International Journal of Acarology, 20, 3–10.

    Google Scholar 

  • Arlian, L. G. (1989a). Biology and ecology of house dust mites, Dermatophagoides spp. and Euroglyphus spp. Immunological Allergy Clinician North America, 9, 2335–2339.

    Google Scholar 

  • Arlian, L. G. (1989b). Biology, host relations, and epidemiology of Sarcoptes scabiei. Annual Review of Entomology, 34, 139–161.

    PubMed  CAS  Google Scholar 

  • Arnold, E. N. (1986). Mite pockets of lizards, a possible means of reducing damage by ectoparasites. Biological Journal of the Linnean Society, 29, 1–21.

    Google Scholar 

  • Arnold, E. N. (1993). Comment – function of the mite pockets of lizards: An assessment of a recent attempted test. Canadian Journal of Zoology, 71, 862–864.

    Google Scholar 

  • Athias-Binche, F. (1991). Evolutionary ecology of dispersal in mites. In F. Dusbabek & V. Bukva (Eds.), Modern acarology 1 (pp. 27–41). Prague: SPB Academic.

    Google Scholar 

  • Athias-Binche, F. (1995). Phenotypic plasticity, polymorphisms in variable environments and some evolutionary consequences in phoretic mites (Acarina): A review. Ecologie, 26, 225–241.

    Google Scholar 

  • Athias-Binche, F., Schwarz, H. H., & Meierhofer, I. (1993). Phoretic association of Neoseius novus (Ouds., 1902) (Acari: Uropodina) with Nicrophorus spp. (Coleoptera: Silphidae): A case of sympatric speciation? International Journal of Acarology, 19, 75–86.

    Google Scholar 

  • Atyeo, W. T., & Gaud, J. (1979). Feather mites and their hosts. In J. G. Rodriguez (Ed.), Recent advances in acarology II (pp. 355–361). New York: Academic Press.

    Google Scholar 

  • Atyeo, W. T., Kethley, J. B., & Perez, T. M. (1984). Paedomorphosis in Metacheyletia (Acari: Cheyletidae), with the description of a new species. Journal of Medical Entomology, 21, 125–131.

    Google Scholar 

  • Atyeo, W. T., & Pérez, T. M. (1988). Species in the genus Rhytidelasma Gaud (Acarina: Pterolichidae) from the green conure, Aratinga holochlora (Sclater) (Aves: Psittacidae). Systematic Parasitology, 11, 85–96.

    Google Scholar 

  • Bajerlein, D., & Przewoźny, M. (2012). When a beetle is too small to carry phoretic mites? A case of hydrophilid beetles (Coleoptera: Hydrophilidae) and Uropoda orbicularis (Acari: Mesostigmata). Canadian Journal of Zoology, 90, 368–375.

    Google Scholar 

  • Bajerlein, D., & Witaliński, W. (2012). Anatomy and fine structure of pedicellar glands in phoretic deutonymphs of uropodid mites (Acari: Mesostigmata). Arthropod Structure & Development, 41, 245–257.

    Google Scholar 

  • Baker, R. A. (1970). Studies on the life history of Ricardoella limacum (Schrank) (Acari: Trombidiformes). Journal of Natural History, 4, 511–519.

    Google Scholar 

  • Baker, R. A. (1977). Nutrition of the mite Unionicola intermedia, Koenike and its relationship to the inflammatory response induced in its molluscan host Anodonta anatina, L. Parasitology, 75, 301–308.

    Google Scholar 

  • Baker, R. L., & Smith, B. P. (1997). Conflict between antipredator and antiparasite behaviour in larval damselflies. Oecologia, 109, 622–628.

    Google Scholar 

  • Bartsch, I. (1987). Australacarus inexpectatus gen. et spec. nov. (Halacaroidea, Acari), mit einer Übersicht über parasitisch lebende Halacariden. Zoologischer Anzeiger, 218, 17–24.

    Google Scholar 

  • Bauchau, B. (1997). Do parasitic mites decrease growth of nestling Pied Flycatchers Ficedula hypoleuca? Ardea, 85, 243–247.

    Google Scholar 

  • Bauer, A. M., Russell, A. P., & Dollahon, N. R. (1990). Skin folds in the gekkonid genus Rhacodactylus: A natural test of the damage limitation hypothesis of mite pocket function. Canadian Journal of Zoology, 68, 1196–1201.

    Google Scholar 

  • Bauer, A. M., Russell, A. P., & Dollahon, N. R. (1993). Function of the mite pockets of lizards: A reply to E.N. Arnold. Canadian Journal of Zoology, 71, 865–868.

    Google Scholar 

  • Beaulieu, F., Déchêne, A. D., & Walter, D. E. (2008). Phase morphs and phoresy: New species of Antennoseius (Vitzthumia) mites (Acari: Mesostigmata: Ascidae) associated with pyrophilous carabids (Carabidae: Sericoda spp.) in Alberta, Canada. Zootaxa, 1961, 37–57.

    Google Scholar 

  • Binns, E. S. (1982). Phoresy as migration – some functional aspects of phoresy in mites. Biological Reviews, 57, 571–620.

    Google Scholar 

  • Blanco, G., Tella, J. L., & Potti, J. (1997). Feather mites on group-living Red-billed Choughs: A non-parasitic interaction? Journal of Avian Biology, 28, 197–206.

    Google Scholar 

  • Bochkov, A. V. (2002). The classification and phylogeny of the mite superfamily Cheyletoidea (Acari: Prostigmata). Entomological Review, 81, 488–513 (in Russian).

    Google Scholar 

  • Bochkov, A. V., & Mironov, S. V. (2011). Phylogeny and systematics of mammal-associated psoroptidian mites (Acariformes: Astigmata: Psoroptidia) derived from external morphology. Invertebrate Systematics, 25, 22–59.

    Google Scholar 

  • Bochkov, A. V., Klimov, P. B., & Wauthy, G. (2011). Phylogeny and coevolutionary associations of makialgine mites (Acari, Psoroptidae, Makialginae) provide insight into evolutionary history of their hosts, strepsirrhine primates. Zoological Journal of the Linnean Society, 162, 1–14.

    Google Scholar 

  • Bohonak, A.J. (1998). Dispersal and gene flow in freshwater invertebrates. Ph.D. thesis, Cornell University, Ithaca.

    Google Scholar 

  • Bohonak, A. J., Smith, B. P., & Thornton, M. (2004). Distributional, morphological and genetic consequences of dispersal for temporary pond mites. Freshwater Biology, 49, 170–180.

    Google Scholar 

  • Bonn, A., Gasse, M., Rolff, J., & Martens, A. (1996). Increased fluctuating asymmetry in the damselfly Coenagrion puella is correlated with ectoparasitic water mites: Implications for fluctuating asymmetry theory. Oecologia, 108, 596–598.

    Google Scholar 

  • Booth, J. P. (1978). The parasitization of chironomid midges by water-mite larvae in a eutrophic reservoir in South Wales. Archiv für Hydrobiologie, 84, 1–28.

    Google Scholar 

  • Böttger, K. (1962). Zur Biologie und Ethologie der einheimischen Wassermilben Arrenurus (Megaluracarus) globator (Müll.), 1776 Piona nodata nodata (Müll.), 1776 und Eylais infundibulifera meridionalis (Thon), 1899 (Hydrachnellae, Acari). Zoologische Jahrbücher. Abteilung für Systematik, 89, 501–584.

    Google Scholar 

  • Brooke, M., & Birkhead, T. (1991). The Cambridge encyclopedia of ornithology. New York: Cambridge University Press.

    Google Scholar 

  • Brooks, D. R., & McLennan, D. A. (1993). Parascript: Parasites and the language of evolution. Washington: Smithsonian Institution Press.

    Google Scholar 

  • Brossard, M., & Wikel, S. K. (1997). Immunology of interactions between ticks and hosts. Medical and Veterinary Entomology, 11, 270–276.

    PubMed  CAS  Google Scholar 

  • Brown, J. M., & Wilson, D. S. (1994). Poecilochirus carabi: Behavioral and life-history adaptations to different hosts and the consequences of geographical shifts in host communities. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 1–22). New York: Chapman & Hall.

    Google Scholar 

  • Bruyndonckx, N., Dubey, S., Ruedi, M., & Christe, P. (2009). Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae). Molecular Phylogenetics and Evolution, 51, 227–237.

    PubMed  CAS  Google Scholar 

  • Burley, N., Tidemann, S. C., & Halupka, K. (1991). Bill colour and parasite levels of zebra finches. In J. E. Loye & M. Zuk (Eds.), Bird-parasite interactions: Ecology, evolution and behaviour (pp. 359–376). Oxford: Oxford University Press.

    Google Scholar 

  • Burtt, E. H., Jr., Chow, W., & Babbitt, G. A. (1991). Occurrence and demography of mites of tree swallow, house wren, and eastern bluebird boxes. In J. E. Loye & M. Zuk (Eds.), Bird–parasite interactions: Ecology, evolution and behaviour (pp. 104–122). Oxford: Oxford University Press.

    Google Scholar 

  • Camin, J. H., Moss, W. W., Oliver, J. H., Jr., & Singer, G. (1967). Cloacaridae, a new family of cheyletoid mites from the cloaca of aquatic turtles. Journal of Medical Entomology, 4, 261–272.

    PubMed  CAS  Google Scholar 

  • Campbell, K. U., Klompen, H., & Crist, T. O. (2012). The diversity and host specificity of mites associated with ants: The roles of ecological and life history traits of ant hosts. Insectes Sociaux, 60, 31–41. doi:10.1007/s00040-012-0262-6.

    Google Scholar 

  • Chapman, B. R., & George, J. E. (1991). The effects of ectoparasites on cliff swallow growth and survival. In J. E. Loye & M. Zuk (Eds.), Bird–parasite interactions: Ecology, evolution and behaviour (pp. 69–92). Oxford: Oxford University Press.

    Google Scholar 

  • Cheng, T. C. (1991). Is parasitism symbiosis? A definition of terms and the evolution of concepts. In A. Toft, A. Aeschlimann, & L. Bolis (Eds.), Parasite–host associations: Coexistence or conflict? (pp. 16–36). Oxford: Oxford Science Publications.

    Google Scholar 

  • Choe, J. C., & Kim, K. C. (1989). Microhabitat selection and coexistence in feather mites (Acari: Analgoidea) on Alaskan seabirds. Oecologia, 79, 10–14.

    Google Scholar 

  • Clark, L. (1991). The nest protection hypothesis: The adaptive use of plant secondary compounds by European starlings. In J. E. Loye & M. Zuk (Eds.), Bird–parasite interactions: Ecology, evolution and behaviour (pp. 205–221). Oxford: Oxford University Press.

    Google Scholar 

  • Clayton, D. H., & Tompkins, D. M. (1995). Comparative effects of mites and lice on the reproductive success of rock doves (Columba livia). Parasitology, 110, 195–206.

    PubMed  Google Scholar 

  • Clayton, D. H., Koop, J. A. H., Harbison, C. H., Moyer, B. R., & Bush, S. E. (2010). How birds combat ectoparasites. The Open Ornithology Journal, 3, 41–71.

    Google Scholar 

  • Clift, A. D., & Larsson, S. F. (1987). Phoretic dispersal of Brennandania lambi (Kcrzal) (Acari: Tarsonemida: Pygmephoridae) by mushroom flies (Diptera: Sciaridae and Phoridae) in New South Wales, Australia. Experimental and Applied Acarology, 3, 11–20.

    Google Scholar 

  • Collins, N. C. (1975). Tactics of host exploitation by a thermophilic water mite. Miscellaneous Publications of the Entomological Society of America, 9, 250–254.

    Google Scholar 

  • Colloff, M. J. (2009). Dust mites (p. 583). Dordrecht: CSIRO Publishing and Springer.

    Google Scholar 

  • Colwell, R. K. (1995). Effects of nectar consumption by the hummingbird flower mite Proctolaelaps kirmsei on nectar availability in Hamelia patens. Biotropica, 27, 206–217.

    Google Scholar 

  • Colwell, R. K., & Naeem, S. (1994). Life-history patterns of hummingbird flower mites in relation to host phenology and morphology. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 23–44). New York: Chapman & Hall.

    Google Scholar 

  • Cook, W. J., Smith, B. P., & Brooks, R. J. (1989). Allocation of reproductive effort in female Arrenurus spp. water mites (Acari: Hydrachnidia; Arrenuridae). Oecologia, 79, 184–188.

    Google Scholar 

  • Cowan, D. P. (1984). Life history and male dimorphism in the mite Kennethiella trisetosa (Acarina: Winterschmidtiidae), and its sympiotic relationship with the wasp Ancistrocerus antilope. Annals of the Entomological Society of America, 77, 725–732.

    Google Scholar 

  • Cowan, D. P. (1985). Life history and male dimorphism in the mite Kennethiella trisetosa (Acarina: Winterschmidtiidae), and its sympiotic relationship with the wasp Ancistrocerus antilope. Annals of the Entomological Society of America, 77, 725–732.

    Google Scholar 

  • Cross, E. A., & Kaliszewski, M. J. (1988). The life history of a mushroom pest mite, Pediculaster flechtmanni (Wicht) (Acari: Pygmephoroidea), with studies of alternate morph formation. Environmental Entomology, 17, 309–315.

    Google Scholar 

  • Crowell, R. M. (1960). The taxonomy, distribution and developmental stages of Ohio water mites. Bulletin of the Ohio Biological Survey, 1, 1–77.

    Google Scholar 

  • Cunliffe, F. (1952). Biology of the cockroach parasite, Pimeliaphilus podapolipophagus Tragardh, with a discussion of the genera Pimeliaphilus and Hirstiella (Acarina, Pterygosomidae). Proceedings of the Entomological Society of Washington, 54, 153–169.

    Google Scholar 

  • Cupp, J. K., & Willis, D. W. (1982). Occurrence of the mite Lebertia in a green sunfish (Lepomis syanellus). Journal of Parasitology, 68, 876.

    Google Scholar 

  • Dabert, J. (2003). The feather mite family Syringobiidae Trouessart, 1896 (Acari, Astigmata, Pterolichoidea). II. Phylogeny and host-parasite evolutionary relationships. Acta Parasitologica, 48 (Supplement), 185–233.

    Google Scholar 

  • Dabert, J., & Mironov, S. V. (1999). Origin and evolution of feather mites (Astigmata). Experimental and Applied Acarology, 23, 437–454.

    Google Scholar 

  • Darolova, A., Hoi, H., & Schleicher, B. (1997). The effect of ectoparasite nest load on the breeding biology of the penduline tit Remiz pendulinis. Ibis, 139, 115–120.

    Google Scholar 

  • Davids, C. (1973). The water mite Hydrachna conjecta, bionomics and relation to species of Corixidae. Netherlands Journal of Zoology, 23, 363–429.

    Google Scholar 

  • Davids, C. (1991). Water mites: The impact of larvae and adults on their host and prey populations. In F. Dusbábek & V. Bukva (Eds.), Modern acarology (Vol. 1, pp. 497–501). The Hague: Academia, Prague and SPB Academic.

    Google Scholar 

  • Davids, C. (1997a). A new water mite (Acari, Hydrachnidia: Limnesiidae) split off from Limnesia undulata. Entomologische Berichten Amsterdam, 57, 157–160.

    Google Scholar 

  • Davids, C. (1997b). The influence of larval parasitism on life history strategies in water mites (Acari, Hydrachnidia). Archiv für Hydrobiologie, 141, 35–43.

    Google Scholar 

  • Davies, D. M. (1959). The parasitism of black flies by larval water mites, mainly of the genus Sperchon. Canadian Journal of Zoology, 37, 353–369.

    Google Scholar 

  • de Jong, D., Morse, R. A., & Eickwort, G. C. (1982). Mite pests of honey bees. Annual Review of Entomology, 27, 229–252.

    Google Scholar 

  • Delfinado-Baker, M., Rath, W., & Boecking, O. (1992). Phoretic bee mites and honeybee grooming behavior. International Journal of Acarology, 18, 315–320.

    Google Scholar 

  • Domrow, R. (1981). A small lizard stifled by phoretic deutonymphal mites (Uropodina). Acarologia, 22, 247–252.

    Google Scholar 

  • Domrow, R. (1987). Acari Mesostigmata parasitic on Australian vertebrates: An annotated checklist, keys and bibliography. Invertebrate Taxonomy, 1, 817–948.

    Google Scholar 

  • Dubinin, V. B. (1951). Feather mites (Analgesoidea). Part I. Introduction to their study. Fauna U.S.S.R., 6, 1–363 (in Russian).

    Google Scholar 

  • Duffy, D. C. (1991). Ants, ticks, and nesting seabirds: dynamic interactions? In J. E. Loye & M. Zuk (Eds.), Bird–parasite interactions: Ecology, evolution and behaviour (pp. 243–257). Oxford: Oxford University Press.

    Google Scholar 

  • Dufour, K. W., & Weatherhead, P. J. (1998). Bilateral symmetry as an indicator of male quality in red-winged blackbirds: Associations with measures of health, viability, and parental effort. Behavioral Ecology, 9, 220–231.

    Google Scholar 

  • Dunlop, J. A., Wirth, S., Penney, D., McNeil, A., Bradley, R. S., Withers, P. J., & Preziosi, R. F. (2012). A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biology Letters, 8, 457–460.

    PubMed  Google Scholar 

  • Durden, L. A. (1987). Predator–prey interactions between ectoparasites. Parasitology Today, 3, 306–308.

    PubMed  CAS  Google Scholar 

  • Durden, L. A., & Keirans, J. E. (1996). Host–parasite coextinction and the plight of tick conservation. American Entomologist, 42, 87–91.

    Google Scholar 

  • Ebermann, E. (1991a). Das Phanomenon Polymorphismus in der Milbenbfamilie Scutacaridae (Acari, Heterostigmata, Tarsonemina, Scutacaridae). Zoologica, 47, 1–76.

    Google Scholar 

  • Ebermann, E. (1991b). Records of polymorphism in the mite family Scutacaridae (Acari, Tarsonemina). Acarologia, 32, 119–138.

    Google Scholar 

  • Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and plants: A study in coevolution. Evolution, 18, 586–608.

    Google Scholar 

  • Eickwort, G. C. (1983). Potential use of mites as biological control agents of leaf-feeding insects. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (Special publication, Vol. 3304, pp. 41–52). Berkeley: University of California, Agriculture Experiment Station.

    Google Scholar 

  • Eickwort, G. C. (1990). Associations of mites with social insects. Annual Review of Entomology, 35, 469–488.

    Google Scholar 

  • Eickwort, G. C. (1994). Evolution and life-history patterns of mites associated with bees. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 218–251). New York: Chapman & Hall.

    Google Scholar 

  • Ellis-Adam, A. C., & Davids, C. (1970). Oviposition and post-embryonic development of the watermite Piona alpicola (Neuman, 1880). Netherlands Journal of Zoology, 20, 122–137.

    Google Scholar 

  • Elzinga, R. J. (1982). The genus Antennequesoma (Acari: Uropodina) and descriptions of four new species. Acarologia, 23, 319–325.

    Google Scholar 

  • Elzinga, R. J. (1993). Larvamimidae, a new family of mites (Acari: Dermanyssoidea) associated with army ants. Acarologia, 34, 95–103.

    Google Scholar 

  • Fain, A. (1969). Adaptation to parasitism in mites. Acarologia, 11, 429–449.

    PubMed  CAS  Google Scholar 

  • Fain, A., & Hyland, K. W., Jr. (1985). Evolution of astigmatid mites on mammals. In K. C. Kim (Ed.), Coevolution of parasitic arthropods and mammals (pp. 641–658). New York: Wiley.

    Google Scholar 

  • Fain, A., & Smiley, R. L. (1989). A new cloacarid mite (Acari: Cloacaridae) from the lungs of the great horned owl, Bubo virginanus, from the U.S.A. International Journal of Acarology, 15, 111–115.

    Google Scholar 

  • Fajfer, M. (2012). Acari (Chelicerata) – parasites of reptiles. Acarina, 20, 108–129.

    Google Scholar 

  • Farfan, M. A., & Klompen, H. (2012). Phoretic mite associates of millipedes (Diplopoda, Julidae) in the northern Atlantic region (North America, Europe). International Journal of Myriapodology, 7, 69–91.

    Google Scholar 

  • Farish, D. J., & Axtell, R. C. (1971). Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia, 13, 1–29.

    Google Scholar 

  • Fashing, N. J., & Chua, T. H. (2002). Systematics and ecology of Naiadacarus, a new species of Acaridae (Acari: Astigmata) inhabiting the pitchers of Nepenthes bicalcarata Hook. F. in Brunei Darussalam. International Journal of Acarology, 28, 157–167.

    Google Scholar 

  • Feinsinger, P. (1983). Coevolution and pollination. In D. J. Futuyma & M. Slatkin (Eds.), Coevolution (pp. 282–310). Sunderland: Sinauer Associates.

    Google Scholar 

  • Felsõ, B., & Rózsa, L. (2006). Reduced taxonomic richness of lice (Insecta: Phthiraptera) in diving birds. Journal of Parasitology, 92, 867–869.

    PubMed  Google Scholar 

  • Felsõ, B., & Rózsa, L. (2007). Diving behavior reduces genera richness of lice (Insecta, Phthiraptera) of mammals. Acta Parasitologica, 52, 82–85.

    Google Scholar 

  • Forbes, M. R. L. (1991). Ectoparasites and mating success of male Enallagma ebrium damselflies (Odonata: Coenagrionidae). Oikos, 60, 336–342.

    Google Scholar 

  • Futuyma, D. J., & Slatkin, M. (1983). Coevolution. Sunderland: Sinauer Associates.

    Google Scholar 

  • Fuxjager, M. J., Foufopoulos, J., Diaz-Uriarte, R., & Marler, C. A. (2010). Functionally opposing effects of testosterone on two different types of parasite: Implications for the immunocompetence handicap hypothesis. Functional Ecology, 25, 132–138.

    Google Scholar 

  • Galván, I., Barba, E., Piculo, R., Cantó, J. L., Cortés, V., Monrós, J. S., Atiénzar, F., & Proctor, H. (2008). Feather mites and birds: An interaction mediated by uropygial gland size? Journal of Evolutionary Biology, 21, 133–145.

    PubMed  Google Scholar 

  • Galván, I., Aguilera, E., Atiénzar, F., Barba, E., Blanco, G., Cantó, J. L., Cortés, V., Frías, Ó., Kovács, I., Meléndez, L., & Møller, A. P. (2012). Feather mites (Acari: Astigmata) and body condition of their avian hosts: A large correlative study. Journal of Avian Biology, 43, 1–7.

    Google Scholar 

  • Gaud, J., & Atyeo, W. T. (1996). Feather mites of the world (Acarina, astigmata): The supraspecific taxa. Part I. Annalen Zoologische Wetenschappen, 277, 1–193.

    Google Scholar 

  • Gledhill, T., Crowley, J., & Gunn, R. J. M. (1982). Some aspects of the host-parasite relationships between adult blackflies (Diptera; Simuliidae) and larvae of the water-mite Sperchon setiger (Acari: Hydrachnellae) in a small chalk stream in southern England. Freshwater Biology, 12, 345–357.

    Google Scholar 

  • Gotwald, W. H., Jr. (1996). Mites that live with army ants: A natural history of some myrmecophilous hitch-hikers, browsers and parasites. Journal of the Kansas Entomological Society, Supplement 69, 232–237.

    Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1978). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London, 205, 581–598.

    Google Scholar 

  • Grossman, J. D., & Smith, R. J. (2008). Phoretic mite discrimination among male burying beetle (Nicrophorus investigator) hosts. Annals of the Entomological Society of America, 101, 266–271.

    Google Scholar 

  • Hafner, M. S., Sudman, P. D., Villablanca, F. X., Spradling, T. A., Demastes, J. W., & Nadler, S. A. (1994). Disparate rates of molecular evolution in cospeciating hosts and parasites. Science, 265, 1087–1090.

    PubMed  CAS  Google Scholar 

  • Halliday, R. B. (1993). A new species of Scissuralaelaps Womersley (Acarina: Laelapidae) associated with large Australian cockroaches. Journal of the Australian Entomological Society, 32, 347–353.

    Google Scholar 

  • Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science, 218, 384–387.

    PubMed  CAS  Google Scholar 

  • Harvey, P. H., Read, A. F., John, J. L., Gregory, R. D., & Keymer, A. E. (1991). An evolutionary perspective: Using the comparative method. In A. Toft, A. Aeschlimann, & L. Bolis (Eds.), Parasite–host associations: Coexistence or conflict? (pp. 344–355). Oxford: Oxford Science.

    Google Scholar 

  • Herre, E. A. (1993). Population structure and the evolution of virulence in nematode parasites of fig wasps. Science, 259, 1442–1445.

    PubMed  CAS  Google Scholar 

  • Hevers, J. (1980). Biologisch-ökologische Untersuchungen zum Entwicklungszyklus der in Deutschland auftretenden Unionicola-Arten (Hydrachnellae, Acari). Archiv für Hydrobiologie, Supplementband 57, 324–373.

    Google Scholar 

  • Hoogstraal, H., & Kim, K. C. (1985). Tick and mammal coevolution, with emphasis on Haemaphysalis. In K. C. Kim (Ed.), Coevolution of parasitic arthropods and mammals (pp. 505–568). New York: Wiley.

    Google Scholar 

  • Houck, M. A. (1994). Adaptation and transition into parasitism from commensalism: A phoretic model. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 252–281). New York: Chapman & Hall.

    Google Scholar 

  • Houck, M. A., & OConnor, B. M. (1991). Ecological and evolutionary significance of phoresy in the Astigmata. Annual Review of Entomology, 36, 611–636.

    Google Scholar 

  • Huck, K., Schwarz, H. H., & Schmid-Hempel, P. (1998). Host choice in the phoretic mite Parasitellus fucorum (Mesostigmata: Parasitidae): Which bumblebee caste is the best? Oecologia, 115, 385–390.

    Google Scholar 

  • Hughes, A. M. (1976). The mites of stored food and houses (Ministry of agriculture, fisheries and food, Technical bulletin 2nd ed., Vol. 9). London: H.M.S.O.

    Google Scholar 

  • Hunter, P. E., & Rosario, R. M. T. (1988). Associations of Mesostigmata with other arthropods. Annual Review of Entomology, 33, 393–417.

    Google Scholar 

  • Hurst, G. D. D., Sharpe, R. G., Broomfield, A. H., Walker, L. E., Majerus, T. M. O., Zakharov, I. A., & Majerus, M. E. N. (1995). Sexually transmitted disease in a promiscuous insect, Adalia bipunctata. Ecological Entomology, 20, 230–236.

    Google Scholar 

  • Itu, F., & Takaku, G. (1994). Obligate myrmecophily in an oribatid mite. Naturwissenschaften, 81, 180–182.

    Google Scholar 

  • Iverson, K., OConnor, B. M., Ochoa, R., & Heckmann, R. (1996). Lardoglyphus zacheri (Acari: Lardoglyphidae), a pest of museum dermestid colonies, with observations on its natural ecology and distribution. Annals of the Entomological Society of America, 89, 544–549.

    Google Scholar 

  • Janzen, D. (1980). When is it coevolution? Evolution, 34, 611–612.

    Google Scholar 

  • Kaliszewski, M., Athias-Binche, F., & Lindquist, E. E. (1995). Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Advances in Parasitology, 35, 335–367.

    PubMed  CAS  Google Scholar 

  • Kethley, J. (1971). Population regulation in quill mites (Acarina: Syringophilidae). Ecology, 52, 113–118.

    Google Scholar 

  • Kettle, D. S. (1995). Medical and veterinary entomology (2nd ed.). Wallingford: CAB International.

    Google Scholar 

  • Kim, K. C. (1985a). Evolutionary relationships of parasitic arthropods and mammals. In K. C. Kim (Ed.), Coevolution of parasitic arthropods and mammals (pp. 3–82). New York: Wiley.

    Google Scholar 

  • Kim, K. C. (1985b). Coevolution of parasitic arthropods and mammals. New York: Wiley.

    Google Scholar 

  • Kim, K. C. (1985c). Parasitism and coevolution: Epilogue. In K. C. Kim (Ed.), Coevolution of parasitic arthropods and mammals (pp. 661–682). New York: Wiley.

    Google Scholar 

  • Klimov, P. B., & OConnor, B. M. (2008). Morphology, evolution, and host associations of bee-associated mites of the family Chaetodactylidae (Acari: Astigmata) with a monographic revision of North American taxa (Miscellaneous publications, Vol. 199, pp. 1–243). Ann Arbor: Museum of Zoology, University of Michigan.

    Google Scholar 

  • Klimov, P. B., & OConnor, B. (2013). Is permanent parasitism reversible? Critical evidence from early evolution of house dust mites. Systematic Biology. doi:10.1093/sysbio/syt008.

    PubMed  Google Scholar 

  • Klompen, J. S. H., Black, W. C., IV, Keirans, J. E., & Oliver, J. H., Jr. (1996). Evolution of ticks. Annual Review of Entomology, 41, 141–161.

    PubMed  CAS  Google Scholar 

  • Knee, W., Beaulieu, F., Skevington, J. H., Kelso, S., & Forbes, M. R. (2012a). Cryptic species of mites (Uropodoidea: Uroobovella spp.) associated with burying beetles (Silphidae: Nicrophorus): The collapse of a host generalist revealed by molecular and morphological analyses. Molecular Phylogenetics and Evolution, 65, 276–286.

    Google Scholar 

  • Knee, W., Beaulieu, F., Skevington, J. H., Kelso, S., Cognato, A. I., & Forbes, M. R. (2012b). Species boundaries and host range of tortoise mites (Uropodoidea) phoretic on bark beetles (Scolytinae), using morphometric and molecular markers. PLoS One, 7, e47243.

    PubMed  CAS  Google Scholar 

  • Knülle, W. (1987). Genetic variability and ecological adaptability of hypopus formation in a stored product mite. Experimental and Applied Acarology, 3, 31–32.

    Google Scholar 

  • Knülle, W. (1991). Genetic and environmentl determinants of hypopus duration in the stored-product mite Lepidoglyphus destructor. Experimental and Applied Acarology, 10, 231–258.

    PubMed  Google Scholar 

  • Krantz, G. W. (1978). A manual of acarology. Corvallis: Oregon State University Bookstores.

    Google Scholar 

  • Krantz, G. W. (1983). Mites as biological control agents of dung-breeding flies, with special reference to the Macrochelidae. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (Special publication, Vol. 3304, pp. 91–98). Berkeley: University of California, Agriculture Experiment Station.

    Google Scholar 

  • Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of acarology (3rd ed.). Lubbock: Texas Tech University Press.

    Google Scholar 

  • Labrzycka, A. (2006). A perfect clasp – adaptation of mites to parasitize mammalian fur. Biological Letters, 43, 109–118.

    Google Scholar 

  • Lanciani, C. A. (1976). Intraspecific competition in the parasitic water mite Hydryphantes tenuabilis. American Midland Naturalist, 96, 210–214.

    Google Scholar 

  • Lanciani, C. A. (1984). Crowding in the parasitic stage of the water mite Hydrachna virella (Acari: Hydrachnidae). Journal of Parasitology, 70, 270–272.

    Google Scholar 

  • Lanciani, C. A., & Boyt, A. D. (1977). The effect of a parasitic water mite, Arrenurus pseutotenuicollis (Acari: Hydrachnellae), on the survival and reproduction of the mosquito Anopheles crucians. Journal of Medical Entomology, 14, 10–15.

    PubMed  CAS  Google Scholar 

  • Lanciani, C. A., & Smith, B. P. (1989). Constancy of stylostome form in two water mite species. Canadian Entomologist, 121, 439–443.

    Google Scholar 

  • Lesna, I., Sabelis, M. W., van Niekerk, T. G. C. M., & Komdeur, J. (2012). Laboratory tests for controlling poultry red mites (Dermanyssus gallinae) with predatory mites in small ‘laying hen’ cages. Experimental and Applied Acarology, 58, 371–383.

    PubMed  Google Scholar 

  • Lindholm, A. K., Benter, G. J., & Ueckermann, E. A. (1998). Persistence of passerine ectoparasites on the diederik cuckoo Chrysococcyx caprius. Journal of Zoology, 244, 145–153.

    Google Scholar 

  • Lindquist, E. E. (1969). Review of Holarctic tarsonemid mites (Acarina: Prostigmata) parasitizing eggs of ipine bark beetles. Memoirs of the Entomological Society of Canada, 60, 1–111.

    Google Scholar 

  • Lindquist, E. E. (1985). Discovery of sporothecae in adult female Trochometridium Cross, with notes on analogous structures in Siteroptes Amerling (Acari: Heterostigmata). Experimental and Applied Acarology, 1, 73–85.

    Google Scholar 

  • Lindquist, E. E., & Walter, D. E. (1989). Biology and description of Antennoseius janus, new species (Mesostigmata: Ascidae), a mesostigmatic mite exhibiting adult female dimorphism. Canadian Journal of Zoology, 67, 1291–1310.

    Google Scholar 

  • Lombert, H.A.P.M. (1988). Co-evolution of three eastern Australian subspecies of the passerine bird Zosterops lateralis (Latham, 1801) and their ectoparasitic feather mite Trouessartia megadisca Gaud, 1962. Ph.D. thesis, Australian School of Environmental Studies, Griffith University, Nathan, Australia.

    Google Scholar 

  • Makol, J., Kłosińska, A., & Łaydanowicz, J. (2012). Host–parasite interactions within terrestrial Parasitengonina (Acari, Trombidiformes, Prostigmata). International Journal of Acarology, 38, 18–22.

    Google Scholar 

  • Masan, P. (1997). Changes in infestation rate and age structure of Dermanyssus hirundinis and Ornithonyssus sylviarum (Acarina) during nidification and breeding period of penduline tit. Journal of Medical Entomology, 34, 609–614.

    PubMed  CAS  Google Scholar 

  • McLachlan, A., Pike, T., & Thomason, J. (2008). Another kind of symmetry: Are there adaptive benefits to the arrangement of mites on an insect host? Ethology Ecology and Evolution, 20, 257–270.

    Google Scholar 

  • Mestre, A., Mesquita-Joanes, F., Proctor, H., & Monrós, J. S. (2011). Different scales of spatial segregation of two species of feather mites on the wings of a passerine bird. The Journal of Parasitology, 97, 237–244.

    PubMed  Google Scholar 

  • Meyer, E. (1985). Der Entwicklungszyklus von Hydrodroma despiciens (O.F. Müller 1776) (Acari: Hydrodromidae). Archiv für Hydrobiologie, Supplementband 66, 321–453.

    Google Scholar 

  • Miko, L., & Stanko, M. (1991). Small mammals as carriers of non-parasitic mites (Oribatida, Uropodina). In F. Dusbabek & V. Bukva (Eds.), Modern acarology 1 (pp. 395–402). Prague: SPB Academic.

    Google Scholar 

  • Mitchell, R. (1960). Behavior of the larvae of Arrenurus fissicornis Marshall, a water mite parasitic on dragonflies. Journal of Animal Ecology, 9, 220–224.

    Google Scholar 

  • Mitchell, R. (1965). Population regulation of a water mite parasitic on unionid mussels. Journal of Parasitology, 51, 990–996.

    PubMed  CAS  Google Scholar 

  • Mitchell, R. (1967). Host exploitation of two closely related water mites. Evolution, 21, 59–75.

    Google Scholar 

  • Mitchell, R. (1970). An analysis of dispersal in mites. American Naturalist, 104, 425–431.

    Google Scholar 

  • Møller, A. P. (1991). Parasites, sexual ornaments, and mate choice in the barn swallow. In J. E. Loye & M. Zuk (Eds.), Bird–parasite interactions: Ecology, evolution and behaviour (pp. 328–343). Oxford: Oxford University Press.

    Google Scholar 

  • Møller, A. P. (1992). Parasites differentially increase the degree of fluctuating asymmetry in secondary sexual characters. Journal of Evolutionary Biology, 5, 691–699.

    Google Scholar 

  • Møller, A. P., & Saino, N. (1994). Parasites, immunology of hosts, and host sexual selection. Journal of Parasitology, 80, 850–858.

    PubMed  Google Scholar 

  • Mooring, M. S., McKenzie, A. A., & Hart, B. L. (1996). Role of sex and breeding status in grooming and total tick load of impala. Behavioural Ecology and Sociobiology, 39, 259–266.

    Google Scholar 

  • Morales-Malacara, J. B. (1996). Mesostigmatid (Mesostigmata) ectoparasites of bats in México. In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceeding (pp. 105–108). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Morelli, M., & Spicer, G. S. (2007). Cospeciation between the nasal mite Ptilonyssus sairae (Acari: Rhinonyssidae) and its bird hosts. Systematic and Applied Acarology, 12, 179–188.

    Google Scholar 

  • Moser, J. C., & Cross, E. A. (1975). Phoretomorph: A new phoretic phase unique to the Pyemotidae (Acarina: Tarsonemoidea). Annals of the Entomological Society of America, 68, 820–822.

    Google Scholar 

  • Moss, W. W. (1979). Patterns of host-specificity and co-evolution in the Harpyrhynchidae. In J. G. Rodriguez (Ed.), Recent advances in acarology II (pp. 379–384). New York: Academic Press.

    Google Scholar 

  • Mostafa, A. R. (1974). Biological and behavioral aspects of the lizard mite Pterygosoma mutabilis Jack, 1961 (Acarina: Pterygosomidae). Acarologia, 16, 100–105.

    Google Scholar 

  • Moya Borja, G. E. (1981). Effects of Macrocheles muscadomesticae (Scopoli) on the sexual behavior and longevity of Dermatobia hominis. Revista Brasileira de Biologia, 41, 237–241.

    Google Scholar 

  • Nadchatram, M. (2006). A review of endoparasitic acarines of Malaysia with special reference to novel endoparasitism of mites in amphibious sea snakes and supplementary notes on ecology of chiggers. Tropical Biomedicine, 23, 1–22.

    PubMed  CAS  Google Scholar 

  • Nattress, B. (2011). Horizontal transmission of Syrngophilopsis [sic] kirgizorum (Acari: Cheyletoidea: Syringophilidae). Acarina, 19, 270.

    Google Scholar 

  • Newell, I. M. (1963). Feeding habits in the genus Balaustium (Acarina, Erythraeidae), with special reference to attacks on man. Journal of Parasitology, 49, 498–502.

    PubMed  CAS  Google Scholar 

  • Newell, I. M., & Ryckman, R. E. (1964). Hirstiella pyriformis sp. n. (Acari, Pterygosomidae), a new parasite of lizards from Baja California. Journal of Parasitology, 50, 163–171.

    PubMed  CAS  Google Scholar 

  • Norton, R. A. (1980). Observations on phoresy by oribatid mites (Acari: Oribatei). International Journal of Acarology, 6, 121–129.

    Google Scholar 

  • Nutting, W. B. (1985). Prostigmata–Mammalia: Validation of coevolutionary phylogenies. In K. C. Kim (Ed.), Coevolution of parasitic arthropods and mammals (pp. 569–640). New York: Wiley.

    Google Scholar 

  • OConnor, B. M. (1979). Evolutionary origins of astigmatid mites inhabiting stored products. In J. G. Rodriguez (Ed.), Recent advances in acarology I (pp. 273–278). New York: Academic Press.

    Google Scholar 

  • OConnor, B. M. (1982). Evolutionary ecology of astigmatid mites. Annual Review of Entomology, 27, 385–409.

    Google Scholar 

  • OConnor, B.M. (1984). Acarine–fungal relationships: The evolution of symbiotic associations. In Q. Wheeler, & M. Blackwell (Eds.), Fungus–insect relationships: Perspectives in ecology and evolution (pp. 354–381). New York: Columbia University Press. [this is cited as 1984a in the text but there is now no 1984b, so the ‘a’ should be removed] (p. 226)

    Google Scholar 

  • OConnor, B. M. (1994). Life-history modifications in astigmatid mites. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 136–159). New York: Chapman & Hall.

    Google Scholar 

  • Okabe, K., & Makino, S. (2008a). Life cycle and sexual mode adaptations of the parasitic mite Ensliniella parasitica (Acari: Winterschmidtiidae) to its eumenine wasp host, Allodynerus delphinalis (Hymenoptera: Vespidae). Canadian Journal of Zoology, 86, 470–478.

    Google Scholar 

  • Okabe, K., & Makino, S. (2008b). Parasitic mites as part-time bodyguards of a host wasp. Proceedings of the Royal Society B, 275, 2293–2297.

    PubMed  Google Scholar 

  • Okabe, K., & Makino, S. (2010). Conditional mutualism between Allodynerus delphinalis (Hymenoptera: Vespidae) and Ensliniella parasitica (Astigmata: Winterschmidtiidae) may determine maximum parasitic mite infestation. Environmental Entomology, 39, 424–429.

    PubMed  CAS  Google Scholar 

  • Owen, J. P., Delany, M. E., Cardona, C. J., Bickford, A. A., & Mullens, B. A. (2009). Host inflammatory response governs fitness in an avian ectoparasite, the northern fowl mite (Ornithonyssus sylviarum). International Journal of Parasitology, 39, 789–799.

    PubMed  Google Scholar 

  • Owens, I. P. F., & Short, R. V. (1995). Hormonal basis of sexual dimorphism in birds: Implications for new theories of sexual selection. Trends in Ecology & Evolution, 10, 44–47.

    CAS  Google Scholar 

  • Pacejka, A. J., Gratton, C. M., & Thompson, C. F. (1998). Do potentially virulent mites affect house wren (Troglodytes aedon) reproductive success? Ecology, 79, 1797–1806.

    Google Scholar 

  • Page, R. D. M. (Ed.). (2003). Tangled trees. Phylogeny, cospeciation and coevolution. Chicago: The University of Chicago Press.

    Google Scholar 

  • Pap, P. L., Tökölyi, J., & Szép, T. (2005). Host–symbiont relationship and abundance of feather mites in relation to age and body condition of the barn swallow (Hirundo rustica): An experimental study. Canadian Journal of Zoology, 83, 1059–1066.

    Google Scholar 

  • Paredes-León, R., Klompen, H., & Pérez, T. M. (2012). Systematic revision of the genera Geckobiella Hirst, 1917 and Hirstiella Berlese, 1920 (Acari: Prostigmata: Pterygosomatidae) with description of a new genus for American species parasites on geckos formerly placed in Hirstiella. Zootaxa, 3510, 1–40.

    Google Scholar 

  • Paterson, A. M., & Banks, J. C. (2001). Analytical approaches to measuring cospeciation of host and parasites: Through a glass darkly. International Journal of Parasitology, 31, 1012–1022.

    PubMed  CAS  Google Scholar 

  • Pérez, T. M. (1996). The eggs of seven species of Fainalges Gaud and Berla (Xolalgidae) from the green conure (Aves, Psittacidae). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 297–300). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Pérez, T. M. (1997). Eggs of feather mite congeners (Acarina: Pterolichidae, Xolalgidae) from different species of new world parrots (Aves, Psittaciformes). International Journal of Acarology, 23, 103–106.

    Google Scholar 

  • Pérez, T. M., & Atyeo, W. T. (1984a). Feather mites, feather lice, and thanatochresis. Journal of Parasitology, 70, 807–812.

    Google Scholar 

  • Pérez, T. M., & Atyeo, W. T. (1984b). Site selection of the feather and quill mites of Mexican parrots. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. 1, pp. 563–570). Chichester: Ellis Horwood Ltd.

    Google Scholar 

  • Polak, M. (1997). Ectoparasitism in mothers causes higher positional fluctuating asymmetry in their sons: Implications for sexual selection. American Naturalist, 149, 955–974.

    PubMed  CAS  Google Scholar 

  • Polak, M. (1998). Effects of ectoparasitism on host condition in the DrosophilaMacrocheles system. Ecology, 79, 1807–1817.

    Google Scholar 

  • Polak, M., & Markow, T. A. (1995). Effect of ectoparasitic mites on sexual selection in a Sonoran fruit fly. Evolution, 49, 660–669.

    Google Scholar 

  • Polak, M., Luong, L. T., & Starmer, W. T. (2007). Parasites physically block host copulation: A potent mechanism of parasite-mediated sexual selection. Behavioral Ecology, 18, 952–957.

    Google Scholar 

  • Poulin, R. (1995). Clutch size and egg size in free-living and parasitic copepods: A comparative analysis. Evolution, 49, 325–336.

    Google Scholar 

  • Proctor, H. C. (2003). Feather mites (Acari: Astigmata): Ecology, behavior and evolution. Annual Review of Entomology, 48, 185–209.

    PubMed  CAS  Google Scholar 

  • Proctor, H. C., & Jones, D. N. (2004). Geographical structuring of feather mite assemblages from the Australian brush-turkey (Aves: Megapodiidae). The Journal of Parasitology, 90, 60–66.

    PubMed  Google Scholar 

  • Proctor, H. C., & Owens, I. (2000). Mites and birds: Diversity, parasitism and coevolution. Trends in Ecology & Evolution, 15, 358–364.

    Google Scholar 

  • Proctor, H. C., & Pritchard, G. (1989). Neglected predators: Water mites (Acari: Parasitengona: Hydrachnellae) in freshwater communities. Journal of the North American Benthological Society, 8, 100–111.

    Google Scholar 

  • Proctor, H. C., Gray, H. M., & OConnor, B. M. (1997). Subaquatic mites (Acari: Astigmata) associated with adult freshwater leeches (Hirudinea: Erpobdellidae). Journal of Natural History, 31, 539–544.

    Google Scholar 

  • Pruett-Jones, M., & Pruett-Jones, S. (1991). Analysis and ecological correlates of tick burdens in a New Guinea avifauna. In J. E. Loye & M. Zuk (Eds.), Bird–parasite interactions: Ecology, evolution and behaviour (pp. 154–176). Oxford: Oxford University Press.

    Google Scholar 

  • Quintero, M. T., & Acevedo, H. A. (1991). Mites of fermented liquid foods in Mexico. In F. Dusbabek & V. Bukva (Eds.), Modern acarology 1 (pp. 611–614). Prague: SPB Academic.

    Google Scholar 

  • Radovsky, F. J. (1985). Evolution of mammalian mesostigmate mites. In K. C. Kim (Ed.), Coevolution of parasitic arthropods and mammals (pp. 441–568). New York: Wiley.

    Google Scholar 

  • Radovsky, F. J., Krantz, G. W., & Whitaker, J. O., Jr. (1997). A remarkable example of predation in the parasitic mite family Macronyssidae. International Journal of Acarology, 23, 3–6.

    Google Scholar 

  • Rasero, R., Rossi, L., Soglia, D., Maione, S., Sacchi, P., Rambozzi, L., Sartore, S., Soriguer, R. C., Spalenza, V., & Alasaad, S. (2010). Host taxon-derived Sarcoptes mite in European wild animals revealed by microsatellite markers. Biological Conservation, 143, 1269–1277.

    Google Scholar 

  • Raut, S. K., & Panigrahi, A. (1991). The mite Fuscuropoda marginata (C.L. Koch) for the control of pest slugs Laevicuaulis alte (Férussac). In F. Dusbabek & V. Bukva (Eds.), Modern acarology II (pp. 683–687). Prague: SPB Academic.

    Google Scholar 

  • Read, C. P. (1951). The ‘crowding effect’ in tapeworm infections. Journal of Parasitology, 37, 174–178.

    PubMed  CAS  Google Scholar 

  • Reinhardt, K. (1996). Negative effects of Arrenurus water mites on the flight distances of the damselfly Nehalennia speciosa (Odonata: Coenagrionidae). Aquatic Insects, 18, 233–240.

    Google Scholar 

  • Rettenmeyer, C. W., Rettenmeyer, M. E., Joseph, J., & Berghoff, S. M. (2011). The largest animal association centered on one species: The army ant Eciton burchellii and its more than 300 associates. Insectes Sociaux, 58, 281–292.

    Google Scholar 

  • Ribeiro, J. M. C., Labruna, M. B., Mans, B. J., Maruyama, S. R., Francischetti, I. M. B., Barizon, G. C., & de Miranda Santos, I. K. F. (2012). The sialotranscriptome of Antricola delacruzi female ticks is compatible with nonhematophagous behavior and an alternative source of food. Insect Biochemistry and Molecular Biology, 42(5), 332–342. doi:10.1016/j.ibmb.2012.01.003.

    PubMed  CAS  Google Scholar 

  • Robinson, J. V. (1983). Effects of water mite parasitism on the demographics of an adult population of Ischnura posita (Hagen)(Odonata: Coenagrionidae). American Midland Naturalist, 109, 169–174.

    Google Scholar 

  • Rolff, J. (1997). Better hosts dive: Detachment of ectoparasitic water mites (Hydrachnellae: Arrenuridae) from damselflies (Odonata: Coenagrionidae). Journal of Insect Behaviour, 10, 819–827.

    Google Scholar 

  • Saino, N., Møller, A. P., & Bolzern, A. M. (1995). Testosterone effects on the immune system and parasite infestations in the barn swallow (Hirundo rustica): An experimental test of the immunocompetence hypothesis. Behavioural Ecology, 6, 397–404.

    Google Scholar 

  • Salvador, A., Veiga, J. P., Martin, J., Lopez, P., Abelenda, M., & Puerta, M. (1996). The cost of producing a sexual signal: Testosterone increases the susceptibility of male lizards to ectoparasitic infestation. Behavioural Ecology, 7, 145–150.

    Google Scholar 

  • Sammataro, D., & Needham, G. R. (1996). Host-seeking behaviour of tracheal mites (Acari: Tarsonemidae) on honey bees (Hymenoptera: Apidae). Experimental and Applied Acarology, 20, 121–136.

    Google Scholar 

  • Schalk, G., & Forbes, M. R. (1997). Male biases in parasitsim of mammals: Effects of study type, host age, and parasite taxon. Oikos, 78, 67–74.

    Google Scholar 

  • Schroder, R. F. W. (1982). Effect of infestation with Coccipolipus epilachnae Smiley (Acarina: Podapolipidae) on fecundity and longevity of the Mexican bean beetle. International Journal of Acarology, 8, 81–84.

    Google Scholar 

  • Schwarz, H. H. (1996). Host range and behavioral preferences in German sibling species of the Poecilochirus carabi complex (Acari: Mesostigmata: Parasitidae). International Journal of Acarology, 22, 135–140.

    Google Scholar 

  • Schwarz, H. H., & Müller, J. K. (1992). The dispersal behaviour of the phoretic mite Poecilochirus carabi (Mesostigmata, Parasitidae): Adaptation to the breeding biology of its carrier Necrophorus vespilloides (Coleoptera, Silphidae). Oecologia, 89, 487–493.

    Google Scholar 

  • Seeman, O. D. (2008). Systematics and phylogeny of Chrysomelobia species (Acari: Podapolipidae), sexually transmitted parasites of chrysomelid beetles. Invertebrate Systematics, 22, 55–84.

    Google Scholar 

  • Sengbusch, H. G., & Hauswirth, J. W. (1986). Prevalence of hair follicle mites, Demodex folliculorum and D. brevis (Acari: Demodicidae), in a selected human population in western New York, USA. Journal of Medical Entomology, 23, 384–388.

    PubMed  CAS  Google Scholar 

  • Siddall, M. E., & Burreson, E. M. (1995). Phylogeny of the Euhirudinea: Independent evolution of blood feeding by leeches? Canadian Journal of Zoology, 73, 1048–1064.

    Google Scholar 

  • Sinha, R. N. (1979). Role of Acarina in the stored grain ecosystem. In J. G. Rodriguez (Ed.), Recent advances in acarology I (pp. 263–272). New York: Academic Press.

    Google Scholar 

  • Skaife, S. H. (1952). The yellow-banded carpenter bee, Mesotrichia caffra Linn., and its symbiotic mite, Dinogamasus brausni Vitzthun. Journal of the Entomological Society of South Africa, 15, 63–76.

    Google Scholar 

  • Smith, B. P. (1983). The potential of mites as biological control agents of mosquitoes. In M. Hoy, G. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (Special publication, Vol. 3304, pp. 79–85). Berkeley: Agricultural Experiment Station, University of California.

    Google Scholar 

  • Smith, B. P. (1988). Host–parasite interaction and impact of larval water mites on insects. Annual Review of Entomology, 33, 487–507.

    Google Scholar 

  • Smith, B. P. (1989). Impact of parasitism by larval Limnochares aquatica (Acari: Hydrachnidia; Limnocharidae) on juvenile Gerris comatus, Gerris alacris, and Gerris buenoi (Insecta: Hemiptera; Gerridae). Canadian Journal of Zoology, 67, 2238–2243.

    Google Scholar 

  • Smith, B. P. (1998). Loss of larval parasitism in parasitengonine mites. Experimental and Applied Acarology, 22, 187–199.

    Google Scholar 

  • Smith, I. M., & Cook, D. R. (1991). Water mites. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (pp. 523–592). San Diego: Academic Press.

    Google Scholar 

  • Smith, B. P., & McIver, S. B. (1984a). Factors influencing host selection and successful parasitism of Aedes spp. mosquitoes by Arrenurus spp. mites. Canadian Journal of Zoology, 62, 1114–1120.

    Google Scholar 

  • Smith, B. P., & McIver, S. B. (1984b). The patterns of mosquito emergence (Diptera: Culcidae; Aedes spp.): Their influence on host selection by parasitic mites (Acari: Arrenuridae; Arrenurus spp.). Canadian Journal of Zoology, 62, 1106–1113.

    Google Scholar 

  • Smith, I. M., & Oliver, D. R. (1986). Review of parasitic associations of larval water mites (Acari: Parasitengona: Hydrachnida) with insect hosts. Canadian Entomologist, 118, 407–472.

    Google Scholar 

  • Soar, C. D., & Williamson, W. (1925). The British Hydracarina (Vol. I). London: Adlard & Son and West Newman Ltd.

    Google Scholar 

  • Soler, J. J., Peralta-Sánchez, J. M., Martín-Platero, A. M., Martín-Vivaldi, M., Martínez-Bueno, M., & Møller, A. P. (2012). The evolution of size of the uropygial gland: Mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds. Journal of Evolutionary Biology, 25, 1779–1791.

    PubMed  CAS  Google Scholar 

  • Sorci, G., de Fraipont, M., & Clobert, J. (1997). Host density and ectoparasite avoidance in the common lizard (Lacerta vivipara). Oecologia, 111, 183–188.

    Google Scholar 

  • Štefka, J. P. E. A., Hoeck, L. F. K., & Smith, V. S. (2011). A hitchhikers guide to the Galápagos: Co-phylogeography of Galápagos mockingbirds and their parasites. BMC Evolutionary Biology, 11, 284. doi:10.1186/1471-2148-11-284.

    PubMed  Google Scholar 

  • Strathmann, R. R. (1978). The evolution and loss of feeding larval stages of marine invertebrates. Evolution, 32, 894–906.

    Google Scholar 

  • Suárez-Rodríguez, M., López-Rull, I., & Garcia, C. M. (2013). Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: new ingredients for an old recipe? Biology Letters, 9(1), 20120931. doi:10.1098/rsbl.2012.0931.

    PubMed  Google Scholar 

  • Tedla, S., & Fernando, C. H. (1970). Some aspects of the ecology of parasite fauna of the gills of yellow perch (Perca flavescens). Journal of the Fisheries Research Board of Canada, 27, 1045–1050.

    Google Scholar 

  • Thompson, J. N. (1989). Concepts of coevolution. Trends in Ecology & Evolution, 4, 179–183.

    CAS  Google Scholar 

  • Thompson, C. W., Hillgarth, N., Leu, M., & McClure, H. E. (1997). High parasite load in house finches (Carpodacus mexicanus) is correlated with reduced expression of a sexually selected trait. American Naturalist, 149, 270–294.

    Google Scholar 

  • Timm, R. M., & Clauson, B. L. (1985). Mammals as evolutionary partners. In K. C. Kim (Ed.), Coevolution of parasitic arthropods and mammals (pp. 101–154). New York: Wiley.

    Google Scholar 

  • Toft, C. A., & Aeschlimann, A. (1991). Introduction: Coexistence or conflict? In C. A. Toft, A. Aeschlimann, & L. Bolis (Eds.), Parasite–host associations: Coexistence or conflict? (pp. 1–12). Oxford: Oxford Science.

    Google Scholar 

  • Treat, A. E. (1975). Mites of moths and butterflies. Ithaca: Cornell University Press.

    Google Scholar 

  • Ullrich, F. (1976). Biologisch-ökologische Studien an rheophilen Wassermilben (Hydrachnellae, Acari), unter besonderer Berücksichtigung von Sperchon setiger (Thor 1898). Ph.D. thesis, Kiel: University of Kiel.

    Google Scholar 

  • Untergasser, D. (1989). Handbook of fish diseases. Neptune City: T.F.H. Publications. German edition: (trans: Hirschhorn, H.H.).

    Google Scholar 

  • Václav, R., Prokop, P., & Fekiač, V. (2007). Expression of breeding coloration in European Green Lizards (Lacerta viridis): Variation with morphology and tick infestation. Canadian Journal of Zoology, 85, 1199–1206.

    Google Scholar 

  • van Bronswijk, J. E. M. H. (1979). House-dust as an ecosystem. In J. G. Rodriguez (Ed.), Recent advances in acarology II (pp. 167–172). New York: Academic Press.

    Google Scholar 

  • Waage, J. K. (1979). The evolution of insect/vertebrate associations. Biological Journal of the Linnean Society, 12, 187–224.

    Google Scholar 

  • Walther, B. A., & Clayton, D. H. (1997). Dust-ruffling: A simple method for quantifying ectoparasite loads of live birds. Journal of Field Ornithology, 68, 509–518.

    Google Scholar 

  • Weatherhead, P. J., Metz, K. J., Bennett, G. F., & Irwin, R. E. (1993). Parasite faunas, testosterone and secondary sexual traits in male red-winged blackbirds. Behavioural Ecology and Sociobiology, 33, 13–23.

    Google Scholar 

  • Welbourn, W. C. (1983). Potential use of trombidioid and erythraeoid mites as biological control agents of insect pests. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (Special publication, Vol. 3304, pp. 103–140). Berkeley: University of California, Division of Agriculture and Natural Resources, Agricultural Experiment Station.

    Google Scholar 

  • Wendt, F.-E., Wohltmann, A., Eggers, A., & Otto, J. C. (1994). Studies on parasitism, development and phenology of Johnstoniana parva n. sp. (Acari: Parasitengonae: Johnstonianidae) including a description of all active instars. Acarologia, 35, 49–63.

    Google Scholar 

  • Wheeler, W. M. (1919). The phoresy of Antherophagus. Psyche, 26, 145–152.

    Google Scholar 

  • Wheeler, W. M. (1923). Social life among the insects. New York: Harcourt, Brace & World.

    Google Scholar 

  • Whiteman, N. K., Sánchez, P., Merkel, J., Klompen, H., & Parker, P. G. (2006). Cryptic host specificity of an avian skin mite (Epidermoptidae) vectored by louseflies (Hippoboscidae) associated with two endemic Galapagos bird species. Journal of Parasitology, 92, 1218–1228.

    PubMed  CAS  Google Scholar 

  • Wiggins, G. B., Mackay, R. J., & Smith, I. M. (1980). Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie, Supplementband 58, 97–206.

    Google Scholar 

  • Wikel, S. K., & Bergman, D. (1997). Tick host immunology: Significant advances and challenging opportunities. Parasitology Today, 13, 383–389.

    PubMed  CAS  Google Scholar 

  • Wiles, P. R. (1987). Observations on the parasitic biology of the watermite Hydrodroma despiciens pilosa Besseling (Acari: Hydrodromidae). Archiv für Hydrobiologie, Supplementband 76, 369–392.

    Google Scholar 

  • Willadsen, P. (2004). Anti-tick vaccines. Parasitology, 129, S367–S387.

    PubMed  CAS  Google Scholar 

  • Wilson, D. S. (1983). The effect of population structure on the evolution of mutualism: A field test involving burying beetles and their phoretic mites. American Naturalist, 121, 851–870.

    Google Scholar 

  • Wilson, D. S., & Knollenberg, W. G. (1987). Adaptive indirect effects: The fitness of burying beetles with and without their phoretic mites. Evolutionary Ecology, 1, 139–159.

    Google Scholar 

  • Wirth, S. (2009). Necromenic lifestyle of Histiostoma polypori (Acari: Histiostomatidae). Experimental and Applied Acarology, 49, 317–327.

    PubMed  CAS  Google Scholar 

  • Wohltmann, A. (1996). Parasitism and life cycle strategies in Microtrombidiidae (Prostigmata: Parasitengonae) from Europe. In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 101–104). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Wohltmann, A., & Wendt, F.-E. (1996). Observations on the biology of two hygrobiotic trombidioid mites (Acari: Prostigmata: Parasitengonae), with special regard to host recognition and parasitism tactics. Acarologia, 37, 31–44.

    Google Scholar 

  • Wrensch, D. L., & Bruce, W. A. (1991). Sex ratio, fitness and capacity for population increase in Pyemotes tritici (L.-F. & M.) (Pyemotidae). In R. Schuster & P. W. Murphy (Eds.), The Acari: Reproduction, development and life-history strategies (pp. 209–221). New York: Chapman & Hall.

    Google Scholar 

  • Yankovskaya, A. I., & Fernando, K. G. (1982). On parasitism of hydracarines larvae in the wall of the stomach of fishes. Parasitologiya, 16, 244–246.

    Google Scholar 

  • Yoder, J. A. (1996). The Madagascar hissing-cockroach mite (Gromphadorholaelaps schaeferi): First observation of its larva and ptyalophagy in Acari. International Journal of Acarology, 22, 141–148.

    Google Scholar 

  • Yourth, C. P., Forbes, M. R., & Smith, B. P. (2002). Immune expression in a damselfly is related to time of season, not to fluctuating asymmetry or host size. Ecological Entomology, 27, 123–128.

    Google Scholar 

  • Youson, J. H., & Beamish, R. J. (1991). Comparsion of the internal morphology of adults of a population of lampreys that contains a nonparastic life-history type, Lampetra richardsoni, and a potentially parasitic form, L. richardsoni var. marifuga. Canadian Journal of Zoology, 69, 628–637.

    Google Scholar 

  • Zeh, D. W., & Zeh, J. A. (1992). On the function of harlequin beetle-riding in the pseudoscorpion, Cordylochernes scorpioides (Pseudoscorpionida: Chernetidae). Journal of Arachnology, 20, 47–51.

    Google Scholar 

  • Zhang, Z.-Q. (1992). The adaptive significance of superparasitism in a protelean parasite, Allothrombium pulvinum (Acari: Trombidiidae). Oikos, 65, 167–168.

    Google Scholar 

  • Zhang, Z.-Q. (1998). Biology and ecology of trombidiid mites (Acari: Trombidioidea). Experimental and Applied Acarology, 22, 139–155.

    Google Scholar 

  • Zhang, Z.-Q., & Sanderson, J. P. (1993). Association of Ereynetes tritonymphs (Acari: Ereynetidae) with the Fungus Gnat, Bradysia impatiens (Diptera: Sciaridae). International Journal of Acarology, 19, 179–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walter, D.E., Proctor, H.C. (2013). Animals as Habitats. In: Mites: Ecology, Evolution & Behaviour. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7164-2_9

Download citation

Publish with us

Policies and ethics