Skip to main content

Acari Underwater, or, Why Did Mites Take the Plunge?

  • Chapter
  • First Online:
Book cover Mites: Ecology, Evolution & Behaviour

Abstract

If one goes back far enough, all terrestrial arthropods are the descendants of marine ancestors. For some groups, such as isopods, emergence onto dry land was evolutionarily recent and these animals often appear imperfectly adapted to solid ground. For most other groups, however, the split between marine and terrestrial lifestyles happened hundreds of millions of years ago and all traces of aquatic adaptations have disappeared. So for the many taxa that have since re-invaded water, ancestral structures that would have been useful (e.g. gills) had long since vanished and mechanisms for respiration, feeding, and even mating, under water had to evolve de novo (Fig. 7.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbolade, O. M., & Odaibo, A. B. (2004). Dockovdia cookarum infection and the prosobranch gastropod Lanistes libycus host in Omi Stream, Abo-Iwoye, south-western Nigeria. African Journal of Biotechnology, 3, 202–205.

    Google Scholar 

  • Alberti, G. (1977). Zur Feinstruktur und Funktion der Genitalnäpfe von Hydrodroma despiciens (Hydrachnellae, Acari). Zoomorphologie, 87, 155–164.

    Google Scholar 

  • Alberti, G. (1980). Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari). II. Actinotrichida. Zoologische Jahrbucher Anatomie, 104, 144–203.

    Google Scholar 

  • Alberti, G., & Bader, C. (1990). Fine structure of external ‘genital’ papillae in the freshwater mite Hydrovolzia placophora (Hydrovolziidae, Actinedida, Actinotrichida, Acari). Experimental & Applied Acarology, 8, 115–124.

    Google Scholar 

  • Alberti, G., Fernandez, N. A., & Kümmel, G. (1991). Spermatophores and spermatozoa of oribatid mites (Acari: Oribatida). Part II: Functional and systematical considerations. Acarologia, 32, 435–449.

    Google Scholar 

  • Angelier, E., Angelier, M. L., & Lauga, J. (1985). Recherches sur l’écologie des Hydracariens (Hydrachnellae, Acari) dans les eaux courantes. Annales de Limnologie, 21, 25–64.

    Google Scholar 

  • Audy, J. R., Nadchatram, M., & Liat, L. B. (1960). Malaysian Parasites – XLIX. Host distribution of Malayan ticks (Ixodoidea). Study, Institute Medical Research, Malaysia, 29, 225–246.

    Google Scholar 

  • Bagge, P., & Meriläinen, J. J. (1985). The occurrence of water mites (Acari: Hydrachnellae) in the estuary of the River Kyrönjoki (Bothnian Bay). Annales Zoologici Fennici, 22, 123–127.

    Google Scholar 

  • Baker, R. A. (1976). Tissue damage and leukocytic infiltration following attachment of the mite Unionicola intermedia to the gills of the bivalve mollusc Anodonta anatina. Journal of Invertebrate Pathology, 27, 371–376.

    Google Scholar 

  • Baker, R. A. (1977). Nutrition of the mite Unionicola intermedia, Koenike and its relationship to the inflammatory response induced in its molluscan host Anodonta anatina, L. Parasitology, 75, 301–308.

    Google Scholar 

  • Barr, D. (1972). The ejaculatory complex of water mites (Acari: Parasitengona): morphology and potential value for systematics. Life sciences contributions/Royal Ontario Museum, 81, 1–87.

    Google Scholar 

  • Barr, D. W., & Smith, B. P. (1979). The contribution of setal blades to effective swimming in the aquatic mite Limnochares americana (Acari: Prostigmata: Limnocharidae). Zoological Journal of the Linnean Society, 65, 55–69.

    Google Scholar 

  • Barr, D. W., & Smith, B. P. (1980). Stable swimming by diagonal phase synchrony in arthropods. Canadian Journal of Zoology, 58, 782–795.

    Google Scholar 

  • Bartsch, I. (1987). Australacarus inexpectatus gen. et spec. nov. (Halacaroidea, Acari), mit einer Übersicht über parasitisch lebende Halacariden. Zoologischer Anzeiger, 218, 17–24.

    Google Scholar 

  • Bartsch, I. (1989). Marine mites (Halacaroidea, Acari): A geographical and ecological survey. Hydrobiologia, 178, 21–42.

    Google Scholar 

  • Bartsch, I. (1994). Halacarid mites (Acari) from hydrothermal deep-sea sites. New Records. Cahiers de Biologie Marine, 35, 479–490.

    Google Scholar 

  • Bartsch, I. (1996). Halacarids (Halacaroidea, Acari) in freshwater. multiple invasions from the Paleozoic onwards? Journal of Natural History, 30, 67–99.

    Google Scholar 

  • Bartsch, I., & Gerecke, R. (2011). A new freshwater mite of the marine genus Halacarellus (Acari: Halacaridae) from the Austrian Alps (Styria, Gesäuse National Park): description and reflection on its origin. Zoologischer Anzeiger, 250, 151–159.

    Google Scholar 

  • Behan-Pelletier, V. M. (1996). Naiazetes reevesi n g, n sp (Acari: Oribatida: Zetomimidae) from semi-aquatic habitats of eastern North America. Acarologia, 37, 345–355.

    Google Scholar 

  • Behan-Pelletier, M., & Eamer, B. (2007). Aquatic Oribatida: Adaptations, constraints, distribution and ecology. In J. B. Morales-Malacara, V. Behan-Pelletier, E. Ueckermann, T. M. Pérez, E.G. Estrada-Venegas, & M. Badii (Eds.), Acarology XI: Proceedings of the international congress (pp. 71–82). México: Instituto de Biololgía; Facultad de Ciencias; Universidad Nacional Autónoma de México; Sociedad Latinoamericana de Acarología. México, 2002.

    Google Scholar 

  • Böttger, K. (1962a). Zur Biologie und Ethologie der einheimischen Wassermilben Arrenurus (Megaluracarus) globator (Müll.), 1776 Piona nodata nodata (Müll.), 1776 und Eylais infundibulifera meridionalis (Thon), 1899 (Hydrachnellae, Acari). Zoologische Jahrbücher Abteilung für Systematik, 89, 501–584.

    Google Scholar 

  • Böttger, K. (1962b). Die Bedeutung des Lichtes für die Lage- und Richtungsorientierung einiger Süsswassermilben (Hydrachnellae, Acari). Zoologische Anzeiger, 169, 476–484.

    Google Scholar 

  • Böttger, K. (1969). Die Ernährungsweise der Wassermilbe Limnochares aquatica (L.) (Hydrachnellae, Acari). Zoologischer Anzeiger Supplementband, 33, 85–91.

    Google Scholar 

  • Böttger, K. (1970). Die Ernährungsweise der Wassermilben (Hydrachnellae, Acari). Internationale Revue Der Gesamten Hydrobiologie, 55, 895–912.

    Google Scholar 

  • Boulton, A., Harvey, M., & Proctor, H. (2004). Of spates and species: responses by interstitial water mites to simulated spates in a subtropical Australian river. Experimental and Applied Acarology, 34, 149–169.

    PubMed  Google Scholar 

  • Braun, F. (1931). Beiträge zur Biologie und Atmungsphysiologie der Argyroneta aquatica Cl. Zoologische Jahrbücher Abteilung für Systematik, 62, 175–262.

    Google Scholar 

  • Bristowe, W. (1958). The world of spiders. London: Collins.

    Google Scholar 

  • Chalker-Scott, L. (1995). Survival and sex ratios of the intertidal copepod, Tigriopus californicus, following ultraviolet-B (290–320 nm) radiation exposure. Marine Biology, 123, 799–804.

    Google Scholar 

  • Chant, D. A., Denmark, H. A., & Baker, E. W. (1959). A new subfamily, Macroseiinae nov., of the family Phytoseiidae (Acarina: Gamasina). Canadian Entomologist, 91, 808–811.

    Google Scholar 

  • Chapman, R. F. (1982). The insects: Structure and function (5th ed.). Massachusetts: Harvard University Press.

    Google Scholar 

  • Chen, P.-R., & Zhang, Z.-Q. (1991). Biology of Allothrombium pulvinum Ewing (Acari, Trombidiidae) and its impact on twospotted spider mite (Acari, Tetranychidae) in cotton fields. Journal of Applied Entomology, 112, 31–37.

    Google Scholar 

  • Cheng, L. (Ed.). (1976). Marine insects. Amsterdam: North Holland Publishing.

    Google Scholar 

  • Cicolani, B., & Di Sabatino, A. (1991). Sensitivity of water mites to water pollution. In F. Dusbabek & V. Bukva (Eds.), Modern acarology (Vol. 1, pp. 465–474). Prague: SPB Academic.

    Google Scholar 

  • Clarke, C. M., & Kitching, R. L. (1993). The metazoan food webs from six Bornean Nepenthes species. Ecological Entomology, 18, 7–16.

    Google Scholar 

  • Conroy, J. C. (1974). The taxonomy and ecology of Unionicola crassipes crassipes (Müller), a water mite parasitic on the freshwater sponge, Spongilla lacustris (Linne). In The 4th International Congress of Acarology (pp. 959–964). Marion Lake, British Columbia.

    Google Scholar 

  • Cook, D. R. (1969). The zoogeography of interstitial water mites. In The 2nd International Congress of Acarology. Budapest: Akademiai Kiado.

    Google Scholar 

  • Cook, D. R. (1974). Water mite genera and subgenera. Memoirs of the American Entomological Institute, 21, 1–860.

    Google Scholar 

  • Cook, D. R. (1991). Water mites from driven wells in New Zealand, the subfamily Notoaturinae Besch (Acarina, Aturidae). Stygologia, 6, 235–253.

    Google Scholar 

  • Cook, D. R. (1992). Water mites (Hydracarina), mostly from driven wells in New Zealand: Taxa other than the Notoaturnae Besch. Stygologia, 7, 43–62.

    Google Scholar 

  • Crome, W. (1951). Die Wasserspinne. Die Neue Brehm-Bücherei (Vol. 44). Leipzig: Geest & Portig K.-G.

    Google Scholar 

  • Cupp, J. K., & Willis, D. W. (1982). Occurrence of the mite Lebertia in a green sunfish (Lepomis syanellus). Journal of Parasitology, 68, 876.

    Google Scholar 

  • Cyr, H., & Downing, J. A. (1988). The abundance of phytophilous invertebrates on different species of submerged macrophytes. Freshwater Biology, 20, 365–374.

    Google Scholar 

  • Czeczuga, B., & Czerpak, R. (1968a). Pigments occurring in Hydrachna geographica and Piona nodata (Hydracarina, Arachnoidea). Specialia, 24, 218–219.

    CAS  Google Scholar 

  • Czeczuga, B., & Czerpak, R. (1968b). The presence of carotenoids in Eylais hamata (Koenike, 1897) (Hydracarina, Arachnoidea). Comparative Biochemistry and Physiology, 24, 37–46.

    PubMed  CAS  Google Scholar 

  • Czeczuga, B., & Czerpak, R. (1968c). Carotenoids in Hydryphantes dispar (Schaub, 1988) (Hydracarina, Arachnoidea). Comparative Biochemistry and Physiology, 25, 547–552.

    PubMed  CAS  Google Scholar 

  • Davids, C. (1973). The water mite Hydrachna conjecta, bionomics and relation to species of Corixidae. Netherlands Journal of Zoology, 23, 363–429.

    Google Scholar 

  • Davids, C. (1991). Water mites: The impact of larvae and adults on their host and prey populations. In F. Dusbábek & V. Bukva (Eds.), Modern acarology (Vol. I, pp. 497–501). The Hague: Academia, Prague and SPB Academic Publishing.

    Google Scholar 

  • Davids, C., & Belier, R. (1974). The spermatophores of Hydrachna conjecta Koenike and the life history of the land-living ancestors of this water mite. In Proceedings of the 4th international congress of acarology (pp. 147–151). Budapest: Akademiai Kiado.

    Google Scholar 

  • Davids, C., Beintema, E. F., & Weekenstroo, J. E. (1981). Feeding rate and egg production in water mites in relationship with temperature. Verhandlungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie, 21, 1603–1606.

    Google Scholar 

  • Davids, C., Holtslag, J., & Dimock, R. V., Jr. (1988). Competitive exclusion, harem behaviour and host specificity of the water mite Unionicola ypsilophora (Hydrachnellae, Acari) inhabiting Anodonta cygnea (Unionidae). Internationale Revue Der Gesamten Hydrobiologie, 73, 651–657.

    Google Scholar 

  • Di Sabatino, A., Smit, H., Gerecke, R., Goldschmidt, T., Matsumoto, N., & Cicolani, B. (2008). Global diversity of water mites (Acari, Hydrachnidia; Arachnida) in freshwater. Hydrobiologia, 595, 303–315.

    Google Scholar 

  • Dimock, R. V., Jr. (1983). In defense of the harem: intraspecific aggression by male water mites (Acari: Unionicolidae). Annals of the Entomological Society of America, 76, 463–465.

    Google Scholar 

  • Dohet, A., Ector, L., Cauchie, H.-M., & Hoffmann, L. (2008). Identification of benthic invertebrate and diatom indicator taxa that distinguish different stream types as well as degraded from reference conditions in Luxembourg. Animal Biology, 58, 419–472.

    Google Scholar 

  • Donnelly, M. A. (1991). Feeding patterns of the strawberry poison frog Dendrobates pumilio (Anura: Dendrobatidae). Copeia, 1991, 723–730.

    Google Scholar 

  • Edwards, D. D., & Dimock, R. V., Jr. (1991). Relative importance of size versus territorial residency in intraspecific aggression by symbiotic male water mites (Acari: Unionicolidae). Experimental & Applied Acarology, 12, 61–65.

    Google Scholar 

  • Edwards, D. D., & Dimock, R. V., Jr. (1995). Specificity of the host recognition behaviour of larval Unionicola (Acari: Unionicolidae): the effects of larval ontogeny and early larval experience. Animal Behaviour, 50, 343–352.

    Google Scholar 

  • Edwards, D. D., & Vidrine, M. F. (2013). Patterns of species richness among assemblages of Unionicola spp. (Acari: Unionicolidae) inhabiting freshwater mussels (Bivalvia: Unionoida) of North America. Journal of Parasitology, 99, 212–217. http://dx.doi.org/10.1645/GE-3208.1.

    PubMed  Google Scholar 

  • Ellis-Adam, A. C., & Davids, C. (1970). Oviposition and post-embryonic development of the watermite Piona alpicola (Neuman, 1880). Netherlands Journal of Zoology, 20, 122–137.

    Google Scholar 

  • Elton, C. S. (1923). On the colours of water-mites. Proceedings of the Zoological Society of London, 82, 1231–1239.

    Google Scholar 

  • Eriksson, M. O. G., Henrikson, L., & Oscarson, H. G. (1980). Predator–prey relationships among water-mites and other freshwater organisms. Archiv für Hydrobiologie, 88, 146–154.

    Google Scholar 

  • Ernst, H. (1996). The distribution and zonation of terrestrial mites inhabiting artificial rocky shores of estuaries in northern Germany. In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 529–532). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Fain, S., & Synnot, R. (1981). Hyadesia australian sp. n. (Astigmata, Hyadesiidae) from South-Eastern Australia. Bulletin and annales de la Société Royale Belge d’Entomologie, 117, 195–201.

    Google Scholar 

  • Fashing, N. F. (2008). Mate-guarding in the genus Creutzeria (Astigmata: Histiostomatidae), an aquatic mite genus inhabiting the fluid-filled pitchers of Nepenthes plants (Nepentheaceae). Systematic & Applied Acarology, 13, 163–171.

    Google Scholar 

  • Fashing, N. J. (1994). Life-history patterns of astigmatid inhabitants of water-filled treeholes. In M. A. Houck (Ed.), Mites: Ecological and evolutionary studies of life-history patterns (pp. 160–185). New York: Chapman & Hall.

    Google Scholar 

  • Fashing, N. J. (1998). Functional morphology as an aid in determining trophic behaviour: The placement of astigmatic mites in food webs of water-filled tree-hole communities. Experimental & Applied Acarology, 22, 435–453.

    Google Scholar 

  • Fashing, N. J. (2010). Life history and biology of Hormosianoetus mallotae (Fashing) (Histiostomatidae: Astigmata), an obligatory inhabitant of water-filled treeholes. International Journal of Acarology, 36, 189–198.

    Google Scholar 

  • Fashing, N. J., & Chua, T. H. (2002). Systematics and ecology of Naiadacarus, a new species of Acaridae (Acari: Astigmata) inhabiting the pitchers of Nepenthes bicalcarata Hook. F. in Brunei Darussalam. International Journal of Acarology, 28, 157–167.

    Google Scholar 

  • Fashing, N. J., & Marcuson, K. S. (1996). Fine structure of the axillary organs of Fusohericia lawrencei Baker and Crossley (Astigmata: Algophagidae). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 381–384). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Fashing, N. J., OConnor, B. M., & Kitching, R. L. (1996). Adaptations for swimming in the genus Creutzeria (Astigmata: Histiostomatidae). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 385–388). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Fisher, G. R., Kuhn, R. E., & Dimock, R. V., Jr. (2000). The symbiotic water mite Unionicola formosa (Acari: Unionicolidae) ingests mucus and tissue of its molluscan host. The Journal of Parasitology, 86, 1254–1258.

    PubMed  CAS  Google Scholar 

  • Flowers, M. A., & Graves, B. M. (1995). Prey selectivity and size-specific diet changes in Bufo cognatus and B. woodhousii during early postmetamorphic ontogeny. Journal of Herpetology, 23, 608–612.

    Google Scholar 

  • Freundlieb, U. (1979). Zur Ökologie der Hydrachnellae (Acari) des Schierenseebaches. Archiv für Hydrobiologie/Supplementband 54:509–538.

    Google Scholar 

  • Garga, N. (1996). Aposematism in water mites (Acari: Hydracarina): A predator? Defense mechanism, a phylogenetic hold-over and protection from damaging light. M.Sc. thesis, Queen’s University, Kingston.

    Google Scholar 

  • Gerecke, R. (1991). Taxonomische, faunistiche und ökologische Untersuchungen an Wassermilben (Acari, Actinedida) aus Sizilien unter Berücksichtigung anderer aquatischer Invertebraten. Lauterbornia., 7, 1–303.

    Google Scholar 

  • Gerecke, R., & Schwoerbel, J. (1991). Water quality and water mites (Acari, Actinedida) in the upper Danube region, 1959–1984. In F. Dusbabek & V. Bukva (Eds.), Modern acarology (Vol. 1, pp. 483–491). Prague: SPB Academic.

    Google Scholar 

  • Gerecke, R., & Smith, I. M. (1993). On the biology of the spring-dwelling water mite Nilotonia longipora (Walter, 1925) (Acari, Actinedida, Anisitsiellidae). In 2nd symposium (pp. 377–383). Krynica: EURAAC.

    Google Scholar 

  • Gledhill, T. (1985). A new species of water-mites, Unionicola (Pentatax) macani (Unionicolidae, Hydrachnellae, Acari), from the mantle cavity of the prosobranch mollusc Lanistes ovum Peters in Nigeria, with remarks on some aspects of host/parasite relationships between unionicolids and molluscs. Archiv für Hydrobiologie, 104, 77–92.

    Google Scholar 

  • Gliwicz, Z. M., & Biesiadka, E. (1975). Pelagic water mites (Hydracarina) and their effect on the plankton community in a neotropial man-made lake. Archiv für Hydrobiologie, 76, 65–88.

    Google Scholar 

  • Goldschmidt, T., & Fu, V. W. K. (2011). Description of Hygrobates aloisii sp. nov. from Hong Kong, a new species of Hygrobates (Lurchibates) subgen. nov. (Acari, Hydrachnidia, Hygrobatidae), with data on the parasite–host relationship to the Hong Kong Newt Paramesotriton hongkongensis (Amphibia, Caudata, Salamandridae). Zoologischer Anzeiger, 250, 19–31.

    Google Scholar 

  • Goldstrohm, D. D., & Lilly, V. G. (1965). The effect of light on the survival of pigmented and non-pigmented cells of Dacropinax spathularia. Mycologia, 57, 612–623.

    Google Scholar 

  • Green, J. (1964). Pigments of the Hydracarine Eylais extendens (Acari: Hydrachnellae). Comparative Biochemistry and Physiology, 13, 469–472.

    CAS  Google Scholar 

  • Hairston, N. G., Jr. (1976). Photoprotection by carotenoid pigments in the copepod Diaptomus nevadensis. Proceedings of the National Academy of Science, 73, 971–974.

    CAS  Google Scholar 

  • Halik, R. N. St. L. (1924). Contributions to the physiology of the water mites (Hydracarina) (Vol. 17, pp. 3–9). Prague: Publ. Fac. Sci. Univ. Charles. (in Czechoslovakian with English summary).

    Google Scholar 

  • Harvey, M. S. (1990). Perzidae, a new freshwater mite family from Australia (Acarina: Halacaroidea). Invertebrate Taxonomy, 3, 771–781.

    Google Scholar 

  • Harvey, M. S. (1998). The Australian water mites: A guide to families and genera. In Monographs on invertebrate taxonomy (Vol. 4). Collingwood: CSIRO Publishing.

    Google Scholar 

  • Hevers, J. (1980). Biologisch-ökologische Untersuchungen zum Entwicklungszyklus der in Deutschland auftretenden Unionicola-Arten (Hydrachnellae, Acari). Archiv für Hydrobiologie Supplementband, 57, 324–373.

    Google Scholar 

  • Hinton, H. E. (1971). Plastron respiration in the mite, Platyseius italicus. Journal of Insect Physiology, 17, 1185–1199.

    Google Scholar 

  • Hoogstraal, H. (1973). Acarina (ticks). In A. J. Gibbs (Ed.), Viruses and invertebrates (pp. 89–103). Amsterdam: North Holland Publishing.

    Google Scholar 

  • Jenkins, B., & Kitching, R. L. (1990). The ecology of water-filled treeholes in Australian rainforests: Food web reassembly as a measure of community recovery after disturbance. Australian Journal of Ecology, 15, 199–205.

    Google Scholar 

  • Johnson, D., Akre, B. G., & Crowley, P. H. (1975). Modeling arthropod predation: Wasteful killing by damselfly naiads. Ecology, 56, 1081–1093.

    Google Scholar 

  • Jones, D., & Morgan, G. (1994). A field guide to crustaceans of Australian waters. Sydney: Reed Books.

    Google Scholar 

  • Keeley, E. R., & Grant, J. W. A. (1997). Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 54, 1894–1902.

    Google Scholar 

  • Kerfoot, W. C. (1982). A question of taste: Crypsis and warning coloration in freshwater zooplankton communities. Ecology, 63, 538–554.

    Google Scholar 

  • Kitching, R. L. (2000). Food webs and container habitats: The natural history and ecology of phytotelmata. New York: Cambridge University Press.

    Google Scholar 

  • Kitching, R. L., & Callaghan, C. (1982). The fauna of water-filled tree holes in box forest in south-east Queensland. Australian Entomological Magazine, 8, 61–70.

    Google Scholar 

  • Klemm, D. J., Blocksom, K. A., Fulk, F. A., Herlihy, A. T., Hughes, R. M., Kaufman, P. R., Peck, D. V., Stoddard, J. L., Thoeny, W. T., Griffith, M. B., & Davis, W. S. (2003). Development and evaluation of a Macroinvertebrate Biotic Integrity Index (MBII) for regionally assessing Mid-Atlantic Highlands Streams. Environmental Management, 31, 656–669.

    PubMed  Google Scholar 

  • Koehler, H. H. (1992). The use of soil mesofauna for the judgement of chemical impact on ecosystems. Agriculture, Ecosystems and Environment, 40, 193–205.

    Google Scholar 

  • Krantz, G. W. (1974). Phaulodinychus mitis (Leonardi 1899) (Acari: Uropodidae) an intertidal mite exhibiting plastron respiration. Acarologia, 16, 11–20.

    Google Scholar 

  • Krantz, G. W. (1978). A manual of acarology. Corvallis: Oregon State University Bookstores.

    Google Scholar 

  • Krantz, G. W., & Baker, G. T. (1982). Observations on the plastron mechanism of Hydrozetes sp. (Acari: Oribatida: Hydrozetidae). Acarologia, 23, 273–277.

    Google Scholar 

  • Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of acarology (3rd ed.). Lubbock: Texas Tech University Press. 807 p. 338 b/w illustrations; 60 figures ISBN 978-0-89672-620-8.

    Google Scholar 

  • Lagerlöf, J., & Andrén, O. (1988). Abundance and activity of soil mites (Acari) in four cropping systems. Pedobiologia, 32, 129–145.

    Google Scholar 

  • Laird, M. (1947). Some natural enemies of mosquitoes in the vicinity of Palmalmal, New Britain. Transactions of the Royal Society of New Zealand, 76, 453–476.

    Google Scholar 

  • Learner, M. A., & Chawner, H. A. (2003). Macro-invertebrate associations in sewage filter-beds and their relationship to operational practice. Journal of Applied Ecology, 35, 720–747.

    Google Scholar 

  • Luxton, M. (1990). The marine littoral mites of the New Zealand Region. Journal of the Royal Society of New Zealand, 20, 367–418.

    Google Scholar 

  • MacQuitty, M. (1984). The feeding behaviour of two species of Agauopsis (Halacaroidea) from California. In D. A. Griffith & C. E. Bowman (Eds.), Acarology VI (pp. 571–580). New York: John Wiley.

    Google Scholar 

  • Manunta, C. (1939). Estraazione e cristallizzazione del pigmento che colora in rosso la pelle di certi acari del genere Trombidium. Helvetica Chimica Acta, 22, 1154–1155.

    CAS  Google Scholar 

  • Martin, P. (2005). Water mites (Hydrachnidia, Acari) as predators in lotic environments. Phytophaga, 16, 307–321.

    Google Scholar 

  • Mathews, M. M., & Sistrom, W. R. (1959). Function of carotenoid pigments in non-photosynthetic bacteria. Nature, 184, 1892–1893.

    PubMed  CAS  Google Scholar 

  • Meyer, E., & Kabbe, K. (1991). Pigmentation in water mites of the genera Limnochares Latr. and Hydrodroma Koch (Hydrachnidia). In R. Schuster & P. W. Murphy (Eds.), The acari: Reproduction, development and life-history strategies (pp. 379–391). New York: Chapman & Hall.

    Google Scholar 

  • Mitchell, R. (1972). The tracheae of watermites. Journal of Morphology, 136, 327–335.

    Google Scholar 

  • Modlin, R. F., & Gannon, J. E. (1973). A contribution to the ecology and distribution of aquatic Acari in the St. Lawrence Great Lakes. Transactions of the American Microscopical Society, 92, 217–224.

    Google Scholar 

  • Mwango, J., Williams, T., & Wiles, R. (1995). A preliminary study of the predator–prey relationships of watermites (Acari: Hydrachnidia) and blackfly larvae (Diptera: Simuliidae). The Entomologist, 114, 107–117.

    Google Scholar 

  • Naeem, S. (1988). Resource heterogeneity fosters coexistence of a mite and a midge in pitcher plants. Ecological Monograph, 58, 215–227.

    Google Scholar 

  • Naeem, S. (1990). Resource heterogeneity and community structure: a case study in Heliconia imbricata phytotelmata. Oecologia, 84, 29–38.

    Google Scholar 

  • Nagel, L., Zanuttig, M., & Forbes, M. R. (2011). Escape of parasitic water mites from dragonfly predators attacking their damselfly hosts. Canadian Journal of Zoolgy, 89, 213–298.

    Google Scholar 

  • Newell, I. M. (1945). Hydrozetes Berlese (Acari, Oribatoidea): the occurrence of the genus in North America, and the phenomenon of levitation. Transactions of the Connecticut Academy of Arts and Sciences, 36, 253–275.

    Google Scholar 

  • Norton, R. A. (1994). Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In M. A. Houck (Ed.), Mites: Ecological and evolutionary studies of life-history patterns (pp. 99–135). New York: Chapman & Hall.

    Google Scholar 

  • Norton, R. A., Williams, D. D., Hogg, I. D., & Palmer, S. C. (1988). Biology of the oribatid mite Mucronothrus nasalis (Acari: Oribatida: Trhypochthoniidae) from a small coldwater spring- brook in eastern Canada. Canadian Journal of Zoology, 66, 622–628.

    Google Scholar 

  • Norton, R. A., Graham, T. B., & Alberti, G. (1996). A rotifer-eating ameronothroid (Acari: Ameronothridae) mite from ephemeral pools on the Colorado plateau. In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1. Columbus: Ohio Biological Survey.

    Google Scholar 

  • OConnor, B. M. (1994). Life-history modifications in astigmatid mites. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 136–159). New York: Chapman & Hall.

    Google Scholar 

  • Olmeda, A. S., Blanco, M. M., Pérez-Sánchez, J. L., Luzón, M., Villarroel, M., & Gibello, A. (2011). Occurrence of the oribatid mite Trhypochthoniellus longisetus longisetus (Acari: Trhypochthoniidae) on tilapia Oreochromis niloticus. Diseases of Aquatic Organisms, 94, 77–81.

    PubMed  Google Scholar 

  • Olomski, R. (1991). Effects of the habitat salinity on the osmotic and ionic regulation of the freshwater mites Eylais tantilla Koen. and E. planiceps novata Viets (Acari: Hydrachnidia). In F. Dusbabek & V. Bukva (Eds.), Modern acarology (Vol. 2, pp. 357–364). Prague: SPB Academic.

    Google Scholar 

  • Paterson, C. G. (1970). Water mites (Hydracarina) as predators of chironomid larvae (Insecta: Diptera). Canadian Journal of Zoology, 48, 610–614.

    Google Scholar 

  • Pennak, R. W. (1978). Freshwater invertebrates of the United States (2nd ed.). Toronto: Wiley.

    Google Scholar 

  • Pepato, A. R., & da Rocha, C. E. R. (2010). On spermiogenesis, sperm cell morphology and accompanying secretions of Copidognathus (Acari: Halacaridae). Zoologischer Anzeiger, 249, 151–164.

    Google Scholar 

  • Pfingstl, T. (2013). Resistance to fresh and salt water in intertidal mites (Acari: Oribatida): Implications for ecology and hydrochorous dispersal. Experimental & Applied Acarology http://www.ncbi.nlm.nih.gov/pubmed/23456607

  • Philip, C. B. (1953). Tick talk. Scientific Monthly, 76, 77–84.

    Google Scholar 

  • Pieczynski, E. (1964). Analysis of numbers, activity, and distribution of water mites (Hydracarina), and of some other aquatic invertebrates in the lake littoral and sublittoral. Ekologia Polska, 12, 691–733.

    Google Scholar 

  • Pieczynski, E. (1976). Ecology of water mites (Hydracarina) in lakes. Polish Ecological Studies, 2, 5–54.

    Google Scholar 

  • Preston-Mafham, R. A., & Preston-Mafham, K. G. (1984). Spiders of the world. London: Blandford.

    Google Scholar 

  • Proctor, H. C. (1988). The life history and predatory biology of Unionicola crassipes (Müller) (Acari: Unionicolidae) in an Albertan foothills pond. M.Sc. thesis, University of Calgary, Calgary.

    Google Scholar 

  • Proctor, H. C. (1991). The evolution of copulation in water mites: A comparative test for nonreversing characters. Evolution, 45, 558–567.

    Google Scholar 

  • Proctor, H. C. (1992a). Mating and spermatophore morphology of water mites (Acari: Parasitengona). Zoological Journal of the Linnean Society, 106, 341–384.

    Google Scholar 

  • Proctor, H. C. (1992b). Discord between field and laboratory sex ratios of the water mite Neumania papillator Marshall (Acari: Unionicolidae). Canadian Journal of Zoology, 70, 2483–2486.

    Google Scholar 

  • Proctor, H. C. (Ed.). (2004). Aquatic mites: from genes to communities. Dordrecht: Kluwer Academic. (book format of Experimental and Applied Acarology 34, issues 1 and 2).

    Google Scholar 

  • Proctor, H. C. (2007). Aquatic mites in assessments of stream invertebrate diversity. In J. B. Morales-Malacara, V. Behan-Pelletier, E. Ueckermann, T. M. Pérez, E. G. Estrada-Venegas, & M. Badii (Eds.) Acarology XI: Proceedings of the International Congress (pp. 105–117). México: Instituto de Biololgía; Facultad de Ciencias; Universidad Nacional Autónoma de México; Sociedad Latinoamericana de Acarología. México, 2002.

    Google Scholar 

  • Proctor, H. C., & Garga, N. (2004). Red, distasteful water mites: Did fish make them that way. Experimental & Applied Acarology, 34, 127–147.

    Google Scholar 

  • Proctor, H. C., & Pritchard, G. (1989). Neglected predators: Water mites (Acari: Parasitengona: Hydrachnellae) in freshwater communities. Journal of the North American Benthological Society, 8, 100–111.

    Google Scholar 

  • Proctor, H. C., & Pritchard, G. (1990). Prey detection by the water mite Unionicola crassipes (Acari: Unionicolidae). Freshwater Biology, 23, 271–279.

    Google Scholar 

  • Proctor, H. C., Gray, H. M., & OConnor, B. M. (1997). Subaquatic mites (Acari: Astigmata) associated with adult freshwater leeches (Hirudinea: Erpobdellidae). Journal of Natural History, 31, 539–544.

    Google Scholar 

  • Pugh, P. J. A. (1996a). Edaphic oribatid mites (Cryptostigmata: Acarina) associated with an aquatic moss on sub-Antarctic South Georgia. Pedobiologia, 40, 113–117.

    Google Scholar 

  • Pugh, P. J. A. (1996b). Using artificial substrata to monitor how cryptofaunal Acari colonize littoral algae on sub-Antarctic South Georgia. Acarologia, 37, 189–200.

    Google Scholar 

  • Pugh, P. J. A., King, P. E., & Fordy, M. R. (1987). Structural features associated with respiration in some intertidal Uropodina (Acarina: Mesostigmata). Journal of Zoology Lond., 211, 107–120.

    Google Scholar 

  • Puncochar, P. (1971). On the occurrence of water mites (Hydrachnellae) in the submerged vegetation of a carp pond. In M. Daniel & B. Rosicky (Eds.), Proceedings of the 3rd international congress of acarology (pp. 173–175). The Hague: Junk.

    Google Scholar 

  • Puncochar, P., & Hrbacek, J. (1991). Water mites in the plankton of Hubenov Reservoir and their relations to fish stock composition. In F. Dusbabek & V. Bukva (Eds.), Modern acarology (Vol. 1, pp. 449–457). Prague: SPB Academic.

    Google Scholar 

  • Putman, W. L. (1970). Life history and behavior of Balaustium putmani. Annals of the Entomological Society of America, 63, 76–81.

    Google Scholar 

  • Rajendran, R., & Prasad, R. S. (1989). Encentridiophorus similis (Acarina: Unionicolidae) an active predator of mosquito larvae. Current Science, 58, 466–467.

    Google Scholar 

  • Resh, V. H., & McElravy, E. P. (1993). Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In D. M. Rosenberg & V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates (pp. 159–194). New York: Chapman & Hall.

    Google Scholar 

  • Rieradevall, M., & Gil, M. J. (1993). Distribution, density and specific composition of water mites (Acari) in the sublittoral of Lake Banyoles (Spain). Annales de Limnologie, 29, 41–46.

    Google Scholar 

  • Riessen, H. P. (1982). Pelagic water mites: Their life history and seasonal distribution in the zooplankton community of a Canadian lake. Archiv für Hydrobiologie Supplementband, 62, 410–439.

    Google Scholar 

  • Riessen, H. P. (1985). Exploitation of prey seasonality by a planktonic predator. Canadian Journal of Zoology, 63, 1729–1732.

    Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall.

    Google Scholar 

  • Roth, V. D., & Brown, W. L. (1976). Other intertidal air-breathing arthropod spp. In L. Cheng (Ed.), Marine insects (pp. 119–150). Amsterdam: North Holland Publishing.

    Google Scholar 

  • Rousch, J. M., Simmons, T. W., Kerans, B. L., & Smith, B. P. (1997). Relative acute effects of low pH and high iron on the hatching and survival of the water mite (Arrenurus manubriator) and the aquatic insect (Chironomus riparius). Environmental Toxicology and Chemistry, 16, 2144–2150.

    CAS  Google Scholar 

  • Schatz, H., & Gerecke, R. (1996). Hornmilben aus Quellen und Quellbächen im Nationalpark Berchtesgaden (Oberbayern) und in den Südlichen Alpen (Trentino-Alto Adige). Berichte des Naturwissenschaftlich- Medizinischen Vereins in Innsbruck, 83, 121–134.

    Google Scholar 

  • Schmidt, H.-W. (1969). Tages- und jahresperiodische Driftaktivität der Wassermilben (Hydrachnellae, Acari). Oecologia, 3, 240–248.

    Google Scholar 

  • Schütz, D., & Taborsky, M. (2003). Adaptations to an aquatic life may be responsible for the reversed sexual size dimorphism in the water spider, Argyroneta aquatica. Evolutionary Ecology Research, 5, 105–117.

    Google Scholar 

  • Siemer, F. (1996). Distribution, zonation, phenology, and life cycle of the Halacaridae (Prostigmata) of artificial rocky shores located at the Weser estuary (Germany). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, proceedings (pp. 547–551). Columbus: Ohio Biological Survey.

    Google Scholar 

  • Simmons, T. W., & Smith, I. M. (1984). Morphology of larvae, deutonymphs, and adults of the water mite Najadicola ingens (Prostigmata: Parasitengona: Hygrobatoidea) with remarks on phylogenetic relationships and revision of taxonomic placement of Najadicolinae. The Canadian Entomologist, 116, 691–701.

    Google Scholar 

  • Smit, H. & Alberti, G. (2010). The water mite family Pontarachnidae, with new data on its peculiar morphological structures (Acari: Hydachnidia). In M. W. Sabelis & J. Bruin (Eds.), Trends in Acarology: Proceedings of the 12th international congress (pp. 71–79). Amsterdam: Springer. 670 pp.

    Google Scholar 

  • Smith, B. P. (1983). The potential of mites as biological control agents of mosquitoes. In M. Hoy, G. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (pp. 79–85). Agric. Exp. Sta. Univ. Calif., Special Pub. No. 3304.

    Google Scholar 

  • Smith, B. P. (1988). Host–parasite interaction and impact of larval water mites on insects. Annual Review of Entomology, 33, 487–507.

    Google Scholar 

  • Smith, B. P., & Barr, D. (1977). Swimming by the water mite Limnochares americana Lundblad (Acari, Parasitengona, Limnocharidae). Canadian Journal of Zoology, 55, 2050–2059.

    Google Scholar 

  • Smith, I. M., & Cook, D. R. (1991). Water mites. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American freshwater invertebrates (pp. 523–592). San Diego: Academic.

    Google Scholar 

  • Sokolow, I. I. (1977). The protective envelopes in the eggs of Hydrachnellae. Zoologischer Anzeiger, 198, 36–46.

    Google Scholar 

  • ten Winkel, E. H., & Davids, C. (1985). Bioturbation by cyprinid fish affecting the food availability for predatory water mites. Oecologia, 67, 218–219.

    Google Scholar 

  • ten Winkel, E. H., Davids, C., & de Nobel, J. G. (1989). Food and feeding strategies of water mites of the genus Hygrobates and the impact of their predation on the larval population of the chironomid Cladotanytarsus mancus (Walker) in Lake Maarsseveen. Netherlands Journal of Zoology, 39, 246–263.

    Google Scholar 

  • Timms, B. V. (1993). Saline Lakes of the Paroo, Inland New South Wales, Australia. Hydrobiologia, 267, 269–289.

    CAS  Google Scholar 

  • Ullrich, F. (1976). Biologisch-ökologische Studien an rheophilen Wassermilben (Hydrachnellae, Acari), unter besonderer Berücksichtigung von Sperchon setiger (Thor 1898). Ph.D. thesis, University of Kiel, Kiel.

    Google Scholar 

  • Viets, K. O. (1980). New Unionicolidae (Acari, Hydrachnellae) from Australia. Transactions of the Royal Society of South Australia, 104, 27–40.

    Google Scholar 

  • Ward, J. (1994). The New Zealand marine caddisflies (Trichoptera). Weta, 17, 18–20.

    Google Scholar 

  • Welbourn, W. C. (1991). Phylogenetic studies of the terrestrial Parasitengona. In F. Dusbábek & V. Bukva (Eds.), Modern acarology (2nd ed., pp. 163–170). The Hague: Academia, Prague & SPB Academic Publishing bv.

    Google Scholar 

  • Welsh, J. H. (1930). Reversal of phototropism in a parasitic water mite. The Biological Bulletin, 59, 165–169.

    Google Scholar 

  • Wiles, P. R. (1982). A note on the watermite Hydrodroma despiciens feeding on chironomid egg masses. Freshwater Biology, 12, 83–87.

    Google Scholar 

  • Wiles, P. R. (1984). Watermite respiratory systems. Acarologia, 25, 27–31.

    Google Scholar 

  • Winterbourn, M. J., & Anderson, N. H. (1980). The life history of Philanisus plebius Walker (Trichoptera: Chathamiidae), a caddisfly whose eggs were found in a starfish. Ecological Entomology, 5, 293–303.

    Google Scholar 

  • Witte, H. (1984). The evolution of the mechanisms of reproduction in the Parasitengonae (Acarina: Prostigmata). In D. A. Griffiths & C. E. Bowman (Eds.), Acarology 6 (Vol. 1, pp. 470–478). Chichester: Ellis Horwood.

    Google Scholar 

  • Witte, H. (1991). Indirect sperm transfer in prostigmatic mites from a phylogenetic viewpoint. In R. Schuster & P. W. Murphy (Eds.), The Acari: Reproduction, development and life-history strategies (pp. 137–176). London: Chapman & Hall.

    Google Scholar 

  • Wohltmann, A. (1996). On the life cycle and parasitism of Johnstoniana errans (Johnston) 1852 (Acari: Prostigmata: Parasitengonae). Acarologia, 37, 201–209.

    Google Scholar 

  • Young, W. C. (1969). Ecological distribution of Hydracarina in north central Colorado. American Midland Naturalist, 82, 367–401.

    Google Scholar 

  • Young, W. C., & Rhodes, A. C. (1974). The influence of dissolved oxygen concentrations on three species of water mites (Hydracarina). American Midland Naturalist, 92, 115–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Walter, D.E., Proctor, H.C. (2013). Acari Underwater, or, Why Did Mites Take the Plunge?. In: Mites: Ecology, Evolution & Behaviour. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7164-2_7

Download citation

Publish with us

Policies and ethics