Mites in Soil and Litter Systems

  • David Evans Walter
  • Heather C. Proctor
Chapter

Abstract

People, like other large terrestrial mammals, tread the surface of the Earth and we know best the aboveground half of the ecosystems we inhabit. Forests, grasslands, meadows, fields, deserts and cities squat on the surface of the earth, but each has its shadow existence belowground. Less than half of the energy fixed by the sun is respired by the plants, animals and microbes that live aboveground: most falls into the living system we call soil (Macfadyen 1963). Soils are well known for their extraordinary biological diversity (Wardle 2006) and, more than any other habitat, this largely belowground system is the empire of mites.

References

  1. Abbott, D. T., Seastedt, T. R., & Crossley, D. A., Jr. (1980). Abundance, distribution, and effects of clearcutting on Cryptostigmata in the Southern Appalachians. Environmental Entomology, 9, 618–623.Google Scholar
  2. Addington, R. N., & Seastedt, T. R. (1999). Activity of soil microarthropods beneath snowpack in alpine tundra and subalpine forest. Pedobiologia, 43, 47–53.Google Scholar
  3. Aitchison, C. W. (1979). Winter-active subnivean invertebrates in Southern Canada. III. Acari. Pedobiologia, 19, 153–160.Google Scholar
  4. Alberti, G. (1973). Ernährungsbiologie und Spinnvermögen der Schnabelmilben (Bdellidae, Trombidiformes). Zeitschrift für Morphologie und Ökologie der Tiere, 76, 283–338.Google Scholar
  5. Alberti, G. (2010). On predation in Epicriidae (Gamasida, Anactinotrichida) and fine-structural details of their forelegs. Soil Organisms, 82, 179–192.Google Scholar
  6. Alberti, G., & Ehrnsberger, R. (1977). Rasterelektronenmikroskopische untersuchungen zum Spinnvermögen der Bdelliden und Cunaxiden (Acari, Prostigmata). Acarologia, 19, 55–61.Google Scholar
  7. Ali, O., Dunne, R., & Bennan, R. (1997). Biological control of the sciarid fly, Lycoriella solani by the predatory mite, Hypoaspis miles (Acari: Lalelapidae) in mushroom crops. Systematic and Applied Acarology, 2, 71–80.Google Scholar
  8. Andersen, D. C. (1987). Below-ground herbivory in natural communities: A review emphasizing fossorial animals. The Quarterly Review of Biology, 62, 261–286.Google Scholar
  9. Anderson, J. M. (1975). Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. Journal of Animal Ecology, 44, 475–495.Google Scholar
  10. Anderson, J. M. (1978a). Inter- and intra-habitat relationships between woodland Cryptostigmata species diversity and the diversity of soil and litter microhabitats. Oecologia, 32, 341–348.Google Scholar
  11. Anderson, J. M. (1978b). Competition between two unrelated species of soil Cryptostigmata (Acarina) in experimental microcosms. Journal of Animal Ecology, 47, 787–803.Google Scholar
  12. Anderson, J. M., & MacFayden, A. (1976). The role of terrestrial and aquatic organisms in decomposition processes. Oxford: Blackwell.Google Scholar
  13. André, H. M., Noti, M.-I., & Lebrun, P. (1994). The soil fauna: The other last biotic frontier. Biodiversity and Conservation, 3, 45–56.Google Scholar
  14. Baker, A. S. (2009). Acari in archaeology. Experimental & Applied Acarology, 49, 147–160.Google Scholar
  15. Bal, L. (1982). Zoological ripening of soils. Wageningen: PUDOC.Google Scholar
  16. Barker, P. S. (1969). The response of a predator, Hypoaspis aculeifer (Canestrini) (Acarina: Laelapidae), to two species of prey. Canadian Journal of Zoology, 47, 343–345.Google Scholar
  17. Barrett, J. E., Virginia, R. A., Hopkins, D. W., Aislabie, J., Bargagli, R., Bockheim, J. G., Campbell, I. B., Lyons, W. B., Moorhead, D., Nkem, J., Sletten, R. S., Steltzer, H., Wall, D. H., & Wallenstein, M. (2006). Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 3019–3034.Google Scholar
  18. Basset, Y., et al. (2012). Arthropod diversity in a tropical forest. Science, 338, 1481–1484. doi:10.1126/science.1226727.PubMedGoogle Scholar
  19. Beare, M. H., Coleman, D. C., Crossley, D. A., Jr., Hendrix, P. F., & Odum, E. P. (1995). A hierarchical approach to evaluating the significance of soil biodiversity to biogeochemical cycling. In H. P. Collins, G. P. Robertson, & M. J. Klug (Eds.), The significance and regulation of soil biodiversity. Dordrecht: Kluwer Academic.Google Scholar
  20. Beaulieu, F. (2011). Saproxyly in predatory mites? Mesostigmata in decaying log habitats versus litter in a wet eucalypt forest, Tasmania, Australia. International Journal of Acarology, 138, 313–323. doi:10.1080/01647954.2011.647072.Google Scholar
  21. Beaulieu, F., & Walter, D. E. (2007). Predation in suspended and forest floor soils: Observations on Australian mesostigmatic mites. Acarologia, 47, 43–54.Google Scholar
  22. Beaulieu, F., Walter, D. E., Proctor, H. C., & Kitching, R. L. (2010). The canopy starts at 0.5 m: Predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica, 42, 704–709.Google Scholar
  23. Behan, V. M., & Hill, S. B. (1978). Feeding habits and spore dispersal of oribatid mites in the North American Arctic. Revue D'Écologie et Biologie du Sol, 15, 497–516.Google Scholar
  24. Behan-Pelletier, V. M., & Hill, S. B. (1983). Feeding habits of sixteen species of Oribatei (Acari) from an acid peat bog, Glenamoy, Ireland. Revue D'Écologie et Biologie du Sol, 20, 221–267.Google Scholar
  25. Behan-Pelletier, V. M., & Walter, D. E. (2000). Biodiversity of oribatid mites (Acari: Oribatida) in tree canopies and litter. In D. C. Coleman & P. Hendrix (Eds.), Invertebrates as webmasters in ecosystems (pp. 187–202). Wallingford: CABI. ISBN 0 85199 394 X.Google Scholar
  26. Behan-Pelletier, V. M., Hill, S. B., Fjellberg, A., Norton, R. A., & Tomlin, A. (1985). Soil invertebrates: Major reference texts. Quaestiones Entomologicae, 21, 675–687.Google Scholar
  27. Blackwood, J. S., Croft, B. A., & Schausberger, P. (2001). Jerking in predaceous mites (Acari: Phytoseiidae) with emphasis on larvae. Experimental & Applied Acarology, 25, 475–492.Google Scholar
  28. Blaszak, C., Ehrnsberger, R., & Schuster, R. (1990). Beiträge zur Kenntnis der Lebensweise der Litoralmilbe Macrocheles superbus Hull, 1918 (Acarina: Gamasina). Osnabrücker naturwiss. Mitt., 16, 51–62.Google Scholar
  29. Block, W. (1979). Nanorchestes antarcticus Strandtmann (Prostigmata) from Antarctic ice. Acarologia, 21, 173–176.Google Scholar
  30. Block, W. (1984). Terrestrial microbiology, invertebrates and ecosystems. In R. M. Laws (Ed.), Antarctic ecology (Vol. 1, pp. 163–236). Sydney: Academic.Google Scholar
  31. Block, W. (1992). An annotated bibliography of Antarctic invertebrates (terrestrial and freshwater). Cambridge: British Antarctic Survey.Google Scholar
  32. Block, W., & Convey, P. (1995). The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus. Journal of Zoology, 236, 431–449.Google Scholar
  33. Block, W., & Stary, J. (1996). Oribatid mites (Acari: Oribatida) of the maritime Antarctic and Antarctic Peninsula. Journal of Natural History, 30, 1059–1067.Google Scholar
  34. Brodie, E. D., Ducey, P. K., & Baness, E. A. (1991). Antipredator skin secretions of some tropical salamanders (Bolitoglossa) are toxic to snake predators. Biotropica, 23, 58–62. doi:10.2307/2388688.Google Scholar
  35. Buitenhuis, R., Shipp, L., & Scott-Dupree, C. (2010). Intra-guild vs extra-guild prey: Effect on predator fitness and preference of Amblyseius swirskii (Athias-Henriot) and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Bulletin of Entomological Research, 100(2), 167–173.PubMedGoogle Scholar
  36. Burke, J. L., Maerz, J. C., Milanovich, J. R., Fisk, M. C., & Gandhi, K. J. K. (2011). Invasion by exotic earthworms alters biodiversity and communities of litter- and soil-dwelling microarthropods. Diversity, 3, 155–175.Google Scholar
  37. Butler, J. F., Camino, M. L., et al. (1979). Boophilus microplus and the fire ant Solenopsis geminata. In J. G. Rodriguez (Ed.), Recent advances in acarology I (pp. 355–361). New York: Academic.Google Scholar
  38. Camann, M., Gillette, K., Lamoncha, K. L., & Mori, S. R. (2008). Response of forest soil Acari to prescribed fire following stand structure manipulation in the southern Cascade Range. Canadian Journal of Forestry Research, 38, 956–968.Google Scholar
  39. Cameron, E. K., Knysh, K. M., Proctor, H. C., & Bayne, E. M. (2012). Influence of two exotic earthworm species with different strategies on abundance and composition of boreal microarthropods. Soil Biology and Biochemistry, 57, 334–340.Google Scholar
  40. Cancela da Fonseca, J. P. (1975). Notes oribatologiques. Acarologia, 17, 320–330.Google Scholar
  41. Cannon, R. J. C., & Block, W. (1988). Cold tolerance of microarthropods. Biological Reviews, 63, 23–77.Google Scholar
  42. Cao, Z., Han, X., Hu, C., Chen, J., Zhang, D., & Steinberger, Y. (2011). Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Applied Soil Ecology, 49, 131–138.Google Scholar
  43. Castilho, R. C., de Moraes, G. J., Silva, E. S., et al. (2009). The predatory mite Stratiolaelaps scimitus as a control agent of the fungus gnat Bradysia matogrossensis in commercial production of the mushroom Agaricus bisporus. International Journal of Pest Management, 5, 181–185. doi:10.1080/09670870902725783.Google Scholar
  44. Chambers, R. J., Wright, E. M., et al. (1993). Biological control of glasshouse sciarid flies (Bradysia spp.) with the predatory mite, Hypoaspis miles, on cyclamen and poinsettia. Biocontrol Science and Technology, 3, 285–293.Google Scholar
  45. Chiba, S., Abe, T., Aoki, J., Imadate, G., Ishikawa, K., Kondoh, M., Shiba, M., & Watanabe, H. (1975). Studies on the productivity of soil animals in Pasoh Forest Reserve, West Malaysia. I. Seasonal change in density of soil mesofauna: Acari, Collembola and others. Science Report Hirosaki University, 22, 87–124.Google Scholar
  46. Choi, R. T., & Beard, K. H. (2012). Coqui frog invasions change invertebrate communities in Hawaii. Biological Invasions, 14, 939–948. doi:10.1007/s10530-011-0127-3.Google Scholar
  47. Clapperton, M. J., Kanashiro, D. A., & Behan-Pelletier, V. M. (2002). Changes in abundance and diversity of microarthropods associated with fescue prairie grazing regimes. Pedobiologia, 46, 496–511.Google Scholar
  48. Cohen, J. E. (1978). Food webs and niche space. Princeton: Princeton University Press.Google Scholar
  49. Coineau, Y. (1973). Les Caeculidae (Acariens Prostigmates) quelques aspects de leurs particularités éco-éthologiques. Bulletin D'Écologie, 4, 329–337.Google Scholar
  50. Coineau, Y., Haupt, J., Delamere Deboutteville, C., & Théron, P. (1978). Un remarquable exemple di convergenece écologique: l'adaption de Gordialycus tuzetae (Nematalycidae, Acariens) á la vie dans les interstices des sables fines. Comptes rendus de l'Academie des Sciences, 287, 883–886.Google Scholar
  51. Coleman, D. C. (2008). From peds to paradoxes: Linkages between soil biota and their influences on ecological processes. Soil Biology and Biochemistry, 40, 271–289. doi:10.1016/j.soilbio.2007.08.005.Google Scholar
  52. Colloff, M. J., & Cairns, A. (2011). A novel association between oribatid mites and leafy liverworts (Marchantiophyta: Jungermanniidae), with a description of a new species of Birobates Balogh, 1970 (Acari: Oribatida: Oripodidae). Australian Journal of Entomology, 50, 72–77.Google Scholar
  53. Connell, J. H. (1978). Diversity in tropical rainforests and coral reefs. Science, 99, 1302–1310.Google Scholar
  54. Croft, B. A., & McMurtry, J. A. (1971). Comparative studies on four strains of Typhlodromus occidentalis Nesbitt (Acarina: Phytoseiidae) IV. Life history studies. Acarologia, 13, 460–470.Google Scholar
  55. Cronberg, N., Natcheva, R., & Hedlund, K. (2006). Microarthropods mediate sperm transfer in mosses. Science, 313, 1255.PubMedGoogle Scholar
  56. Crossley, D. A., Jr. (1977). The roles of terrestrial saprophagous arthropods in forest soils: Current status of concepts. In W. J. Mattson (Ed.), The role of arthropods in forest ecosystems (pp. 49–56). New York: Springer-Verlag.Google Scholar
  57. Cummins, K. W. (1974). Structure and function of stream ecosystems. Bioscience, 24, 631–641.Google Scholar
  58. Curl, E. A., & Truelove, B. (1986). The rhizosphere. New York: Springer-Verlag.Google Scholar
  59. Curry, J. P. (1994). Grassland invertebrates, ecology, influence on soil fertility and effects on plant growth. London: Chapman & Hall.Google Scholar
  60. Dawes-Gromadzki, T. Z., & Bull, C. M. (1997). Ant predation on different life stages of two Australian ticks. Experimental & Applied Acarology, 21, 109–115.Google Scholar
  61. De Deyn, G. B., Raaijmakers, C. E., Zoomer, H. R., Berg, M. P., DeRuiter, P. C., Verhoef, H. A., et al. (2003). Soil invertebrate fauna enhances grassland succession and diversity. Nature, 422, 711–713.PubMedGoogle Scholar
  62. Déchêne, A. D., & Buddle, C. M. (2010). Decomposing logs increase oribatid mite assemblage diversity in mixedwood boreal forest. Biodiversity and Conservation, 19, 237–256.Google Scholar
  63. Denegri, G. M. (1993). Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. Experimental & Applied Acarology, 17, 567–580.Google Scholar
  64. Donnelly, M. A. (1991). Feeding patterns of the strawberry poison frog Dendrobates pumilio (Anura: Dendrobatidae). Copeia, 3, 723–730.Google Scholar
  65. Downes, B. J. (1986). Guild structure in water mites (Unionicola spp.) inhabiting freshwater mussels: Choice, competitive exclusion and sex. Oecologia, 70, 457–465.Google Scholar
  66. Ducarme, X., Andre, H. A., Wauthy, G., & Lebrun, P. (2004a). Comparison of endogeic and cave communities: Microarthropod density and mite species richness. European Journal of Soil Biology, 40, 129–138. doi:10.1016/j.ejsobi.2004.10.003.Google Scholar
  67. Ducarme, X., Andre, H. A., Wauthy, G., & Lebrun, P. (2004b). Are there real endogeic species in temperate forest mites? Pedobiologia, 48, 139–147. doi:10.1016/j.pedobi.2003.10.002.Google Scholar
  68. Eadie, J. M., Broekhoven, L., & Colgan, P. (1987). Size ratios and artifacts: Hutchinson's rule revisited. American Naturalist, 129, 1–17.Google Scholar
  69. Ebermann, E. (1995). Indication of jumping ability in the mite family Scutacaridae (Acari, Tarsonemina). Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, 11, 205–209.Google Scholar
  70. Edwards, C. A., & Stinner, B. R. (Eds.). (1988). Biological interactions in soil. Amsterdam: Elsevier.Google Scholar
  71. Eisenbeis, G., & Wichard, W. (1987). Atlas on the biology of soil arthropods. New York: Springer-Verlag.Google Scholar
  72. Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53, 343–352.Google Scholar
  73. Enders, F. (1975). The influence of hunting manner on prey size, particularly in spiders with long attack distances (Araneidae, Linyphiidae, and Salticidae). American Naturalist, 109, 737–763.Google Scholar
  74. Epsky, N. D., Walter, D. E., & Capinera, J. L. (1988). Potential role of nematophagous arthropods as biotic mortality factors of entomogenous nematodes (Rhabditida: Steinernematidae, Heterorhabditidae). Journal of Economic Entomology, 81, 821–825.Google Scholar
  75. Erickson, J. M. (1996). Can paleoacarology contribute to global change research? In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX (Vol. I, pp. 533–537). Columbus: Ohio Biological Survey.Google Scholar
  76. Faber, J. H. (1991). Functional classification of soil fauna: A new approach. Oikos, 62, 110–117.Google Scholar
  77. Fager, E. W. (1968). The community of invertebrates in decaying oak wood. Journal of Animal Ecology, 37, 121–142.Google Scholar
  78. Fauth, J. E., Bernardo, J., et al. (1996). Simplifying the Jargon of community ecology: A conceptual approach. American Naturalist, 147, 282–286.Google Scholar
  79. Fisher, J. R., Skvarla, M. J., Bauchan, G. R., Ochoa, R., & Dowling, A. P. G. (2011). Trachymolgus purpureus sp. n., an armored snout mite (Acari, Bdellidae) from the Ozark highlands: Morphology, development, and key to Trachymolgus Berlese. ZooKeys, 125, 1–34. doi:10.3897/zookeys.125.1875.PubMedGoogle Scholar
  80. Fitzsimons, J. M. (1971). On the food habits of certain Antartic arthropods from coastal Victoria Land and adjacent islands. Pacific Insects Monograph, 25, 121–125.Google Scholar
  81. Flowers, M. A., & Graves, B. M. (1995). Prey selectivity and size-specific diet changes in Bufo cognatus and B. woodhousii during early postmetamorphic ontogeny. Journal of Herpetology, 23, 608–612.Google Scholar
  82. Freckman, D. W., & Virginia, R. A. (1997). Low diversity Antarctic soil nematode communities: Distribution and response to disturbance. Ecology, 78, 363–369.Google Scholar
  83. Garrett, C. J., Crossley, D. A., Jr., Coleman, D. C., Hendrix, P. F., Kisselle, K. E., & Potter, R. L. (2001). Impact of the rhizosphere on soil microarthropods in agroecosystems on the Georgia piedmont. Applied Soil Ecology, 16, 141–148.Google Scholar
  84. Gause, G. F. (1934). The struggle for existence. Baltimore: Williams & Wilkins.Google Scholar
  85. Gerson, U. (1972). Mites of the genus Ledermuelleria (Prostigmata: Stigmaeidae) association with mosses in Canada. Acarologia, 13, 319–342.Google Scholar
  86. Gill, R. W. (1969). Soil microarthropod abundance following old-field litter manipulation. Ecology, 50, 805–816.Google Scholar
  87. Giller, P. S. (1996). The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodiversity and Conservation, 5, 135–168.Google Scholar
  88. Gillespie, D. R., & Quiring, D. M. J. (1990). Biological control of fungus gnats, Bradysia spp. (Diptera: Sciaridae), and western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: thripidae), in greenhouses using a soil-dwelling predatory mite, Geolaelaps sp. nr. aculeifer (Canestrini) (Acari: Laelapidae). Canadian Entomologist, 122, 975–983.Google Scholar
  89. Gless, E. E. (1967). Notes on the biology of Coccorhagia gressitti Womersley and Strandtmann. In J. L. Gressitt (Ed.), Entomology of Antarctica (Vol. 10, pp. 321–324). Washington, DC: American Geophysical Union.Google Scholar
  90. Gochenaur, S. E. (1987). Evidence suggests that grazing regulates ascospore density in soil. Mycologia, 79, 445–450.Google Scholar
  91. Greene, C. H. (1986). Patterns of prey selection: Implications of predator foraging tactics. American Naturalist, 128, 824–839.Google Scholar
  92. Gressitt, J. L., & Shoup, J. (1967). Ecological notes on free-living mites in North Victoria land. Antarctic Research Series, 10, 307–320.Google Scholar
  93. Gwiazdowicz, D. J., Kamczyc, J., & Rakowsk, R. (2011). Mesostigmatid mites in four classes of wood decay. Experimental & Applied Acarology, 55, 155–165. doi:10.1007/s10493-011-9458-0.Google Scholar
  94. Hågvar, S., & Hågvar, E. B. (2011). Invertebrate activity under snow in a South-Norwegian spruce forest. Soil Organisms, 83, 187–209.Google Scholar
  95. Hågvar, S., Tolhoy, T., & Mong, C. E. (2009). Primary succession of soil mites (Acari) in a Norwegian glacier foreland, with emphasis on oribatid species. Arctic, Antarctic, and Alpine Research, 41, 219–227. doi:10.1657/1938-4246-41.2.Google Scholar
  96. Hairston, N. G., Smith, F. E., & Slobodkin, L. (1960). Community structure, population control, and competition. American Naturalist, 94, 421–425.Google Scholar
  97. Halffter, G., & Matthews, G. E. (1971). The natural history of dung beetles. A supplement on associated biota. Revista Latino-Americana de Microbiologia, 13, 147–164.Google Scholar
  98. Halliday, R. B. (2008). Oriflammella n. gen. (Acari: Ologamasidae), a remarkable new genus of mites from eastern Australia. International Journal of Acarology, 34, 43–53.Google Scholar
  99. Hamlen, R. A., & Mead, F. W. (1979). Fungus gnat larval control in greenhouse plant production. Journal of Economic Entomology, 72, 269–271.Google Scholar
  100. Hammer, M. (1972). Microhabitats of oribatid mites on a Danish woodland floor. Pedobiologia, 12, 412–423.Google Scholar
  101. Hansen, R. A. (2000). Effect of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology, 81, 1120–1132.Google Scholar
  102. Hansen, R. A., & Coleman, D. C. (1998). Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Applied Soil Ecology, 9, 17–23.Google Scholar
  103. Hawkins, C. P., & MacMahon, J. A. (1989). Guilds: The multiple meanings of a concept. Annual Review of Entomology, 34, 423–451.Google Scholar
  104. Heethoff, M., & Raspotnig, G. (2012). Triggering chemical defense in an oribatid mite using artificial stimuli. Experimental & Applied Acarology, 56, 287–295. doi:10.1007/s10493-012-9521-5.Google Scholar
  105. Heethoff, M., Koerner, L., Norton, R. A., & Raspotnig, G. (2011). Tasty but Protected – First evidence of chemical defense in oribatid mites. Journal of Chemical Ecology, 37, 1037–1043. doi:10.1007/s10886-011-0009-2.PubMedGoogle Scholar
  106. Heggen, M., Birks, H. H., & Anderson, N. J. (2010). Long-term ecosystem dynamics of a small lake and its catchment in west Greenland. The Holocene, 20, 1207–1222.Google Scholar
  107. Heidemann, K., Scheu, S., Ruess, L., & Maraun, M. (2011). Molecular detection of nematode predation and scavenging in oribatid mites: Laboratory and field experiments. Soil Biology & Biochemistry, 43, 2229–2236.Google Scholar
  108. Heisler, C. (1995). Influence of agricultural traffic and crop management on Collembola and microbial biomass in arable soil. Biology and Fertility of Soils, 19, 159–165.Google Scholar
  109. Hendricks, P. F., Crossley, D. A., Jr., et al. (1990). Soil Biota as components of sustainable agroecosystems. In C. A. Edwards, R. Lal, P. Madden, R. H. Miller, & G. House (Eds.), Sustainable agricultural systems (pp. 637–654). Ankeny: Soil, Water and Conservation Society.Google Scholar
  110. Heneghan, L., & Bolger, T. (1996a). Effects of acid rain components on soil microarthropods: A field manipulation study. Pedobiologia, 40, 413–438.Google Scholar
  111. Heneghan, L., & Bolger, T. (1996b). Effect of components of 'acid rain' on the contribution of soil microarthropods to ecosystem function. Journal of Applied Ecology, 33, 1329–1344.Google Scholar
  112. Hodkinson, I. D., Coulson, S. J., & Webb, N. R. (2004). Invertebrate community assembly across proglacial chronosequences in the high Arctic. Journal of Animal Ecology, 73, 556–568.Google Scholar
  113. Hoffmann, D., Vierheilig, H., Pender, S., & Schausberger, S. (2011). Mycorrhiza modulates aboveground tri-trophic interactions to the fitness benefit of its host plant. Ecological Entomology, 36, 574–581.Google Scholar
  114. Holland, J. N., Cheng, W., & Crossley, D. A., Jr. (1996). Herbivore-induced changes in plant carbon allocation: Assessment of belowground C fluxes using carbon-14. Oecologia, 107, 87–94.Google Scholar
  115. Horn, H. S., & May, R. M. (1977). Limits to similarity among coexisting competitors. Nature, 270, 660–661.Google Scholar
  116. Huber, I. (1978). Prey attraction and immobilization by allomone from nymphs. Acarologia, 20, 112–115.Google Scholar
  117. Huey, R. B., & Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology, 62, 991–999.Google Scholar
  118. Hunt, H. W., Elliott, E. T., & Walter, D. E. (1989). Inferring trophic transfers from pulse-dynamics in detrital food webs. Plant and Soil, 115, 247–259.Google Scholar
  119. Hutchinson, G. E. (1959). Homage to Santa Rosalia, or why are there so many kinds of animals? American Naturalist, 93, 145–159.Google Scholar
  120. Hutchinson, G. E. (1965). The ecological theater and the evolutionary play. New Haven: Yale University Press.Google Scholar
  121. Hutchinson, G. E., & MacArthur, R. (1959). A theoretical ecological model of size distributions among species of animals. American Naturalist, 93, 117–126.Google Scholar
  122. Hutu, M. (1991). Reproduction, embryonic and postembryonic development of Trichouropoda obscurasimilis Hirschmann & Zirngiebl-Nicol 1961 (Anactinotrichida: Uropodina). In R. Schuster & P. W. Murphy (Eds.), The acari, reproduction, development and life-history strategies (pp. 279–299). Melbourne: Chapman & Hall.Google Scholar
  123. Inserra, R. N., & Davis, D. W. (1983). Hypoaspis nr. aculeifer: A mite predacious on root-knot and cyst nematodes. Journal of Nematology, 15, 324–325.PubMedGoogle Scholar
  124. Jaksic, F. M. (1981). Abuse and misuse of the term “guild” in ecological studies. Oikos, 37, 397–400.Google Scholar
  125. Jones, C. G., Lawton, J. H., & Shachak, M. (1997). Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78, 1946–1957.Google Scholar
  126. Kaliszewski, M., Athias-Binche, F., & Lindquist, E. E. (1995). Parasitism and parasitoidism in Tarsonemina (Acari: Heterostigmata) and evolutionary considerations. Advances in Parasitology, 35, 335–367.PubMedGoogle Scholar
  127. Kaneko, N. (1988). Feeding habits and cheliceral size of oribatid mites in cool temperate forest soils in Japan. Revue D'Écologie et Biologie du Sol, 25, 353–363.Google Scholar
  128. Kaneko, N. (1995). Composition of feeding types in oribatid mite communities in forest soils. Acta Zoologica Fennica, 196, 160–161.Google Scholar
  129. Kaneko, N., & Salamanca, N. (1999). Mixed leaf litter effects on decomposition rates and soil arthropod communities in an oakpine forest stand in Japan. Ecological Research, 14, 131–138.Google Scholar
  130. Karg, W. (1961). Okologische Untersuchungen von edaphischen Gamasiden (Acari: Parasitiformes). Pedobiologia, 1, 58–98.Google Scholar
  131. Karg, W. (1983). Verbreitung und Bedeutung von raubmilben der Cohors Gamasina als Antagonisten von Nematoden. Pedobiologia, 25, 419–432.Google Scholar
  132. Kethley, J. (1990). Acarina: Prostigmata (Actinedida). In D. L. Dindal (Ed.), Soil biology guide (pp. 667–756). New York: Wiley.Google Scholar
  133. Kinn, D. N., & Witcosky, J. J. (1977). The life cycle and behaviour of Macrocheles boudreauxi Krantz. Zeitschrift für Angewandte Entomologie, 84, 136–144.Google Scholar
  134. Kitching, R. L. (1987). Spatial and temporal variation in food webs in water-filled treeholes. Oikos, 48, 280–288.Google Scholar
  135. Kitching, R. L., & Pimm, S. L. (1985). The length of food chains: Phytotelmata in Australia and elsewhere. Proceedings of the Ecological Society of Australia, 14, 123–140.Google Scholar
  136. Klironomos, J. N., & Kendrick, B. (1995). Relationships among microarthropods, fungi and their environment. In H. P. Collins, G. P. Robertson, & M. J. Klug (Eds.), The significance and regulation of soil biodiversity (pp. 209–233). Dordrecht: Kluwer Academic Publishers.Google Scholar
  137. Knülle, W. (1995). Expression of a dispersal trait in a guild of mites colonizing transient habitats. Evolutionary Ecology, 9, 341–353.Google Scholar
  138. Koehler, H. H. (1992). The use of soil mesofauna for the judgement of chemical impact on ecosystems. Agriculture, Ecosystems and Environment, 40, 193–205.Google Scholar
  139. Kolesnikov, V. B. (2010). The role of oribatid mites in the process of soil formation. Zashchita i Karantin Rastenii, 9, 40–41.Google Scholar
  140. Krantz, G. W. (1978). A manual of acarology. Corvallis: Oregon State University Bookstores.Google Scholar
  141. Krantz, G. W. (1983). Mites as biological control agents of dung-breeding flies, with special reference to the Macrochelidae. In M. A. Hoy, G. L. Cunningham, & L. Knutson (Eds.), Biological control of pests by mites (Special Publication 3304, pp. 91–98). Berkeley: University of California, Agriculture Experiment Station.Google Scholar
  142. Krantz, G. W., & Lindquist, E. E. (1979). Evolution of phytophagous mites (Acari). Annual Review of Entomology, 24, 121–158.Google Scholar
  143. Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of acarology (3rd ed.). Lubbock: Texas Tech University Press. 807 p. 338 b/w illustrations; 60 figures ISBN 978-0-89672-620-8.Google Scholar
  144. Krisper, G. (1990). Das Sprungvermogen der Milbengattung Zetorchestes (Acarida, Oribatida). Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, 120, 289–312.Google Scholar
  145. Krisper, G. (1991). The saltatory capacity of an oribatid mite. In R. Schuster & P. W. Murphy (Eds.), The acari. Reproduction, development, and life-history strategies (p. 397). New York: Chapman & Hall.Google Scholar
  146. Kristin, A. (1993). Diet preferences of the Dunnock in various forest habitats. Vogelwelt, 114, 72–82.Google Scholar
  147. Kuwahara, Y. (1990). Chemical studies on astigmatid mites – Opisthonotal gland secretions and body surface components with biological functions. Journal of Pesticide Science, 15, 613–619.Google Scholar
  148. Labandeira, C. C., Phillips, T. L., & Norton, R. A. (1997). Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12, 319–353.Google Scholar
  149. Lasebikan, B. A. (1974). A preliminary communication on microarthropods from a tropical rainforest in Nigeria. Pedobiologia, 14, 402–411.Google Scholar
  150. Lavelle, P. (1997). Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research, 27, 93–132.Google Scholar
  151. Lavelle, P., Lattaud, C., Trigo, D., & Barois, I. (1994). Mutualism and biodiversity in soils. Plant and Soil, 170, 23–33.Google Scholar
  152. Lawton, J. H. (1984). Surface availability and insect community structure: The effects of architecture and fractal dimensions of plants. In B. E. Juniper & T. R. E. Southwood (Eds.), Insects and the plant surface (pp. 317–331). London: Arnold.Google Scholar
  153. Lebrun, P., & van Straalen, N. M. (1995). Oribatid mites: Prospects for their use in ecotoxicology. Experimental & Applied Acarology, 19, 361–379.Google Scholar
  154. Leetham, J., & Milchunas, D. G. (1985). The composition and distribution of soil microarthropods in the shortgrass steppe in relation to the soil water, root biomass and grazing by cattle. Pedobiologia, 28, 311–325.Google Scholar
  155. Lehmitz, R., Russell, D., Hohberg, K., Christian, A., & Xylander, W. E. R. (2011). Wind dispersal of oribatid mites as a mode of migration. Pedobiologia, 54, 201–207. doi:10.1016/j.pedobi.2011.01.002.Google Scholar
  156. Leinaas, H. P. (1981). Activity of Arthropoda in snow within a coniferous forest, with special reference to Collembola. Holarctic Ecology, 4, 127–138.Google Scholar
  157. Lesna, I., Sabelis, M. W., & Conijin, C. G. M. (1996). Biological control of the bulb mite, Rhizoglyphus robini, by the predatory mite, Hypoaspis aculeifer, on lillies: Predator–prey interactions at various spatial scales. Journal of Applied Ecology, 33, 369–376.Google Scholar
  158. Levings, S. C., & Windsor, D. M. (1982). Seasonal and annual variation in litter arthropod populations. In E. G. Leigh, A. S. Rand, & D. M. Windsor (Eds.), The ecology of a tropical forest: Seasonal rhythms and long-term changes (pp. 355–387). Washington, DC: Smithsonian Institution Press.Google Scholar
  159. Lilleskov, E. A., & Bruns, T. D. (2005). Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia, 97, 762–769.PubMedGoogle Scholar
  160. Lima, A. P., Magnusson, W. E., & Williams, D. G. (2000). Differences in diet among frogs and lizards coexisting in subtropical forests of Australia. Journal of Herpetology, 34, 40–46.Google Scholar
  161. Lindo, Z., & Gonzalez, A. (2010). The bryosphere: An integral and influential component of the earth’s biosphere. Ecosystems, 13, 612–627.Google Scholar
  162. Lindo, Z., & Visser, S. (2004). Forest floor microarthropod abundance and oribatid mite (Acari : Oribatida) composition following partial and clear-cut harvesting in the mixedwood boreal forest. Canadian Journal of Forest Research, 34, 998–1006. doi:10.1139/X03-284.Google Scholar
  163. Lindo, Z., & Winchester, N. N. (2008). Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forests, Vancouver Island, Canada. Soil Biology and Biochemistry, 39, 2957–2966. doi:10.1016/j.soilbio.2007.06.009.Google Scholar
  164. Lindo, Z., Winchester, N. N., & Didham, R. K. (2008). Nested patterns of community assembly in the colonisation of artificial canopy habitats by oribatid mites. Oikos, 117, 1856–1864. doi:10.1111/j.1600-0706.2008.16920.x.Google Scholar
  165. Lindquist, E. E. (1975). Associations between mites and other arthropods in forest floor habitats. Canadian Entomologist, 107, 425–437.Google Scholar
  166. Lindquist, E. E. (1985). Discovery of sporothecae in adult female Trochometridium Cross, with notes on analogous structures in Siteroptes Amerling (Acari: Heterostigmata). Experimental and Applied Acarology, 1, 73–85.Google Scholar
  167. Lindquist, E. E., & Walter, D. E. (1989). Biology and description of Antennoseius janus, new species (Mesostigmata: Ascidae), a mesostigmatic mite exhibiting adult female dimorphism. Canadian Journal of Zoology, 67, 1291–1310.Google Scholar
  168. Lipovsky, L. J. (1954). Studies on the food habits of postlarval chiggers (Acarina, Trombiculidae). University of Kansas Science Bulletin, 36, 943–958.Google Scholar
  169. Lister, A. (1984). Predation in an Antarctic micro-arthropod community. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. 1, pp. 886–892). Chichester: Ellis Horwood.Google Scholar
  170. Lister, A., Usher, M. B., & Block, W. (1987). Description and quantification of field attack rates by predatory mites: An example using an electrophoresis method with a species of Antarctic mite. Oecologia, 72, 185–191.Google Scholar
  171. Lister, A., Block, W., & Usher, M. B. (1988). Arthropod predation in an Antarctic terrestrial community. Journal of Animal Ecology, 57, 957–970.Google Scholar
  172. Lobbes, P., & Schotten, C. (1980). Capacities of increase of the soil mite Hypoaspis aculeifer Canestrini (Mesostigmata: Laelapidae). Zeitschrift für Angewandte Entomologie, 90, 9–22.Google Scholar
  173. Lugwig, M., Krantzmann, M., & Alberti, G. (1991). Accumulation of heavy metals in two oribatid mites. In F. Dusábek & V. Bukva (Eds.), Modern acarology (Vol. 1, pp. 431–437). Prague: SPB Academic Publishing.Google Scholar
  174. Lussenhop, J. (1992). Mechanisms of microarthropod-microbial interactions in soil. Advances in Ecological Research, 23, 1–33.Google Scholar
  175. Luxton, M. (1966). Laboratory studies on the feeding behaviour of Saltmarsh Acarina. Acarologia, 8, 163–175.Google Scholar
  176. Luxton, M. (1972). Studies on the oribatid mites of a Danish woodland soil. I. Nutritional biology. Pedobiologia, 12, 434–463.Google Scholar
  177. Luxton, M. (1979). Food and energy processing by oribatid mites. Revue D'Écologie et Biologie du Sol, 16, 103–111.Google Scholar
  178. Lynch, J. F. (1985). The feeding ecology of Aneides flavipunctatus and sympatric plethodontid salamanders in Northwestern California. Journal of Herpetology, 19, 328–352.Google Scholar
  179. Macfadyen, A. (1963). The contribution of the microfauna to total soil metabolism. In J. Doeksen & J. van der Drift (Eds.), Soil organisms (pp. 3–17). Amsterdam: North Holland Publishing.Google Scholar
  180. Maiorana, V. C. (1978). An explanation of ecological and developmental constants. Nature, 273, 375–377.Google Scholar
  181. Malmstrom, A., Persson, T., & Ahlstrom, K. (2008). Effects of fire intensity on survival and recovery of soil microarthropods after a clearcut burning. Canadian Journal of Forest Research, 38, 2465–2475. doi:10.1139/X08-094.Google Scholar
  182. Manning, M. J., & Halliday, R. B. (1994). Biology and reproduction of some Australian species of Macrochelidae (Acarina). Australian Entomologist, 21, 89–94.Google Scholar
  183. Maraun, M. A., Erdmann, G., Fischer, B. M., Pollierer, M. M., Norton, R. A., Schneider, K., & Scheu, S. (2011). Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry, 43, 877–882.Google Scholar
  184. Marshall, D. J., & Pugh, P. J. A. (1996). Origin of the inland Acari of continental Antarctica, with particular reference to Dronning Maud Land. Zoological Journal of the Linnean Society, 118, 101–118.Google Scholar
  185. Masuko, K. (1994). Specialized predation on oribatid mites by two species of the ant genus Myrmecina (Hymenoptera: Formicidae). Psyche, 101, 159–173.Google Scholar
  186. Masuko, K. (2009). Studies on the predatory biology of Oriental dacetine ants (Hymenoptera: Formicidae). III. Predation on gamasid mites by Pyramica mazu with a supplementary note on P. hexamerus. Journal of the Kansas Entomological Society, 82, 109–113.Google Scholar
  187. Matsumoto, K., Wada, Y., & Okamoto, M. (1979). The alarm pheromone of grain mites and its antifungal effect. Recent Advances in Acarology, 1, 243–249.Google Scholar
  188. Matthewman, W. G., & Pielou, D. P. (1971). Arthropods inhabiting the sporophores of Fomes fomentarius (Polyporaceae) in Gatineau Park, Quebec. Canadian Entomologist, 103, 775–847.Google Scholar
  189. May, R. M. (1978). The dynamics and diversity of insect faunas. In L. A. Mound & N. Waloff (Eds.), Diversity of insect faunas (pp. 188–204). Oxford: Blackwell Scientific Publications.Google Scholar
  190. Mayr, E. (1969). Principles of systematic zoology. New York: McGraw-Hill.Google Scholar
  191. McAloon, F. M. (2004). Oribatid mites as intermediate hosts of Anoplocephala manubriata, cestode of the Asian elephant in India. Experimental & Applied Acarology, 32, 181–185.Google Scholar
  192. Mead, L. S., & Boback, S. M. (2006). Diet and microhabitat utilization of two sympatric neotropical Salamanders: Bolitoglossa pesrubra and B. cerroensis. Herpetological Natural History, 9, 135–140.Google Scholar
  193. Meier, F. A., Scherrer, S., & Honegger, R. (2002). Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola. Biological Journal of the Linnaean Society, 76, 259–268.Google Scholar
  194. Messelink, G., & Van Wensveen, W. (2003). Biocontrol of Duponcheria fovealis (Lepidoptera: Pyralidae) with soil-dwelling predators in potted plants. Communications in Agricultural and Applied Biological Sciences, 68, 159–165.PubMedGoogle Scholar
  195. Migge-Kleian, S., McLean, M. A., Maerz, J. C., & Heneghan, L. (2006). The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms. Biological Invasions, 8, 1275–1285.Google Scholar
  196. Mizoguchi, A., Murakami, K., Shimizu, N., Mori, N., Nishida, R., & Kuwahara, T. (2005). S-isorobinal as the female sex pheromone from an alarm pheromone emitting mite, Rhizoglyphus setosus. Experimental & Applied Acarology, 36, 107–117.Google Scholar
  197. Mollemann, F., & Walter, D. E. (2001). Niche segregation and canopeners: Scydmaenid beetles as predators of armoured mites in Australia. In R. B. Halliday, D. E. Walter, H. C. Proctor, R. A. Norton, & M. J. Colloff (Eds.), Acarology: Proceedings of the 10th international congress (pp. 281–288). Melbourne: CSIRO Publishing.Google Scholar
  198. Moore, J. C., Walter, D. E., & Hunt, H. W. (1988). Arthropod regulation of micro- and mesobiota in below-ground detrital foodwebs. Annual Review of Entomology, 33, 419–439.Google Scholar
  199. Mortimer, E., van Vuuren, B. J., Lee, J. E., Marshall, D. J., Convey, P., & Chown, S. L. (2011). Mite dispersal among the Southern Ocean Islands and Antarctica before the last glacial maximum. Proceedings of the Royal Society of London Series B Biological Sciences, 278, 1247–1255. doi:10.1098/rspb.2010.1779.Google Scholar
  200. Muraoka, M., & Ishibashi, N. (1976). Nematode-feeding mites and their feeding behaviour. Applied Entomology and Zoology, 11, 1–7.Google Scholar
  201. Navarro, M.-J., Gea, F.-J., & Escudero-Colomar, L. A. (2010). Abundance and distribution of Microdispus lambi (Acari: Microdispidae) in Spanish mushroom crops. Experimental & Applied Acarology, 50, 309–316. doi:10.1007/s10493-009-9326-3.Google Scholar
  202. Neher, D. A., Lewins, S. A., Weicht, T. R., & Darby, B. J. (2009). Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. Journal of Arid Environments, 73, 672–677.Google Scholar
  203. Nicholas, W. L. (1984). The biology of free-living nematodes. Oxford: Clarendon Press.Google Scholar
  204. Nielsen, U. N., Osler, G. H. R., Campbell, C. D., Burslem, D. F. R. P., & van der Wal, R. (2012). Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats. Pedobiologia, 55, 83–91.Google Scholar
  205. Norton, R. A. (1985). Aspects of the biology and systematics of soil arachnids, particularly saprophagous and mycophagous mites. Quaestiones Entomologicae, 21, 523–541.Google Scholar
  206. Norton, R. A. (1994). Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In M. A. Houck (Ed.), Mites: Ecological and evolutionary studies of life-history patterns (pp. 99–135). New York: Chapman & Hall.Google Scholar
  207. Norton, R. A., & Behan-Pelletier, V. P. (1991). Calcium carbonate and calcium oxalate as cuticular hardening agents in oribatid mites (Acari: Oribatida). Canadian Journal of Zoology, 69, 1504–1511.Google Scholar
  208. Norton, R. A., & Behan-Pelletier, V. M. (2009). Suborder Oribatida. In G. E. Krantz & D. E. Walter (Eds.), A manual of acarology (3rd ed., pp. 430–564). Lubbock: Texas Tech University Press.Google Scholar
  209. Norton, R. A., & MacNamara, M. C. (1976). The common newt (Notophthalmus viridescens) as a predator of soil mites in New York. The Journal of the Georgia Entomological Society, 11, 89–93.Google Scholar
  210. Norton, R. A., Kethley, J. B., Johnston, D. E., & OConnor, B. M. (1993). Phylogenetic perspectives on genetic systems and reproductive modes of mites. In D. L. Wrensch & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 8–99). New York: Chapman & Hall.Google Scholar
  211. Norton, R. A., Graham, T. B., & Alberti, G. (1996). A rotifer-eating ameronothroid (Acari: Ameronothridae) mite from ephemeral pools on the Colorado plateau. In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX (Vol. 1). Columbus: Ohio Biological Survey.Google Scholar
  212. O'Brien, W. J., Browman, H. I., & Evans, B. I. (1990). Search strategies of foraging animals. American Scientist, 78, 152–160.Google Scholar
  213. O'Connell, T., & Bolger, T. (1997). Stability, ephemerality and dispersal ability: Microarthropod assemblages on fungal sporophores. Biological Journal of the Linnean Society, 62, 111–131.Google Scholar
  214. O’Donnell, A. E., & Axtell, R. C. (1965). Predation by Fuscouropoda vegetans (Acarina: Uropodidae) on the House Fly (Musca domestica). Annals of the Entomological Society of America, 58, 403–404.PubMedGoogle Scholar
  215. O'Donnell, A. E., & Nelson, E. L. (1967). Predation by Fuscouropoda vegetans (Acarina: Uropodidae) and Macrocheles muscaedomesticae (Acarina: Macrochelidae) on the eggs of the little house fly, Fannia canicularia. Journal of the Kansas Entomological Society, 40, 441–443.Google Scholar
  216. Odum, E. P. (1991). Fundamentals of ecology. Philadelphia: Sanders.Google Scholar
  217. Okabe, K., & Amano, H. (1992). Mite species collected from field mushrooms (I): Cryptostigmata. Journal of the Acarological Society of Japan, 1, 127–135.Google Scholar
  218. Okabe, K., & Amano, H. (1993). Mite species collected from field mushrooms (II): Mesostigmata, Prostigmata and Astigmata. Journal of the Acarological Society of Japan, 2, 19–28.Google Scholar
  219. Ostle, N., Briones, M. J. I., Ineson, P., Cole, L., Staddon, P., & Sleep, D. (2007). Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna. Soil Biology and Biochemistry, 39, 768–777. doi:10.1016/j.soilbio.2006.09.025.Google Scholar
  220. Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist, 100, 65–74.Google Scholar
  221. Paine, R. T. (1996). Preface. In G. A. Polis & K. O. Winemiller (Eds.), Food webs, integration of patterns & dynamics (pp. ix–x). New York: Chapman & Hall.Google Scholar
  222. Park, O. (1947). Observations on Batrisodes (Coleoptera: Pselaphidae), with particular reference to the American species east of the Rocky Mountains. Bulletin of the Chicago Academy of Sciences, 8, 45–132.Google Scholar
  223. Pengilley, R. K. (1971). The food of some Australian anurans (Amphibia). Journal of Zoology, 163, 93–103. London.Google Scholar
  224. Perdomo, G., Evans, A., Maraun, M., Sunnucks, P., & Thompson, R. (2012). Mouthpart morphology and trophic position of microarthropods from soils and mosses are strongly correlated. Soil Biology and Biochemistry, 53, 56–63.Google Scholar
  225. Petersen, H. (1982). Structure and size of soil animal populations. Oikos, 39, 306–329.Google Scholar
  226. Petersen, H., & Luxton, M. (1982). A comparative analysis of soil faunal populations and their role in decomposition processes. Oikos, 39, 287–388.Google Scholar
  227. Pielou, D. P., & Verma, A. N. (1968). The arthropod fauna associated with the birch bracket fungus, Polyporus betulinus, in eastern Canada. Canadian Entomologist, 100, 1179–1199.Google Scholar
  228. Pimm, S. L. (1991). The balance of nature. Chicago: University of Chicago Press.Google Scholar
  229. Polak, M., & Markow, T. A. (1995). Effect of ectoparasitic mites on sexual selection in a Sonoran fruit fly. Evolution, 49, 660–669.Google Scholar
  230. Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist, 138, 123–155.Google Scholar
  231. Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics, 20, 297–330.Google Scholar
  232. Polis, G. A., Sissom, W. D., & McCormick, S. J. (1981). Predators of scorpions: Field data and a review. Journal of Arid Environments, 4, 309–326.Google Scholar
  233. Price, D. W., & Benham, G. S. (1976). Vertical distribution of pomerantziid mites (Acarina: Pomerantziidae). Proceedings of the Entomological Society of Washington, 78, 309–313.Google Scholar
  234. Price, D. W., & Benham, G. S. (1977). Vertical distribution of soil-inhabiting microarthropods in an agricultural habitat in California. Environmental Entomology, 6, 575–580.Google Scholar
  235. Pritchard, G., & Scholefield, P. (1978). Observations on the food, feeding behaviour, and associated sense organs of Grylloblatta campodeiformis (Grylloblattodea). Canadian Entomologist, 110, 205–212.Google Scholar
  236. Pugh, P. J. A. (1993). A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic Islands and the Southern Ocean. Journal of Natural History, 27, 323–421.Google Scholar
  237. Pugh, P. J. A. (1994). Non-indigenous Acari of Antarctica and the sub-Antarctic islands. Zoological Journal of the Linnean Society, 110, 207–217.Google Scholar
  238. Pugh, P. J. A., & Convey, P. (2008). Surviving out in the cold: Antarctic endemic invertebrates and their refugia. Journal of Biogeography, 35, 2176–2186.Google Scholar
  239. Pugh, P. J. A., & King, P. E. (1985). Feeding in intertidal Acari. Journal of Experimental Marine Biology and Ecology, 94, 269–280.Google Scholar
  240. Qin, T.-K., & Halliday, R. B. (1997). Eriorhynchidae, a new family of Prostigmata (Acarina), with a cladistic analysis of eupodoid species of Australia and New Zealand. Systematic Entomology, 22, 151–171.Google Scholar
  241. Rabatin, S. C., & Rhodes, L. H. (1982). Acaulospora bireticulata inside oribatid mites. Mycologia, 74, 859–861.Google Scholar
  242. Raspotnig, G. (2006). Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: Oribatida). Experimental & Applied Acarology, 39, 177–194.Google Scholar
  243. Raspotnig, G., Norton, R. A., & Heethoff, M. (2011). Oribatid mites and skin alkaloids in poison frogs. Biology Letters, 7, 555–556.PubMedGoogle Scholar
  244. Remen, C., Kruger, M., & Cassel-Lundhagen, A. (2010). Successful analysis of gut contents in fungal-feeding oribatid mites by combining body-surface washing and PCR. Soil Biology and Biochemistry, 42, 1952–1957.Google Scholar
  245. Reynolds, J. W. (2010). The earthworms (Oligochaeta: Lumbricidae) of Nova Scotia, Canada, revisted. Megadrilogica, 14, 77–100.Google Scholar
  246. Riha, G. (1951). Zur Oekologie der Oribatiden in Kalksteinboeden. Zoologische Jahrbuecher, 80, 407–450.Google Scholar
  247. Rockett, C. L. (1980). Nematode predation by oribatid mites (Acari: Oribatida). International Journal of Acarology, 6, 219–224.Google Scholar
  248. Rockett, C. L., & Woodring, J. P. (1966). Oribatid mites as predators of soil nematodes. Annals of the Entomological Society of America, 59, 669–671.Google Scholar
  249. Root, R. B. (1967). The niche exploitation pattern of the blue-gray gnatcatcher. Ecological Monographs, 37, 317–350.Google Scholar
  250. Ruess, L., Häggblom, M. M., Zapata, E. J. G., & Dighton, J. (2002). Fatty acids of fungi and nematodes – possible biomarkers in the soil food chain? Soil Biology and Biochemistry, 34, 745–756.Google Scholar
  251. Rusek, J. (1985). Soil microstructures – Contributions on specific soil organisms. Quaestiones Entomologicae, 21, 497–514.Google Scholar
  252. Saito, Y. (1997). Sociality and kin selection in Acari. In J. C. Choe & B. Crespi (Eds.), Evolution of social behaviour in insects and arachnids (pp. 443–457). Cambridge: Cambridge University Press.Google Scholar
  253. Salmane, I., & Brumelis, G. (2008). The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil. Pedobiologia, 52, 69–76.Google Scholar
  254. Salminen, J., & Haimi, J. (1996). Effects of pentachlorophenol in forest soil: A microcosm experiment for testing ecosystem responses to anthropogenic stress. Biology and Fertility of Soils, 23, 182–188.Google Scholar
  255. Samuel, B. (2004). White as a ghost: Winter ticks & moose. Federation of Alberta Naturalists. New York: SpringerGoogle Scholar
  256. Santos, P. F., & Whitford, W. G. (1981). The effects of microarthropods on litter decomposition in a Chihuahuan Desert Ecosystem. Ecology, 62, 664–669.Google Scholar
  257. Santos, P. F., Philips, J., & Whitford, W. G. (1981). The role of mites and nematodes in early stages of buried litter decomposition in a desert. Ecology, 62, 654–663.Google Scholar
  258. Santos, J. C., Coloma, L. A., & Cannatella, D. C. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings of the National Academy of Sciences of USA, 100, 12792–12797.Google Scholar
  259. Sanyal, A. K., Basak, S., & Barman, R. P. (2002). Three new species of oribatid mites (Acarina, Oribatida: Haplochthoniidae) from the Antarctic continent. Acarina, 10, 57–63.Google Scholar
  260. Saporito, R. A., Spande, T. F., Garraffo, M. H., & Donnelly, M. A. (2009). Arthropod alkaloids in poison frogs: A review of the ‘dietary hypothesis’. Heterocycles, 79, 277–297.Google Scholar
  261. Saporito, R. A., Norton, R. A., Andriamaharavo, N. R., Garraffo, H. M., & Spande, T. F. (2011). Alkaloids in the mite Scheloribates laevigatus: Further alkaloids common to oribatid mites and poison frogs. Journal of Chemical Ecology, 37, 213–218.PubMedGoogle Scholar
  262. Savage, A. L., Moorman, C. E., Gerwin, J. A., et al. (2010). Prey selection by Swainson's Warblers on the breeding grounds. Condor, 112, 605–614. doi:10.1525/cond.2010.Google Scholar
  263. Sayre, R. M., & Walter, D. E. (1991). Factors influencing the efficacy of natural enemies of plant-parasitic nematodes. Annual Review of Phytopathology, 29, 149–166.Google Scholar
  264. Schausberger, P. (2003). Cannibalism among phytoseiid mites: A review. Experimental & Applied Acarology, 29, 173–191.Google Scholar
  265. Schausberger, P., Peneder, S., Jürschik, S., & Hoffmann, D. (2012). Mycorrhiza changes plant volatiles to attract spider mite enemies. Functional Ecology, 26, 441–449.Google Scholar
  266. Schelvis, J. (1990). The reconstruction of local environments on the basis of remains of oribatid mites (Acari; Oribatida). Journal of Archaeological Science, 17, 559–571.Google Scholar
  267. Schelvis, J. (1992). Mites and archaeozoology, general methods: Applications to Dutch sites. Ph.D. Thesis, Rijksunversiteit, Groningen, 116 p.Google Scholar
  268. Scheu, S., & Schulz, E. (1996). Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiversity and Conservation, 5, 235–250.Google Scholar
  269. Schmelzle, S., Helfen, L., Norton, R. A., & Heethoff, M. (2009). The ptychoid defensive mechanism in Euphthiracaroidea (Acari: Oribatida): A comparison of muscular elements with functional considerations. Arthropod Structure & Development, 38, 461–472.Google Scholar
  270. Schmid, R. (1988). Morphologische Anpassungen in einem Räuber-Beute-System: Ameisenkäfer (Scydmaenidae, Staphylinoidea) und gepanzerte Milben (Acari). Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, 115, 207–228.Google Scholar
  271. Schneider, K., & Maraun, M. (2005). Feeding preferences among dark pigmented fungi (“Dematiacea”) indicate trophic niche differentiation of oribatid mites. Pedobiologia, 49, 61–67.Google Scholar
  272. Schneider, K., Migge, S., Norton, R. A., Scheu, S., Langel, R., Reineking, A., & Maraun, M. (2004). Trophic niche differentiation in oribatid mites (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry, 36, 1769–1774.Google Scholar
  273. Schneider, K., Renker, C., & Maraun, M. (2005). Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza, 16, 67–72.PubMedGoogle Scholar
  274. Schubart, H. O. R. (1967). Observations préliminaires sur la biologie d’Indotritia acanthophora Märkel, 1964 (Acari, Oribatei). Revista Brasileira de Biologia, 27, 165–176.Google Scholar
  275. Schubart, H. O. R. (1973). The occurrence of Nematalycidae (Acari, Prostigmata) in Central Amazonia with a description of a new genus and species. Acta Amazonica, 3, 53–57.Google Scholar
  276. Schuster, R. (1956). Der Anteil der Oribatiden an den Zersetzungsvorgangen in Boden. Zeitschrift fur Morphologie und Okologie de Tiere, 45, 1–33.Google Scholar
  277. Schuster, R. (1966). Über den Beutefang des Amiesenkäfers Cephennium austiacum Reiter. Naturwissenschaften, 53, 113.Google Scholar
  278. Schuster, R. K., & Cootzee, L. (2012). Cysticercoids of Anoplocephala magna (Eucestoda: Anoplocephalidae) experimentally grown in oribatid mites (Acari: Oribatida. Veterinary Parasitology, 190, 285–288. doi:10.1016/j.vetpar.2012.05.PubMedGoogle Scholar
  279. Seastedt, T. R. (1984). The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29, 25–46.Google Scholar
  280. Seastedt, T. R., Ramundo, R. A., & Hayes, D. C. (1988). Maximization of densities of soil animals by foliage herbivory: Empirical evidence, graphical and conceptual models. Oikos, 51, 243–248.Google Scholar
  281. Seeman, O. D., & Walter, D. E. (1997). A new species of Triplogyniidae (Mesostigmata: Celaenopsoidea) from Australian rainforests. International Journal of Acarology, 23, 49–59.Google Scholar
  282. Seyd, E. L., & Seaward, M. R. D. (1984). The association of oribatid mites with lichens. Zoological Journal of the Linnean Society, 80, 369–420.Google Scholar
  283. Sharma, R. D. (1971). Studies on the plant-parasitic nematode Tylenchorhynchus dubius. Meded. Landbouwhogesch. Wageningen, 71, 98–104.Google Scholar
  284. Sharma, G. D., Farrier, M. H., & Drooz, A. T. (1983). Food, life-history, and sexual differences of Callidosoma metzi Sharma, Drooz, and Treat (Acarina: Erythraeidae). International Journal of Acarology, 9, 149–155.Google Scholar
  285. Shimano, S. (2011). Aoki’s oribatid-based bioindicator systems. Zoosymposia, 6, 200–209.Google Scholar
  286. Shimano, S., Sakata, T., Mizutani, Y., & Kuwahara, Y. (2002). Geranial: The alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. Journal of Chemical Ecology, 28, 1831–1837.PubMedGoogle Scholar
  287. Shimizu, N., Noge, K., Mori, N., Nishida, R., & Kuwahara, Y. (2004). Chemical ecology of astigmatid mites LXXIII. Neral as an alarm pheromone of the acarid mite, Oulenzia sp. (Astigmata: Winterschmidtiidae). Journal of the Acarological Society of Japan, 13, 57–64.Google Scholar
  288. Siepel, H. (1990). Niche relationships between two panphytophagous soil mites, Nothrus silvestris Nicolet (Acari, Oribatida, Nothridae) and Platynothrus peltifer (Koch) (Acari, Oribatida, Camisiidae). Biology and Fertility of Soils, 9, 139–144.Google Scholar
  289. Siepel, H. (1994). Life-history tactics of soil microarthropods. Biology and Fertility of Soils, 18, 263–278.Google Scholar
  290. Siepel, H. (1995). Applications of microarthropod life-history tactics in nature management and ecotoxicology. Biology and Fertility of Soils, 19, 75–83.Google Scholar
  291. Siepel, H. (1996). The importance of unpredictable and short-term environmental extremes for biodiversity in oribatid mites. Biodiversity Letters, 3, 26–34.Google Scholar
  292. Siepel, H., & De Ruiter-Dijkman, E. M. (1993). Feeding guilds of oribatid mites based on their carbohydrase activities. Soil Biology and Biochemistry, 25, 1491–1497.Google Scholar
  293. Siepel, H., & Maaskamp, F. (1994). Mites of different feeding guilds affect decomposition of organic matter. Soil Biology and Biochemistry, 26, 1389–1394.Google Scholar
  294. Simberloff, D. S., & Boecklen, W. (1981). Santa Rosalia reconsidered: Size and competition. Evolution, 35, 1206–1228.Google Scholar
  295. Simberloff, D., & Dayan, T. (1991). The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics, 22, 115–143.Google Scholar
  296. Simon, M. P., & Toft, C. A. (1991). Diet specialization in small vertebrates: Mite-eating in frogs. Oikos, 61, 263–278.Google Scholar
  297. Skubała, P., & Maslak, M. (2010). Succession of oribatid fauna (Acari, Oribatida) in fallen spruce trees: Deadwood promotes species and functional diversity. In M. W. Sabelis & J. Bruin (Eds.), Trends in acarology (pp. 123–128). Proceedings of the 12th International Congress. New York: SpringerGoogle Scholar
  298. Skubała, P., & Zaleski, T. (2012). Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida): Gradient study in meadow ecosystems. Science of the Total Environment, 414, 364–372.PubMedGoogle Scholar
  299. Skubała, P., Marzec, A., & Sokołowska, M. (2006). Accidental acarophagy: Mites found on fruits, vegetables and mushrooms. Biological Letters, 43, 249–255.Google Scholar
  300. Smit, C. E., Moser, T., & Roebke, J. (2012). A new OECD test guideline for the predatory soil mite Hypoaspis aculeifer: Results of an international ring test. Ecotoxicology & Environmental Safety, 82, 56–62. doi:10.1016/j.ecoenv.2012.05.009.Google Scholar
  301. Smith-Meyer, M. K. P., & Ueckermann, E. A. (1997). A review of some species of the families Allochaetophoridae, Linotetranidae and Tuckerellidae (Acari: Tetranychoidea). International Journal of Acarology, 23, 67–92.Google Scholar
  302. Solhøy, I. W., & Solhøy, T. (2000). The fossil oribatid mite fauna (Acari, Oribatida) in late glacial and early holocene sediments in Krakenes Lake, Western Norway. Journal of Paleolimnology, 23, 35–47.Google Scholar
  303. Spaull, V. W. (1973). Distribution of nematode feeding groups at Signy Island, South Orkney Islands, with an estimate of their biomass and oxygen consumption. British Antarctic Survey Bulletin, 37, 21–32.Google Scholar
  304. Sprules, W. G., & Bowerman, J. E. (1988). Omnivory and food chain length in zooplankton food webs. Ecology, 69, 418–426.Google Scholar
  305. Stamou, G. P., & Argyropoulou, M. D. (1995). A preliminary study on the effect of Cu, Pb and Zn contamination of soils on community structure and certain life-history traits of oribatids from urban areas. Experimental & Applied Acarology, 19, 381–390.Google Scholar
  306. Stanton, N. L. (1979). Patterns of species diversity in temperate and tropical litter mites. Ecology, 60, 295–304.Google Scholar
  307. Steiner, W. A. (1995). Influence of air pollution on moss-dwelling animals: 3. Terrestrial fauna, with emphasis on Oribatida and Collembola. Acarologia, 36, 149–173.Google Scholar
  308. Stephen, J. A., & Schweizer, H. (2009). Biological control of Lycoriella ingenua (Diptera: Sciaridae) in commercial mushroom (Agaricus bisporus) cultivation: A comparison between Hypoaspis miles and Steinernema feltiae. Pest Management Science, 65, 1195–1200.Google Scholar
  309. Stewart, M. M., & Woolbright, L. L. (1996). Amphibians. In D. P. Reagan & R. B. Waide (Eds.), The food web of a tropical rain forest (pp. 273–320). Chicago: University of Chicago Press.Google Scholar
  310. Stirling, G. R. (1991). Biological control of plant parasitic nematodes, progress, problems and prospects. Wallingford: CAB International.Google Scholar
  311. Strandtmann, R. W. (1967). Terrestrial Prostigmata (trombidiform mites). In J. L. Gressitt (Ed.), Entomology of Antarctica (pp, Vol. 10, pp. 51–80). Washington, DC: American Geophysical Union.Google Scholar
  312. Swift, M. J., Heal, D. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Berkeley: University of California Press.Google Scholar
  313. Szlendak, E., & Lewandowski, M. (2009). Development and reproductive capacity of the predatory mite Parasitus consanguineus (Acari: Parasitidae) reared on the larval stages of Megaselia halterata and Lycoriella ingenue. Experimental & Applied Acarology, 47, 285–292. doi:10.1007/s10493-008-9218-y.Google Scholar
  314. Tevis, L. J., & Newell, I. M. (1962). Studies on the biology and seasonal cycle of the giant red velvet mite, Dinothrombium pandorae (Acari, Trombidiidae). Ecology, 43, 497–505.Google Scholar
  315. Toft, C. A. (1995). Evolution of diet specialization in poison-dart frogs (Dendrobatidae). Herpetologica, 51, 202–216.Google Scholar
  316. Usher, M. B. (1975). Some aspects of the aggregations of soil arthropods: Cryptostigmata. Pedobiologia, 15, 364–374.Google Scholar
  317. Usher, M. B. (1976). Aggregation response of soil arthropods in relation to the soil environment. In J. M. Anderson & A. Macfadyen (Eds.), The role of terrestrial and aquatic organisms in decomposition processes (pp. 61–94). Oxford: Blackwell Scientific Publications.Google Scholar
  318. Usher, M. B., & Booth, R. G. (1986). Arthropod communities in Antarctic moss-turf habitat: Life history strategies of the prostigmatid mites. Pedobiologia, 29, 209–218.Google Scholar
  319. Usher, M. B., & Bowring, M. F. B. (1984). Laboratory studies of predation by the Antarctic mite Gamasellus racovitzai (Acari: Mesostigmata). Oecologia, 62, 245–249.Google Scholar
  320. Usher, M. B., & Davis, P. R. (1983). The biology of Hypoaspis aculeifer (Canestrini) (Mesostigmata) – Is there a tendency towards social-behavior? Acarologia, 24, 243–253.Google Scholar
  321. Usher, M. B., Block, W., & Jumeau, P. J. A. M. (1989). Predation by arthropods in an Antarctic terrestrial community. In R. B. Heywood (Ed.), University Research in Antarctica. Proceedings of British Antarctic Survey Antarctic Special Topic Award Scheme Symposium 9–10 November 1988 (pp. 123–129). Cambridge: British Antarctic Survey, Natural Environment Research Council.Google Scholar
  322. Usher, M. B., Booth, R. G., & Sparkes, K. E. (1982). A review of progress in understanding the organisation of communities of soil arthropods. Pedobiologia, 23, 126–144.Google Scholar
  323. Utzeri, C., Antonelli, D., & Angelini, C. (2004). A note on terrestrial activity and feeding in the spectacled salamander, Salamandrina terdigitata (Urodela, Salamandridae). Herpetological Bulletin, 90, 27–31.Google Scholar
  324. Valdecantos, M. S., Arias, F., & Espinoza, R. E. (2012). Herbivory in Liolaemus poecilochromus, a small, cold-climate lizard from the Andes of Argentina. Copeia, 2, 203–210. doi:10.1643/CE-12-001.Google Scholar
  325. van de Bund, C. F. (1972). Some observations on predatory action of mites on nematodes. Zeszyty Problemowe Postepow Nauk Rolniczych, 129, 103–110.Google Scholar
  326. van Straalen, N. M. (1997). Community structure of soil arthropods as a bioindicator of soil health. In C. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health. Wallingford: CAB International.Google Scholar
  327. van Straalen, M., & Verhoef, H. A. (1992). The development of a bioindicator system for soil acidity based on arthropod pH preferences. Journal of Applied Ecology, 34, 217–232.Google Scholar
  328. Vänninen, I., & Walter, D. E. (2003). Acceptance of thrips pupae as prey by soil-living predatory mites. 1st international symposium on biological control of arthropods. USDA-Forest Service FHTET-03-05 (Poster).Google Scholar
  329. Vincent, W. F. (1988). Microbial ecosystems of Antarctica. Melbourne: Cambridge University Press.Google Scholar
  330. Visser, S. (1985). Role of the soil invertebrates in determining the composition of soil microbial communities. In A. H. Fitter, D. Atkinson, D. J. Read, & M. B. Usher (Eds.), Ecological interactions in soil (pp. 297–317). Oxford: Blackwell Scientific Publications.Google Scholar
  331. Wallwork, J. A. (1976). The distribution and diversity of the soil fauna. London: Academic.Google Scholar
  332. Wallwork, J. A. (1983). Oribatids in forest ecosystems. Annual Review of Entomology, 28, 109–130.Google Scholar
  333. Walter, D. E. (1985). The effects of litter type and elevation on colonization of mixed coniferous litterbags by oribatid mites. Pedobiologia, 28, 383–387.Google Scholar
  334. Walter, D. E. (1987a). Life history, trophic behavior and description of Gamasellodes vermivorax n. sp. (Mesostigmata: Ascidae) a predator of nematodes and arthropods in semiarid grasslands. Canadian Journal of Zoology, 65, 1689–1695.Google Scholar
  335. Walter, D. E. (1987b). Trophic behavior of "mycophagous" microarthropods. Ecology, 68, 226–229.Google Scholar
  336. Walter, D. E. (1988a). Predation and mycophagy by endeostigmatid mites (Acariformes: Prostigmata). Experimental & Applied Acarology, 4, 159–166.Google Scholar
  337. Walter, D. E. (1988b). Macrocheles schaeferi (Acari: Mesostigmata: Macrochelidae), a new species in the subbadius group from grassland soils in the central United States. Annals of the Entomological Society of America, 81, 386–394.Google Scholar
  338. Walter, D. E. (2000). A jumping mesostigmatan: Saltiseius hunteri, n.g., n. sp. (Acari: Mesostigmata: Trigynaspida: Saltiseiidae, n. fam.). International Journal of Acarology, 26, 25–31.Google Scholar
  339. Walter, D. E., & Behan-Pelletier, V. (1999). Mites in forest canopies: Filling the size distribution shortfall? Annual Review of Entomology, 44, 1–19.PubMedGoogle Scholar
  340. Walter, D. E., & Ikonen, E. K. (1989). Species, guilds and functional groups: taxonomy and behavior in nematophagous arthropods. Journal of Nematology, 21, 315–327.PubMedGoogle Scholar
  341. Walter, D. E., & Kaplan, D. T. (1990a). Feeding observations on two astigmatic mites, Schwiebea rocketti Woodring (Acaridae) and Histiostoma bakeri Hughes & Jackson, associated with citrus feeder roots. Pedobiologia, 34, 281–286.Google Scholar
  342. Walter, D. E., & Kaplan, D. T. (1990b). A guild of thelytokous mites associated with citrus roots in Florida. Environmental Entomology, 19, 1338–1343.Google Scholar
  343. Walter, D. E., & Kaplan, D. T. (1991). Observations on Coleoscirus simplex (Acarina: Prostigmata), a predatory mite that colonizes greenhouse cultures of rootknot nematode (Meloidogyne spp.), and a review of feeding behavior in the Cunaxidae. Experimental & Applied Acarology, 12, 47–59.Google Scholar
  344. Walter, D. E., & Lindquist, E. E. (1995). The distributions of parthenogenetic ascid mites (Acari: Parasitiformes) do not support the biotic uncertainty hypothesis. Experimental and Applied Acarology, 19, 423–442.Google Scholar
  345. Walter, D. E., & Norton, R. A. (1984). Body size distribution in sympatric oribatid mites (Acari: Sarcoptiformes) from California pine litter. Pedobiologia, 27, 99–106.Google Scholar
  346. Walter, D. E., & Oliver, J. H. (1990). Geolaelaps oreithyiae, n. sp. (Acari: Laelapidae), a thelytokous predator of arthropods and nematodes, and a discussion of clonal reproduction in the Mesostigmata. Acarologia, 30, 293–303.Google Scholar
  347. Walter, D. E., & Proctor, H. C. (1998a). Feeding behaviour and phylogeny: Observations on early derivative Acari. Experimental & Applied Acarology, 22, 39–50.Google Scholar
  348. Walter, D. E., & Proctor, H. C. (1998b). Predatory mites in tropical Australia: Local species richness and complementarity. Biotropica, 30, 72–81.Google Scholar
  349. Walter, D. E., & Proctor, H. C. (1999). Mites: Ecology, evolution and behaviour (p. 322). Sydney/Wallingford: University of NSW Press/CABI. ISBN 0 86840 529 9.Google Scholar
  350. Walter, D. E., Hudgens, R. A., & Freckman, D. W. (1986). Consumption of nematodes by fungivorous mites Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia, 70, 357–361.Google Scholar
  351. Walter, D. E., Hunt, H. W., & Elliott, E. T. (1987a). The influence of prey type on the development and reproduction of some predatory soil mites. Pedobiologia, 30, 419–424.Google Scholar
  352. Walter, D. E., Kethley, J., & Moore, J. C. (1987b). A heptane flotation method for recovering microarthropods from arid grassland soils, with comparisons to the Merchant–Crossley high-gradient extraction method and estimates of microarthropod biomass. Pedobiologia, 30, 221–232.Google Scholar
  353. Walter, D. E., Hunt, H. W., & Elliott, E. T. (1988). Guilds or functional groups? An analysis of predatory arthropods from a shortgrass prairie soil. Pedobiologia, 31, 247–260.Google Scholar
  354. Walter, D. E., Moore, J. C., & Loring, S. J. (1989). Symphylella sp. (Symphyla: Scolopendrellidae) predators of arthropods and nematodes in grassland soils. Pedobiologia, 33, 113–116.Google Scholar
  355. Walter, D. E., Halliday, R. B., & Lindquist, E. E. (1993). A review of the genus Asca (Acarina: Ascidae) in Australia, with the description of three new leaf-inhabiting species. Invertebrate Taxonomy, 7, 1327–1347.Google Scholar
  356. Walter, D. E., Seeman, O., Rodgers, D., & Kitching, R. L. (1998). Mites in the mist: How unique is a rainforest canopy knockdown fauna? Australian Journal of Ecology, 23, 501–508.Google Scholar
  357. Walton, B. M., & Steckler, S. (2005). Contrasting effects of salamanders on forest-floor macro- and mesofauna in laboratory microcosms. Pedobiologia, 49, 51–60.Google Scholar
  358. Walton, B. M., Tsatiris, D., & Rivera-Sostre, M. (2006). Salamanders in forest-floor food webs: Invertebrate species composition influences top–down effects. Pedobiologia, 50, 313–321.Google Scholar
  359. Wardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology Letters, 9, 870–886. doi:10.1111/j.1461-0248.2006.00931.x.PubMedGoogle Scholar
  360. Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setala, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.PubMedGoogle Scholar
  361. Wauthy, G., Leponce, M., Banai, N., Sylin, G., & Lions, J. C. (1997). Un acarien qui saute et qui se met en boule. Comptes rendus de l'Academie des Sciences, 320, 315–317.Google Scholar
  362. Weeks, P. (2000). Red-billed oxpeckers: Vampires or tickbirds? Behavioral Ecology, 11, 154–160. doi:10.1093/beheco/11.2.154.Google Scholar
  363. Whitford, W. G. (1996). The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation, 5, 185–195.Google Scholar
  364. Wiggins, E. A., & Curl, E. A. (1979). Interactions of collembola and microflora of the cotton rhizosphere. Phytopathology, 69, 244–249.Google Scholar
  365. Wilkinson, P. P. (1970). Factors affecting the distribution and abundance of the cattle tick in Australia: observations and hypotheses. Acarologia, 12, 492–508.Google Scholar
  366. Wilson, D. S. (1983). The effect of population structure on the evolution of mutualism: A field test involving burying beetles and their phoretic mites. American Naturalist, 121, 851–870.Google Scholar
  367. Wilson, E. O. (2005). Oribatid mite predation by small ants of the genus Pheidole. Insectes Sociaux, 52, 263–265.Google Scholar
  368. Wohltmann, A., Wendt, F.-E., & Waubke, M. (1996). The life cycle and parasitism of the European grasshopper mite Eutrombidium trigonum (Hermann 1804) (Prostigmata: Parasitengonae: Microtrombidiidae), a potential agent for biological control of grasshoppers (Saltatoria). Experimental & Applied Acarology, 20, 545–561.Google Scholar
  369. Wolters, V. (1991). Soil invertebrates – Effects on nutrient turnover and soil structure – A review. Zeitschrift für Pflanzenernahrung, Dungung und Bodenkunde, 154, 389–402.Google Scholar
  370. Woodring, J. P. (1963). The nutrition and biology of saprophytic Sarcoptiformes. Advances in Acarology, 1, 89–111.Google Scholar
  371. Woodring, J. P., & Galbraith, C. A. (1976). The anatomy of the adult uropodid Fuscouropoda agitans (Arachnida; Acari) with comparative observations on other Acari. Journal of Morphology, 150, 19–58.Google Scholar
  372. Wright, E. M., & Chambers, R. J. (1994). The biology of the predatory mite Hypoaspis miles (Acari: Laelapidae), a potential biological control agent of Bradysia paupera (Dipt.: Sciardiae). Entomophaga, 39, 225–235.Google Scholar
  373. Yamanaka, T., White, P. C. L., Spencer, M., & Raffaelli, D. (2012). Patterns and processes in abundance-body size relationships for marine benthic invertebrates. Journal of Animal Ecology, 81, 463–471.PubMedGoogle Scholar
  374. Yeates, G. W., & Lee, W. G. (1997). Burning in a New Zealand snow-tussock grassland: Effects on vegetation and soil fauna. New Zealand Journal of Ecology, 21, 73–79.Google Scholar
  375. Yoder, J. A. (1993). An ant-diversionary secretion of ticks – 1st demonstration of an acarine allomone. Journal of Insect Physiology, 39, 429–435.Google Scholar
  376. Young, O. P., & Welbourn, W. C. (1987). Biology of Lasioerythraeus johnstoni (Acari: Erythraeidae), ectoparasitic and predacious on the tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), and other arthropods. Annuals of the Entomological Society of America, 80, 243–250.Google Scholar
  377. Young, M. R., Behan-Pelletier, V. M., & Hebert, P. D. N. (2012). Revealing the hyperdiverse mite fauna of subarctic Canada through DNA barcoding. PLoS One, 7, e48755. doi:10.1371/journal.pone.0048755.PubMedGoogle Scholar
  378. Zacharda, M. (1980). Soil mites of the family Rhagidiidae (Actinedida: Eupodoidea), Morphology, systematics, ecology. Acta Universitatis Carolinae-Biologica, 1978, 489–785.Google Scholar
  379. Zhang, Z.-Q., & Sanderson, J. P. (1993). Association of Ereynetes tritonymphs (Acari: Ereynetidae) with the Fungus Gnat, Bradysia impatiens (Diptera: Sciaridae). International Journal of Acarology, 19, 179–183.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • David Evans Walter
    • 1
  • Heather C. Proctor
    • 2
  1. 1.Invertebrate ZoologyUniversity of the Sunshine Coast Royal Alberta MuseumEdmontonCanada
  2. 2.Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations