Sex and Celibacy

  • David Evans Walter
  • Heather C. Proctor


In our everyday experience, animals have two separate sexes. Some animals, and many plants, combine the two in a single individual but they still produce male and female gametes. This is such a basic generality that we become uneasy with the suggestion that there are many taxa (some of them mites, see Parthenogenesis) in which males are irrelevant (Fig. 5.1).


Sperm Cell Sperm Competition Spider Mite Female Choice Oribatid Mite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alberti, G. (1974). Fortpflanzungsverhalten und Fortpflanzungsorgane der Schnabelmilben (Acarina: Bdellidae, Trombidiformes). Zeitschrift für Morphologie und Ökologie der Tiere, 78, 111–157.Google Scholar
  2. Alberti, G. (1995). Comparative spermatology of the Chelicerata: Review and perspective. Mémoires du Muséum National d’Histoire Naturelle, 166, 203–230.Google Scholar
  3. Alberti, G. (2002a). Reproductive systems of gamasid mites (Acari, Anactinotrichida) reconsidered. In F. Bernini, R. Nannelli, G. Nuzzaci, & E. de Lillo (Eds.), Acarid phylogeny and evolution adaptations in mites and ticks (pp. 125–139). Dordrecht: Kluwer.Google Scholar
  4. Alberti, G. (2002b). Ultrastructural investigations of sperm and genital systems in Gamasida (Acari: Anactinotrichida) current state and perspectives for future research. Acarologia, 42, 107–126.Google Scholar
  5. Alberti, G., & Crooker, A. R. (1985). Internal anatomy. In W. Helle & M. W. Sabelis (Eds.), Spider mites: Their biology, natural enemies and control (Vol. 1A, pp. 29–62). Amsterdam: Elsevier.Google Scholar
  6. Alberti, G., Fernandez, N. A., & Kümmel, G. (1991). Spermatophores and spermatozoa of oribatid mites (Acari: Oribatida). Part II: Functional and systematical considerations. Acarologia, 32, 435–449.Google Scholar
  7. Alberti, G., Gegner, A., & Witalinski, W. (2000). Fine structure of the spermatophore and spermatozoa in inseminated females of Pergamasus mites (Acari: Gamasida: Pergamasidae). Journal of Morphology, 245, 1–18.PubMedGoogle Scholar
  8. Alberti, G., Gerdeman, B., & Klompen, H. (2007). Fine structure of spermiogenesis and sperm in a heterozerconid mite (Heterozerconina; Gamasida). In J. B. Morales-Malacara, V. Beham Pelletier, E. Ueckermann, T. M. Pe´ rez, E. G. Estrada-Venegas, M. Badii (Eds.), Acarology XI: Proceedings International Congress (pp. 557–560).Google Scholar
  9. Alberti, C. G. Y., Fernandez, N. A., & Théron, P. D. (2010). Fine structure of the male genital syst ems, spermatophores and unusual sperm cells of Saxidromidae (Acari, Actinotrichida). Acarologia, 50, 243–256.Google Scholar
  10. Alcock, J. (1994). Postinsemination associations between males and females in insects: The mate-guarding hypothesis. Annual Review of Entomology, 39, 1–21.Google Scholar
  11. Alexander, R. D. (1964). The evolution of mating behaviour in arthropods. Symposia of the Royal Entomological Society of London, 2, 78–94.Google Scholar
  12. Amano, H., & Chant, D. A. (1978). Mating behaviour and reproductive mechanisms of two species of predaceous mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae). Acarologia, 20, 196–213.Google Scholar
  13. Arnold, S. J. (1976). Sexual behavior, sexual interference and sexual defense in the salamanders Ambystoma maculatum, Ambystoma tigrinum and Plethodon jordani. Zeitschrift für Tierpsychologie, 42, 247–300.Google Scholar
  14. Arnqvist, G., & Rowe, L. (2005). Sexual conflict. Princeton: Princeton University Press.Google Scholar
  15. Barazandeh, M., Davis, C. S., Neufeld, C. J., Coltman, D. W., Palmer, A. R. (2013). Something Darwin didn’t know about barnacles: spermcast mating in a common stalked species. Proceedings of the Royal Society B, 280, 20122919.
  16. Barr, D. (1972). The ejaculatory complex of water mites (Acari: Parasitengona): Morphology and potential value for systematics. Life sciences contributions/Royal Ontario Museum, 81, 1–87.Google Scholar
  17. Behan-Pelletier, V. M., & Eamer, B. (2005). Zachvatkinibates (Acari: Oribatida: Mycobatidae) of North America, with descriptions of sexually dimorphic species. Canadian Entomologist, 137, 631–647.Google Scholar
  18. Behan-Pelletier, V. M., & Eamer, B. (2010). The first sexually dimorphic species of Oribatella (Acari, Oribatida, Oribatellidae) and a review of sexual dimorphism in the Brachypylina. Zootaxa, 2332, 1–20.Google Scholar
  19. Bell, G. (1982). The masterpiece of nature. Berkeley: University of California Press.Google Scholar
  20. Birky, C. W., Jr. (2010). Positively negative evidence for asexuality. Journal of Heredity, 101(Supplement 1), S42–S45.PubMedGoogle Scholar
  21. Boczek, J., & Griffiths, D. A. (1979). Spermatophore production and mating behaviour in the stored product mites Acarus siro and Lardoglyphus konoi. In J. G. Rodriguez (Ed.), Recent advances in acarology I (pp. 279–284). New York: Academic.Google Scholar
  22. Booth, W., Smith, C. F., Eskridge, P. H., Hoss, S. K., Mendelson, J. R., & Schuett, G. W. (2012). Facultative parthenogenesis discovered in wild vertebrates. Biology Letters. doi: 10.1098/rsbl.2012.0666.PubMedGoogle Scholar
  23. Boucot, A. J. (1990). Evolutionary paleobiology of behavior and coevolution. Amsterdam: Elsevier.Google Scholar
  24. Braddy, S. J., & Dunlop, J. A. (1997). The functional morphology of mating in the Silurian eurypterid, Baltoeurypterus tetragonophthalmus (Fischer, 1839). Zoological Journal of the Linnean Society, 120, 435–461.Google Scholar
  25. Bretfeld, G. (1970). Grundzüge des Paarungsverhalten europäischer Bourletiellini (Collembola, Sminthuridae) und darous abgeleitete taxonomisch-nomenklatorische Folgerungen. Zeitschrift fur zoologische Systematik und Evolutionsforschung, 8, 259–273.Google Scholar
  26. Brooks, D. R., & McLennan, D. A. (1991). Phylogeny, ecology, and behavior. Chicago: University of Chicago Press.Google Scholar
  27. Buckland-Nicks, J., & Scheltema, A. (1995). Was internal fertilization an innovation of early Bilateria? Evidence from sperm structure of a mollusc. Proceedings of the Royal Society of London B, 261, 11–18.Google Scholar
  28. Bulmer, M. G., & Taylor, P. D. (1980). Sex ratio under the haystack model. Journal of Theoretical Biology Biology, 86, 83–89.Google Scholar
  29. Chapman, R. F. (1971). The insects: Structure and function (2nd ed.). London: Edward Arnold Ltd.Google Scholar
  30. Charnov, E. L. (1982). The theory of sex allocation. Princeton: Princeton University Press.Google Scholar
  31. Cianciolo, J. M., & Norton, R. A. (2006). The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Experimental and Applied Acarology, 40, 1–25.PubMedGoogle Scholar
  32. Coineau, Y. (1973). A propos de quelques caractères particulièrement primitifs de la prélarvae et de larve d'un Opilioacaridae du Gabon (Acariens). Comptes rendus de l'Academie des Sciences, 276, 1181–1184.Google Scholar
  33. Colwell, R. K. (2000). Rensch’s Rule crosses the line: convergent allometry of sexual size dimorphism in hummingbirds and flower mites. The American Naturalist, 156, 495–510.Google Scholar
  34. Compton, G. L., & Krantz, G. W. (1978). Mating behavior and related morphological specialization in the uropodine mite, Caminella peraphora. Science, 200, 1300–1301.PubMedGoogle Scholar
  35. Cone, W. W. (1985). Mating and chemical communication. In W. Helle & M. W. Sabelis (Eds.), Spider mites: Their biology, natural enemies and control (Vol. 1A, pp. 243–251). Amsterdam: Elsevier.Google Scholar
  36. Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z., & Dabert, J. (2010). Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Molecular Phylogenetics and Evolution, 56, 222–241.PubMedGoogle Scholar
  37. Darwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray.Google Scholar
  38. David, B., & Mooi, R. (1990). An echinoid that “gives birth”: Morphology and systematics of a new Antarctic species, Urechinus mortenseni (Echinodermata, Holasteroida). Zoomorphology, 110, 75–79.Google Scholar
  39. Davids, C., & Belier, R. (1974). The spermatophores of Hydrachna conjecta Koenike and the life history of the land-living ancestors of this water mite. Proceedings of the 4th International Congress Acarology (pp. 147–151). Budapest: Akademiai Kiado.Google Scholar
  40. Davids, C., Holtslag, J., & Dimock, R. V., Jr. (1988). Competitive exclusion, harem behaviour and host specificity of the water mite Unionicola ypsilophora (Hydrachnellae, Acari) inhabiting Anodonta cygnea (Unionidae). Internationale Revue der Gesamten Hydrobiologie, 73, 651–657.Google Scholar
  41. Di Palma, A., Alberti, G., Nuzzaci, G., & Krantz, G. W. (2006). Fine structure and functional morphology of the mouthparts of a male Veigaia sp. (Gamasida: Veigaiidae) with remarks on the spermatodactyl and related sensory structures. Journal of Morphology, 267, 208–220.PubMedGoogle Scholar
  42. Di Palma, A., Gerdeman, B. S., & Alberti, G. (2008). Fine structure and functional morphology of the spermatodactyl in males of Heterozerconidae (Gamasida). International Journal of Acarology, 34, 359–366.Google Scholar
  43. Di Palma, A., Wegener, A., & Alberti, G. (2009). On the ultrastructure and functional morphology of the male chelicerae (gonopods) in Parasitidae and Dermanyssina mites (Acari: Gamasida). Arthropod Structure & Development, 38, 329–338.Google Scholar
  44. Di Palma, A., Alberti, G., Blazak, C., & Krantz, G. W. (2012). Morphological and functional adaptations of the female reproductive system in Veigaiidae (Acari: Gamasida) and implications regarding the systematic position of the family. Zoologischer Anzeiger, 251, 49–70.Google Scholar
  45. Dimock, R. V., Jr. (1983). In defense of the harem: Intraspecific aggression by male water mites (Acari: Unionicolidae). Annals of the Entomological Society of America, 76, 463–465.Google Scholar
  46. Dubinin, V. B. (1951). Feather mites (Analgesoidea). Part I. Introduction to their study. Fauna U.S.S.R., 6, 1–363.Google Scholar
  47. Durnberg, A. (2001). Here, there, and everywhere: Kinetochore function on holocentric chromosomes. The Journal of Cell Biology, 6, F33–F38.Google Scholar
  48. Eberhard, W. G. (1985). Sexual selection and animal genitalia. Cambridge: Harvard University Press.Google Scholar
  49. Eberhard, W. G. (1996). Female control: Sexual selection by cryptic female choice. Princeton: Princeton University Press.Google Scholar
  50. Edwards, D. D., & Dimock, R. V., Jr. (1991). Relative importance of size versus territorial residency in intraspecific aggression by symbiotic male water mites (Acari: Unionicolidae). Experimental & Applied Acarology, 12, 61–65.Google Scholar
  51. Ehrnsberger, R. (1977). Fortpflanzungsverhalten der Rhagidiidae (Acarina: Trombidiformes). Acarologia, 19, 67–73.Google Scholar
  52. Emlen, S. T., & Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science, 197, 215–223.PubMedGoogle Scholar
  53. Enders, M. M. (1993). The effect of male size and operational sex ratio on male mating success in the common spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Animal Behaviour, 46, 835–846.Google Scholar
  54. Estrada-Venegas, E., Norton, R.A., & Moldenke, A. R. (1996). Unusual sperm transfer in Pilogalumna sp. (Galumnidae). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, Proceedings (pp. 565–567). Columbus: Ohio Biological Survey.Google Scholar
  55. Evans, G. O. (1992). Principles of acarology. Wallingford: CAB International.Google Scholar
  56. Fashing, N. F. (2008). Mate-guarding in the genus Creutzeria (Astigmata: Histiostomatidae), an aquatic mite genus inhabiting the fluid-filled pitchers of Nepenthes plants (Nepentheaceae). Systematic & Applied Acarology, 13, 163–171.Google Scholar
  57. Feiertag-Koppen, C. C. M., & Pijnacker, L. P. (1985). Oogenesis. In W. Helle & M. W. Sabelis (Eds.), Spider mites: Their biology, natural enemies and control (Vol. 1A, pp. 117–127). Amsterdam: Elsevier.Google Scholar
  58. Feldman-Muhsam, B. (1986). Observations on the mating behaviour of ticks. In J. R. Sauer & J. A. Hair (Eds.), Morphology, physiology, and behavioral biology of ticks (pp. 217–232). Chichester: Ellis Horwood Ltd.Google Scholar
  59. Feldman-Muhsam, B. (1991). The role of Adlerocystis sp. in the reproduction of argasid ticks. In R. Schuster & P. W. Murphy (Eds.), The Acari: Reproduction, development and life-history strategies (pp. 179–190). New York: Chapman & Hall.Google Scholar
  60. Fowler, K., & Partridge, L. (1989). A cost of mating in female fruitflies. Nature, 338, 760–761.Google Scholar
  61. Garga, N., Proctor, H., & Belczewski, R. (1997). Leg size affects mating success in Tarsonemus confusus Ewing (Prostigmata: Tarsonemidae). Acarologia, 38, 369–375.Google Scholar
  62. Gaud, J., & Atyeo, W. T. (1996). Feather mites of the world (Acarina, Astigmata): The supraspecific taxa. Part I. Annalen Zoologische Wetenschappen, 277, 1–193.Google Scholar
  63. Gerdeman, B. S., & Klompen, H. (2003). A new North American heterozerconid, Narceoheterozercon ohioensis n. g., n. sp., with first description of immatures of Heterozerconidae (Acari: Mesostigmata). International Journal of Acarology, 29, 351–370.Google Scholar
  64. Gotoh, T., Noda, H., & Hong, X.-Y. (2003). Wolbachia distribution and cytoplasmic incompatibility based on a survey of 42 spider mite species (Acari: Tetranychidae) in Japan. Heredity, 91, 208–216.PubMedGoogle Scholar
  65. Gould, S. (1977). Ontogeny and phylogeny. Cambridge: Harvard University Press.Google Scholar
  66. Gwiazdowicz, D. J. (2004). Record of heteromorphic males of Hypoaspis (Cosmolaelaps) vacua (Michael, 1891) (Acari, Mesostigmata, Laelapidae) from Poland. Journal of the Acarological Society of Japan, 13, 181–184.Google Scholar
  67. Hamilton, W. D. (1967). Extraordinary sex ratios. Science, 156, 477–488.PubMedGoogle Scholar
  68. Hedlund, K., Ek, H., Gunnarsson, T., & Svegborn, C. (1990). Mate choice and male competition in Orchesella cincta (Collembola). Experientia, 46, 524–526.Google Scholar
  69. Hinton, H. E. (1964). Sperm transfer in insects and the evolution of haemocoelic insemination. Symposia of the Royal Entomological Society of London, 2, 95–107.Google Scholar
  70. Holland, B., & Rice, W. R. (1998). Perspective: Chase-away sexual selection: Antagonistic seduction versus resistance. Evolution, 52, 1–7.Google Scholar
  71. Immler, S., Pitnick, S., Parker, G. A., Durrant, K. L., Lüpold, S., Calhim, S., & Birkhead, T. R. (2011). Resolving variation in the reproductive tradeoff between sperm size and number. Proceedings of the National Academy of Sciences, 108, 5325–5330.Google Scholar
  72. Kaliszewski, M., & Wrensch, D. L. (1993). Evolution of sex determination and sex ratio within the mite cohort Tarsonemina (Acari: Heterostigmata). In D. L. Wrensch & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 192–213). New York: Chapman & Hall.Google Scholar
  73. Kamenz, C., Staude, A., & Dunlop, J. A. (2011). Sperm carriers in Silurian sea scorpions. Naturwissenschaften, 98, 889–896.PubMedGoogle Scholar
  74. Kano, Y. (2008). Vetigastropod phylogeny and a new concept of Seguenzioidea: Independent evolution of copulatory organs in the deep-sea habitats. Zoologica Scripta, 37, 1–21.Google Scholar
  75. Kaster, J. L., & Jakob, E. M. (1997). Last-male sperm priority in a haplogyne spider (Aranea: Pholcidae): Correlations between female morphology and patterns of sperm usage. Annals of the Entomological Society of America, 90, 254–259.Google Scholar
  76. Kethley, J. (1971). Population regulation in quill mites (Acarina: Syringophilidae). Ecology, 52, 113–118.Google Scholar
  77. Kirchner, W. P. (1967). Spermatophoren bei Halacariden. Naturwissenschaften, 54, 345–346.PubMedGoogle Scholar
  78. Kiszewski, A. E., Matuschka, F.-R., & Spielman, A. (2001). Mating strategies and spermiogenesis in ixodid ticks. Annual Review of Entomology, 46, 167–182.PubMedGoogle Scholar
  79. Klimov, P. B., & Sidorchuk, E. A. (2011). An enigmatic lineage of mites from Baltic amber shows a unique, possibly female-controlled, mating. Biological Journal of the Linnean Society, 102, 661–668.Google Scholar
  80. Knop, N. F. (1985). Mating behaviour in the tydeid mite Homeopronematus anconi (Acari: Tydeidae). Experimental and Applied Acarology, 1, 115–125.Google Scholar
  81. Konior, M., Keller, L., & Radwan, J. (2005). Effect of inbreeding and heritability of sperm competition success in the bulb mite Rhizoglyphus robini. Heredity, 94, 577–581.PubMedGoogle Scholar
  82. Krantz, G. W. (1978). A manual of acarology. Corvallis: Oregon State University Bookstores.Google Scholar
  83. Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of acarology (3rd ed.). Lubbock: Texas Tech University Press.Google Scholar
  84. Krantz, G. W., & Wernz, J. G. (1979). Sperm transfer in Glyptholaspis americana. In J. G. Rodriguez (Ed.), Recent advances in acarology (Vol. 2, pp. 441–446). New York: Academic.Google Scholar
  85. Lee, D. C. (1974). Rhodacaridae (Acari: Mesostigmata) from near Adelaide, Australia III. Behaviour and development. Acarologia, 16, 21–44.Google Scholar
  86. Leimann, J. (1991). Structure and formation of the sperm package of Piona carnea (Koch, 1836) (Prostigmata, Hydrachnidia), a copulating water mite. In F. Dusbábek & V. Bukva (Eds.), Modern acarology (Vol. 2, pp. 449–454). The Hague: Academia, Prague and SPB Academic Publishing.Google Scholar
  87. Lesna, I., & Sabelis, M. W. (1999). Diet-dependent female choice for males with ‘good genes’ in a soil predatory mite. Nature, 401, 581–584.Google Scholar
  88. Levitan, D. R., Sewell, M. A., & Chia, F.-S. (1992). How distribution and abundance influence fertilization success in the sea urchin Strongylocentrotus franciscanus. Ecology, 73, 248–254.Google Scholar
  89. Macke, E., Magalhaes, S., Bach, F., & Olivieri, I. (2012). Sex-ratio adjustment in response to local mate competition is achieved through an alteration of egg size in a haplodiploid spider mite. Proceedings of the Royal Society B. doi: 10.1098/rspb.2012.1598.PubMedGoogle Scholar
  90. Mann, T. (1984). Spermatophores: development, structure, biochemical attributes, and role in the transfer of spermatozoa. Berlin: Springer.Google Scholar
  91. Martens, K., Rossetti, G., & Horne, D. J. (2003). How ancient are ancient asexuals? Proceedings of the Royal Society of London B, 270, 723–729.Google Scholar
  92. Maynard Smith, J. (1978). The evolution of sex. Cambridge: Cambridge University Press.Google Scholar
  93. Metz, C. W. (1938). Chromosome behavior, inheritance and sex determination in Sciara. American Naturalist, 72, 485–520.Google Scholar
  94. Michalska, K. (2011). Daily production of spermatophores, sperm number and spermatophore size in two eriophyoid mites. Experimental and Applied Acarology, 55, 349–359.PubMedGoogle Scholar
  95. Michalska, K., & Boczek, J. (1991). Sexual behavior of males attracted to quiescent deutonymphs in the Eriophyoidea (Acari). In F. Dusbábek & V. Bukva (Eds.), Modern acarology (Vol. 2, pp. 549–553). The Hague: Academia, Prague and SPB Academic Publishing.Google Scholar
  96. Mitter, C., Farrell, B., & Futuyma, D. J. (1991). Phylogenetic studies of insect–plant interactions: Insights into the genesis of diversity. Trends in Ecology & Evolution, 6, 290–293.Google Scholar
  97. Morrow, E. H. (2004). How the sperm lost its tail: The evolution of aflagellate sperm. Biological Reviews, 79, 795–814.PubMedGoogle Scholar
  98. Moss, W. W. (1960). Description and mating behaviour of Allothrombium lerouxi, new species (Acarina: Trombidiidae), a predator of small arthropods in Quebec apple orchards. Canadian Entomologist, 92, 848–905.Google Scholar
  99. Mostafa, A. R. (1974). Biological and behavioral aspects of the lizard mite Pterygosoma mutabilis Jack, 1961 (Acarina: Pterygosomidae). Acarologia, 16, 100–105.Google Scholar
  100. Norton, R. A. (1998). Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Experimental & Applied Acarology, 22, 559–594.Google Scholar
  101. Norton, R. A., & Alberti, G. (1997). Porose integumental organs of oribatid mites (Acari, Oribatida). 3. Evolutionary and ecological aspects. Zoologica, 146, 115–143.Google Scholar
  102. Norton, R. A., & Palmer, S. C. (1991). The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites. In R. Schuster & P. W. Murphy (Eds.), The Acari: Reproduction, development and life-history strategies (pp. 107–136). New York: Chapman & Hall.Google Scholar
  103. Norton, R. A., Kethley, J. B., Johnston, D. E., & OConnor, B. M. (1993). Phylogenetic perspectives on genetic systems and reproductive modes of mites. In D. L. Wrensch & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 8–99). New York: Chapman & Hall.Google Scholar
  104. Nuzzaci, G., & Alberti, G. (1996). Internal anatomy and physiology. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites – their biology, natural enemies and control (pp. 101–167). Amsterdam: Elsevier Science B.V.Google Scholar
  105. O’Neill, S. L., Hoffmann, A. A., & Werren, J. H. (Eds.). (1997). Influential passengers inherited microorganisms and arthropod reproduction. NY: Oxford University Press.Google Scholar
  106. Oldfield, G. N., & Michalska, K. (1996). Spermatophore deposition, mating behavior and population mating structure. In E. E. Lindquist, M. W. Sabelis, & J. Bruin (Eds.), Eriophyoid mites – their biology, natural enemies and control (pp. 185–198). Amsterdam: Elsevier Science B.V.Google Scholar
  107. Oliver, J. H. (1982). Tick reproduction: Sperm development and cytogenetics. In F. D. Obenchain & R. Galun (Eds.), Physiology of ticks (pp. 245–275). Oxford: Pergamon Press.Google Scholar
  108. Oppedisano, M., Eguaras, M., & Pernandez, N. (1995). Dépôt de spermatophores et structures de signalisation chez Pergalumna sp. (Acari: Oribatida). Acarolgia, 36, 347–353.Google Scholar
  109. Palmer, S. C., & Norton, R. A. (1992). Genetic diversity in thelytokous oribatid mites (Acari; Acariformes: Desmonomata). Biochemical Systematicals and Ecology, 20, 219–231.Google Scholar
  110. Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Review, 45, 525–567.Google Scholar
  111. Parker, G. A. (1978). Evolution of competitive mate searching. Annual Review of Entomology, 23, 173–196.Google Scholar
  112. Parker, G. A. (1982). Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. Journal of Theoretical Biology, 96, 281–294.PubMedGoogle Scholar
  113. Parker, G. A. (1984). Sperm competition and the evolution of animal mating strategies. In R. L. Smith (Ed.), Sperm competition and the evolution of animal mating systems (pp. 2–61). New York: Academic.Google Scholar
  114. Parker, G. A., & Partridge, L. (1998). Sexual conflict and speciation. Philosophical Transactions of the Royal Society B, 353, 261–274.Google Scholar
  115. Pellmyr, O. (1992). Evolution of insect pollination and angiosperm diversification. Trends in Ecology & Evolution, 7, 46–49.Google Scholar
  116. Potter, D. A., & Wrensch, D. L. (1978). Interrupted matings and the effectiveness of second inseminations in the twospotted spider mite. Annals of the Entomological Society of America, 71, 882–885.Google Scholar
  117. Potter, D. A., Wrensch, D. L., & Johnston, D. E. (1976). Guarding, aggressive behavior, and mating succes in male twospotted spider mites. Annals of the Entomological Society of America, 60, 707–711.Google Scholar
  118. Proctor, H. C. (1991a). The evolution of copulation in water mites: a comparative test for nonreversing characters. Evolution, 45, 558–567.Google Scholar
  119. Proctor, H. C. (1991b). Courtship in the water mite Neumania papillator: Males capitalize on female adaptations for predation. Animal Behavior, 42, 589–598.Google Scholar
  120. Proctor, H. C. (1992). Mating and spermatophore morphology of water mites (Acari: Parasitengona). Zoological Journal of the Linnean Society, 106, 341–384.Google Scholar
  121. Proctor, H. C. (1996). Sex-ratios and chromosomes in water mites (Hydracarina). In R. Mitchell, D. J. Horn, G. R. Needham, & W. C. Welbourn (Eds.), Acarology IX: Volume 1, Proceedings (pp. 441–445). Columbus: Ohio Biological Survey.Google Scholar
  122. Proctor, H. C. (1997). Mating behaviour of Physolimnesia australis (Acari: Limnesiidae), a non-parasitic, rotifer-eating water mite from Australia. Journal of Arachnology, 25, 321–325.Google Scholar
  123. Proctor, H. C. (1998). Indirect sperm transfer in arthropods: Behavioral and evolutionary trends. Annual Review of Entomology, 43, 153–174.PubMedGoogle Scholar
  124. Proctor, H. C. (2003). Feather mites (Acari: Astigmata): Ecology, behavior and evolution. Annual Review of Entomology, 48, 185–209.PubMedGoogle Scholar
  125. Proctor, H. C., & Smith, B. P. (1994). Mating behaviour of the water mite Arrenurus manubriator (Acari: Arrenuridae). Journal of Zoology Lond., 232, 473–483.Google Scholar
  126. Proctor, H. C., & Wilkinson, K. (2001). Coercion and deceit: water mites (Acari: Hydracarina) and the study of intersexual conflict. In R. B. Halliday, D. E. Walter, H. C. Proctor, R. A. Norton, & M. J. Colloff (Eds.), Acarology: Proceedings of the 10th International Congress (pp. 155–169). Melbourne: CSIRO Publishing.Google Scholar
  127. Proctor, H. C., Baker, R. D., & Gwynne, D. T. (1995). Mating behaviour and spermatophore morphology: A comparative test of the female choice hypothesis. Canadian Journal of Zoology, 73, 2010–2020.Google Scholar
  128. Proctor, H. C., Williams G., Clayton, D. H. (2009). Population density and male polymorphism in the feather mite Falculifer rostratus (Acari: Falculiferidae). In M. W. Sabelis & J. Bruin (Eds.), Trends in acarology – Proceedings of the 12th International Congress (pp. 299–302). Springer.Google Scholar
  129. Radwan, J. (1991). Sperm competition in the mite Caloglyphus berlesei. Behavioural Ecology and Sociobiology, 29, 291–296.Google Scholar
  130. Radwan, J. (1995). Male morph determination in two species of acarid mites. Heredity, 74, 669–673.Google Scholar
  131. Radwan, J. (1996). Intraspecific variation in sperm competition success in the bulb mite: A role for sperm size. Proceedings of the Royal Society of London B, 263, 855–859.Google Scholar
  132. Radwan, J., & Siva-Jothy, M. T. (1996). The function of post-insemination mate association in the bulb mite, Rhizoglyphus robini. Animal Behavior, 52, 651–657.Google Scholar
  133. Radwan, J., & Witalinski, W. (1991). Sperm competition. Nature, 352, 671–672.PubMedGoogle Scholar
  134. Rantala, M. J., Jokinen, I., Kortet, R., Vainikka, A., & Suhonen, J. (2002). Do pheromones reveal male immunocompetence? Proceedings of the Royal Society of London B, 269, 1681–1685.Google Scholar
  135. Rath, W., Delfinato-Baker, M., & Drescher, W. (1991). Observations on the mating behavior, sex ratio, phoresy and dispersal of Tropilaelaps clarae (Acari: Laelapidae). International Journal of Acarology, 17, 201–207.Google Scholar
  136. Raven, P. H., Ebert, R. F., & Curtis, H. (1981). Biology of plants (3rd ed.). New York: Worth Publishers, Inc.Google Scholar
  137. Rechav, Y., Goldberg, M., & Fielden, L. J. (1997). Evidence for attachment pheromones in the Cayenne tick (Acari: Ixodidae). Journal of Medical Entomology, 34, 234–237.PubMedGoogle Scholar
  138. Resler, J. H., Frazier, J. L., Shepherd, J. G., & Modaffer, J. D. (2009). Migration and motility of spermatozoa in the female reproductive tract of the soft tick Ornithodoros moubata (Acari, Argasidae). Parasitology, 136, 511–521.PubMedGoogle Scholar
  139. Rice, W. R. (1996). Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature, 381, 232–234.PubMedGoogle Scholar
  140. Ros, V. I. D., Fleming, V. M., Feil, E. J., & Breeuwer, J. A. J. (2012). Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC Microbiology, 12(Suppl 1), S13.PubMedGoogle Scholar
  141. Rouse, G., & Fitzhugh, K. (1994). Broadcasting fables: Is external fertilization really primitive? Sex, size, and larvae in sabellid polychaetes. Zoologica Scripta, 23, 271–312.Google Scholar
  142. Ryan, M. J., & Keddy-Hector, A. (1992). Directional patterns of female mate choice and the role of sensory biases. American Naturalist, 139, S4–S35.Google Scholar
  143. Sabelis, M. W., & Nagelkerke, K. (1993). Sex allocation and pseudoarrhenotoky in phytoseiid mites. In D. L. Wrensch & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 512–541). New York: Chapman & Hall.Google Scholar
  144. Saito, Y. (1986a). Prey kills predator: Counter-attack success of a spider mite against its specific phytoseiid predator. Experimental and Applied Acarology, 2, 47–62.Google Scholar
  145. Saito, Y. (1986b). Biparental defence in a spider mite (Acari: Tetranychidae) infesting Sasa bamboo. Behavioural Ecology and Sociobiology, 18, 377–386.Google Scholar
  146. Saito, Y. (1990). ‘Harem’ and ‘non-harem’ type mating systems in two species of subsocial spider mites (Acari, Tetranychidae). Researches on Population Ecology, 32, 263–278.Google Scholar
  147. Schaller, F. (1971). Indirect sperm transfer by soil arthropods. Annual Review of Entomology, 16, 407–446.Google Scholar
  148. Schmidt, G. D., & Roberts, L. S. (1985). Foundations of parasitology (3rd ed.). St. Louis: Times Mirror/Mosby College Publishing.Google Scholar
  149. Schneider, J. M., & Elgar, M. A. (1998). Spiders hedge genetic bets. Trends in Ecology & Evolution, 13, 218–219.Google Scholar
  150. Schulten, G. G. M. (1985). Mating. In W. Helle & M. W. Sabelis (Eds.), Spider mites: Their biology, natural enemies and control (Vol. 1A, pp. 5–65). Amsterdam: Elsevier.Google Scholar
  151. Schuster, R. (1962). Nachweis enes Paarungszeremoniells be den Hornmilben (Oribatei, Acari). Naturwissenschaften, 49, 502.Google Scholar
  152. Schuster, I. J., & Schuster, R. (1970). Indirekte Spermaübertragung bei Tydeidae (Acari, Trombidiformes). Naturwissenschaften, 57, 256.PubMedGoogle Scholar
  153. Schuster, R., & Schuster, I. J. (1977). Ernährungs- und fortpflanzungs-biologische Studien an der Milbenfamilie Nanorchestidae (Acari, Trombidiformes). Zoologischer. Google Scholar
  154. Smallegange, I. M. (2011). Complex environmental effects on the expression of alternative reproductive phenotypes in the bulb mite. Evolutionary Ecology, 25, 857–873.Google Scholar
  155. Sober, E., & Wilson, D. S. (1998). Unto others, the evolution and psychology of unselfish behaviour. Cambridge: Harvard University Press.Google Scholar
  156. Sokolov, I. I. (1954). The chromosome complex of mites and its importance for systematics and phylogeny. Trud. Leningr. Obshch. Estesvois, Otd. Zool., 72, 124–159 [in Russian].Google Scholar
  157. Sonenshine, D. E. (1991). Biology of ticks (Vol. 1). New York: Oxford University Press.Google Scholar
  158. Stearns, S. C. (1987). Why sex evolved and the difference it makes. In S. C. Stearns (Ed.), The evolution of sex and its consequences (pp. 15–31). Basel: Birkahäuser Verlag.Google Scholar
  159. Summers, F. M., & Witt, R. L. (1973). Oviposition and mating tendencies of Cheyletus malaccensis (Acarina: Cheyletidae). Florida Entomologist, 56, 277–285.Google Scholar
  160. Tait, N. N., & Briscoe, D. A. (1990). Sexual head structures in the Onychophora: Unique modifications for sperm transfer. Journal of Natural History, 24, 1517–1527.Google Scholar
  161. Tatarnic, N. J., & Cassis, G. (2010). Sexual coevolution in the traumatically inseminating plant bug genus Coridromius. Journal of Evolutionary Biology, 23, 1321–1326.PubMedGoogle Scholar
  162. Thornhill, R. (1992). Female preference for the pheromone of males with low fluctuating asymmetry in the Japanese scorpionfly (Panorpa japonica: Mecoptera). Behavioral Ecology, 3, 277–283.Google Scholar
  163. Thornhill, R., & Alcock, J. (1983). The evolution of insect mating systems. Cambridge: Harvard University Press.Google Scholar
  164. Timms, S., Ferro, D. N., & Waller, J. B. (1980a). Suppression of production of pleomorphic males in Sancassania berlesei (Michael)(Acari: Acaridae). International Journal of Acarology, 6, 91–96.Google Scholar
  165. Timms, S., Ferro, D. N., & Emberson, R. M. (1980b). Selective advantage of pleomorphic male Sancassania berlesei (Michael) (Acari: Acaridae). International Journal of Acarology, 6, 97–102.Google Scholar
  166. Timms, S., Ferro, D. N., & Emberson, R. M. (1981). Andropolymorphism and its heritability in Sancassania berlesei (Michael) (Acari: Acaridae). Acarologia, 22, 391–398.Google Scholar
  167. Vistorin, H. E. (1978). Fortpflanzung und Entwicklung der Nicoletiellidae (Labidostomatidae); Acari, Trombidiformes. Zool. Jb. Syst., 105, 462–473.Google Scholar
  168. Walter, D. E., & Kaplan, D. T. (1990). A guild of thelytokous mites associated with citrus roots in Florida. Environmental Entomology, 19, 1338–1343.Google Scholar
  169. Walter, D. E., & Lindquist, E. E. (1995). The distributions of parthenogenetic ascid mites (Acari: Parasitiformes) do not support the biotic uncertainty hypothesis. Experimental and Applied Acarology, 19, 423–442.Google Scholar
  170. Walter, D. E., & Proctor, H. C. (1999). Mites: Ecology, Evolution and Behaviour (p. 322). Sydney/Wallingford: University of NSW Press/CABI. ISBN 0 86840 529 9.Google Scholar
  171. Walter, D. E., & Proctor, H. C. (2007). Using your genetic system to win friends and obfuscate theorists: patterns in the distribution of genetic sex determination in the Parasitiformes. In J. B. Morales-Malacara, V. Behan-Pelletier, E. Ueckermann, T. M. Pérez, E. G. Estrada-Venegas, & M. Badii (Eds.), Acarology XI: Proceedings of the International Congress (pp. 637–643). México: Instituto de Biololgía/Facultad de Ciencias/Universidad Nacional Autónoma de México/Sociedad Latinoamericana de Acarología.Google Scholar
  172. Walzl, M. G. (1991). Comparison of the sclerotized structures of Acaridae and Glycyphagidae used for copulation. In F. Dusbábek & V. Bukva (Eds.), Modern acarology (Vol. 2, pp. 283–296). The Hague: Academia, Prague and SPB Academic Publishing.Google Scholar
  173. Weeks, A. R., Marec, F., & Breeuwer, J. A. J. (2001). A mite species that consists entirely of haploid females. Science, 292, 2479–2482.PubMedGoogle Scholar
  174. Weygoldt, P. (1969). The biology of pseudoscorpions. Cambridge: Harvard University Press.Google Scholar
  175. Wilson, D. S., & Colwell, R. K. (1981). The evolution of sex ratio in structured demes. Evolution, 35, 882–897.Google Scholar
  176. Witalinski, W. (1990). Adanal suckers in acarid mites (Acari, Acaridida): Structure and function. International Journal of Acarology, 16, 205–212.Google Scholar
  177. Witalinski, W., Dabert, J., & Walzl, M. G. (1992). Morphological adaptation for precopulatory guarding in astigmatic mites (Acari: Acaridida). International Journal of Acarology, 18, 49–54.Google Scholar
  178. Witte, H. (1984). The evolution of the mechanisms of reproduction in the Parasitengonae (Acarina: Prostigmata). In D. A. Griffiths & C. E. Bowman (Eds.), Acarology 6 (Vol. 1, pp. 470–478). Chichester: Ellis Horwood.Google Scholar
  179. Witte, H. (1991). Indirect sperm transfer in prostigmatic mites from a phylogenetic viewpoint. In R. Schuster & P. W. Murphy (Eds.), The Acari: Reproduction, development and life-history strategies (pp. 137–176). London: Chapman & Hall.Google Scholar
  180. Woodring, J. P., & Cook, E. F. (1962). The biology of Ceratozetes cisalpinus Berlese, Scheloribates laevigatus Koch, and Oppia neerlandica Oudemans (Oribatei), with a description of all stages. Acarologia, 4, 101–137.Google Scholar
  181. Woyke, J. (1994). Mating behavior of the parasitic honeybee mite Tropilaelaps clareae. Experimental and Applied Acarology, 18, 723–733.Google Scholar
  182. Wrensch, D. L. (1993). Evolutionary flexibility through haploid males or how chance favors the prepared genome. In D. L. Wrensch & M. A. Ebbert (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 118–149). New York: Chapman & Hall.Google Scholar
  183. Wrensch, D. L., & Ebbert, M. A. (1993). Evolution and diversity of sex ratio in insects and mites. New York: Chapman & Hall.Google Scholar
  184. Wrensch, D. L., Kethley, J. B., & Norton, R. A. (1994). Cytogenetics of holokinetic chromosomes and inverted meiosis: Keys to the evolutionary success of mites, with generalizations on eukaryotes. In M. A. Houck (Ed.), Mites: Ecological and evolutionary analyses of life-history patterns (pp. 282–343). New York: Chapman and Hall.Google Scholar
  185. Yasui, Y. (1988). Sperm competition of Macrocheles muscaedomesticae (Scopoli) (Acarina: Mesostigmata: Macrochelidae), with special reference to precopulatory mate guarding behavior. Journal of Ethology, 6, 83–90.Google Scholar
  186. Yund, P. O., & McCartney, M. A. (1994). Male reproductive success in sessile invertebrates: Competition for fertilizations. Ecology, 75, 2151–2167.Google Scholar
  187. Yuval, B. (1994). The vertebrate host as mating encounter site for its ectoparasites: Ecological and evolutionary considerations. Bulletin of the Society of Vector Ecology, 19, 115–120.Google Scholar
  188. Yuval, B., & Spielman, A. (1990). Sperm precedence in the deer tick Ixodes dammini. Physiological Entomology, 15, 123–128.Google Scholar
  189. Zatz, C., Werneck, R. M., Macías-Ordóñez, R., & Machado, G. (2011). Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones). Behavioral Ecology and Sociobiology, 65, 995–1005.Google Scholar
  190. Zeh, J. A., & Zeh, D. W. (1994). Last-male sperm precedence breaks down when females mate with three males. Proceedings of the Royal Society of London B, 257, 287–292.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • David Evans Walter
    • 1
  • Heather C. Proctor
    • 2
  1. 1.Invertebrate ZoologyUniversity of the Sunshine Coast Royal Alberta MuseumEdmontonCanada
  2. 2.Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations