The Origin of Mites: Fossil History and Relationships

  • David Evans Walter
  • Heather C. Proctor


Mites are members of the arthropod subphylum Chelicerata, a group with a long fossil history of about 500 million years (Dunlop 2010) (Fig. 2.1). The earliest chelicerate fossils are known from the Cambrian and appear to be related to a group of anomalous arthropods with large, raptorial anterior appendages in place of antennae (Haug et al. 2012). Within the Chelicerata, the mites are placed among the terrestrial lineages known as the Arachnida. Thus, to understand the origin of mites, we must peer back through the mists of time and seek answers to these basic questions: What is an arthropod? Why are chelicerate arthropods different from other arthropods? What does it mean to be an arachnid? Which arachnids are the closest relatives of mites?


Horseshoe Crab Oribatid Mite Sister Group Relationship Segment VIII Genital Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alberti, G. (2000). Chelicerata. In B. G. M. Jamieson (Ed.), Progress in male gamete ultrastructure. In K. G. Adiyodi & R. G. Adiyodi (Eds.), Reproductive biology of the invertebrates, Vol. 9B (pp. 311–388). New Delhi/New York: Oxford & IBH Publishing/Wiley.Google Scholar
  2. Arillo, A., Subias, L. S., & Shtanchaeva, U. (2012). A new species of fossil oribatid mite (Acariformes, Oribatida, Trhypochthoniidae) from the lower Cretaceous amber of San Just (Teruel Province, Spain). Systematic & Applied Acarology, 17, 106–112.Google Scholar
  3. Bain, B. A. (2003). Larval types and a summary of postembryonic development within the pycnogonids. Invertebrate Reproduction and Development, 43, 193–222.CrossRefGoogle Scholar
  4. Barnett, A. A., & Thomas, R. H. (2012). The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evolution & Development, 14, 383–392. doi: 10.1111/j.1525-142X.2012.00556.x.CrossRefGoogle Scholar
  5. Bergström, J. (1979). Morphology of fossil arthropods as a guide to phylogenetic relationships. In A. P. Gupta (Ed.), Arthropod phylogeny (pp. 3–56). New York: Van Nostrand Reinhold Company.Google Scholar
  6. Bernini, F. (1991). Fossil Acarida. In A. Simonetta & S. C. Morris (Eds.), The early evolution of metazoa and the significance of problem taxa (pp. 253–262). Cambridge: Cambridge University Press.Google Scholar
  7. Bernini, F., Carnevale, G., Bagnoli, G., & Stouge, S. (2002). An early Ordovician mite (Acari: Oribatida) from the island of Öland, Sweden. In F. Bernini, R. Nannelli, G. Nuzzaci, & E. de Lillo (Eds.), Acarid phylogeny and evolution. Adaptations in mites and ticks (pp. 45–47). Dordrecht: Kluwer.CrossRefGoogle Scholar
  8. Briggs, D. E. G., & Fortey, R. A. (1989). The early radiation and relationships of the major arthropod groups. Science, 246, 241–243.PubMedCrossRefGoogle Scholar
  9. Briggs, D. E. G., Siveter, D. J., Sutton, M. D., Garwood, R. J., & Legg, D. (2012). Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proceeding of the National Academy of Sciences of the USA, 109, 15702–15705. doi: 10.1073/pnas.1205875109.CrossRefGoogle Scholar
  10. Condé, B. (1996). Les Palpigrades, 1885–1995: Acquisitions et lacunes. Revue Suisse de Zoologie Hors série, 1, 87–106.Google Scholar
  11. Dabert, M., Witalinski, W., Kazmierski, A., Olszanowski, Z., & Dabert, J. (2010). Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Molecular Phylogenetics and Evolution, 56, 222–241.PubMedCrossRefGoogle Scholar
  12. Donoghue, P. C. J., & Antcliffe, J. B. (2010). Origins of multicellularity. Nature, 466, 41–42.PubMedCrossRefGoogle Scholar
  13. Dunlop, J. A. (1996). Evidence for a sister group relationship between Ricinulei and Trigonotarbida. Bulletin of the British Arachnological Society, 10, 193–204.Google Scholar
  14. Dunlop, J. A. (1997). Palaeozoic arachnids and their significance for arachnid phylogeny. Proceedings 16th European Colloquim of Arachnology (pp. 65–82).Google Scholar
  15. Dunlop, J. A. (2006). Evidence for s sister group relationship between Ricinulei and Trigonotarbida. Bulletin of the British Arachnological Society, 10, 193–204.Google Scholar
  16. Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development, 39, 124–142.CrossRefGoogle Scholar
  17. Dunlop, J. A., & Alberti, G. (2007). The affinities of mites and ticks: A review. Journal of Zoological Systematics and Evolutionary Research, 46, 1–18.Google Scholar
  18. Dunlop, J. A., & Arango, C. P. (2005). Pycnogonid affinities: A review. Journal of Zoological Systematics and Evolutionary Research, 43(1), 8–21. doi: 10.1111/j.1439-0469.2004.00284.x.CrossRefGoogle Scholar
  19. Dunlop, J. A., & Selden, P. A. (1998). The early history and phylogeny of chelicerates. Systematics Association Special Volume Series, 55, 221–235.Google Scholar
  20. Dunlop, J. A., & Selden, P. A. (2009). Calibrating the chelicerate clock: A paleontological response to Jeyaprakash and Hoy. Experimental & Applied Acarology, 48, 183–197.CrossRefGoogle Scholar
  21. Dunlop, J. A., Anderson, L. I., & Braddy, S. J. (2004). A redescription of Chasmataspis laurencii Caster & Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny. Transactions of the Royal Society of Edinburgh-Earth Sciences, 94, 207–225.Google Scholar
  22. Dunlop, J. A., Penn, D., Tetlie, O. E., & Anderson, L. I. (2007). How many arachnid fossils are there? Journal of Arachnology, 36, 267–272.CrossRefGoogle Scholar
  23. Dunlop, J. A., Kontschán, J., & Zwanzig, M. (2013). Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber. Naturwissenschaften, 100, 337–344.PubMedCrossRefGoogle Scholar
  24. Evans, G. O. (1992). Principles of Acarology. Wallingford: CAB International.Google Scholar
  25. Feng, Z., Wang, J., & Liu, L.-J. (2010). First report of oribatid mite (arthropod) borings and coprolites in Permian woods from the Helan Mountains of northern China. Palaegeography, Palaeoclimatology, Palaeoecology, 288, 54–61.CrossRefGoogle Scholar
  26. Fisher, D. (1979). Evidence for subaerial activity of Euproops danae (Merostomata: Xiphsuridae). In M. H. Nitecki (Ed.), Mazon Creek fossils (pp. 379–447). New York: Academic Press.Google Scholar
  27. Friend, J. A., & Richardson, A. M. M. (1986). Biology of terrestrial amphipods. Annual Review of Entomology, 31, 25–48.CrossRefGoogle Scholar
  28. Fürstenberg, M. H. F. (1861). Die Krätzmilben der Menschen und Thiere. Leipzig: Wilhelm Engelmann.Google Scholar
  29. Garwood, R. J., & Dunlop, J. A. (2011). Morphology and systematics of Anthracomartidae (Arachnida:Trigonotarbida). Palaeontology, 54, 145–161.CrossRefGoogle Scholar
  30. Giribet, G., & Edgecomb, G. (2012). Reevaluating the arthropod tree of life. Annual Review of Entomology, 57, 167–186.PubMedCrossRefGoogle Scholar
  31. Gordon, M. S., & Olson, E. C. (1995). Invasions of the land – The transitions of organisms from aquatic to terrestrial life. New York: Columbia University Press.Google Scholar
  32. Gould, S. (1989). Wonderful life – The Burgess Shale and the nature of history. New York: Penguin Books.Google Scholar
  33. Grandjean, F. (1946). Au sujet de l'organe Claparède, des eupathides multiples et des taenidies mandibulaires chez les acariens actinochitineux. Archives des Science Physiques et Naturelles, Genève, 28, 63–87.Google Scholar
  34. Grandjean, F. (1954). Ètude sur les palaeacaroides (Acariens, Oribates). Mém Mus Nat Hist Nat Paris, Sér A Zoologie, 7, 179–274.Google Scholar
  35. Hanken, N. M., & Størmer, L. (1975). The trail of a large Silurian eurypterid. Fossils and Strata, 4, 255–270. Oslo.Google Scholar
  36. Haug, J. T., Waloszek, D., Maas, A., Liu, Y., & Haug, C. (2012). Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Paleontology, 55, 369–399.CrossRefGoogle Scholar
  37. Hjelle, J. T. (1990). Anatomy and morphology. In G. A. Polis (Ed.), The biology of scorpions (pp. 9–63). Stanford: Stanford University Press.Google Scholar
  38. Jeram, A. J., Selden, P. A., & Edwards, D. (1990). Land animals in the Silurian – arachnids and myriapods from Shropshire, England. Science, 250, 658–661. doi: 10.1126/science.250.4981.658.PubMedCrossRefGoogle Scholar
  39. Jones, D., & Morgan, G. (1994). A field guide to crustaceans of Australian waters. Sydney: Reed Books.Google Scholar
  40. Kaestner, A. (1968). Invertebrate zoology (Vol. II). New York: Wiley.Google Scholar
  41. Kamenz, C., Staude, A., & Dunlop, J. A. (2011). Sperm carriers in Silurian sea scorpions. Naturwissenschaften, 98, 889–896.PubMedCrossRefGoogle Scholar
  42. Kellogg, D. W., & Taylor, E. L. (2004). Evidence of oribatid mite detritivory in Antarctica during the late Paleozoic and Mesozoic. Journal of Paleontology, 78, 1146–1153.CrossRefGoogle Scholar
  43. Kenrick, P., Wellman, C. H., Schneider, H., & Edgecomb, G. D. (2012). A timeline for terrestrialization: Consequences for the carbon cycle in the Palaeozoic. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 367, 519–536. doi: 10.1098/rstb.2011.0271.CrossRefGoogle Scholar
  44. Kethley, J. B., Norton, R. A., Bonamo, P. M., & Shear, W. A. (1989). A terrestrial alicorhagiid mite (Acari: Acariformes) from the Devonian of New York. Micropaleontology, 35, 367–373.CrossRefGoogle Scholar
  45. Krantz, G. W., & Walter, D. E. (Eds.). (2009). A manual of Acarology (3rd ed.). Texas Tech University Press. 807 p, 338 b/w illustrations, 60 figures ISBN 978-0-89672-620-8.
  46. Kühl, G., Bergmann, A., Dunlop, J., Garwood, R. J., & Rust, J. (2012). Redescription and palaeobiology of Palaeoscorpius devonicus Lehmann, 1944 from the Lower Devonian Hunsrück Slate of Germany. Palaeontology, 55, 775–787.CrossRefGoogle Scholar
  47. Labandeira, C. C. (2005). Invasion of the continents: Cyanobacterial crusts to tree-inhabiting arthropods. Trends in Ecology & Evolution, 20, 253–261.CrossRefGoogle Scholar
  48. Labandeira, C. C., & Beall, B. S. (1990). Arthropod terrestriality. Short Courses in Paleontology, 3, 214–256.Google Scholar
  49. Labandeira, C. C., Phillips, T. L., & Norton, R. A. (1997). Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios, 12, 319–353.CrossRefGoogle Scholar
  50. Lamsdell, J. C., & Braddy, S. J. (2010). Cope’s Rule and Romer’s theory: Patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biology Letters, 6, 265–269. doi: 10.1098/rsbl.2009.0700.PubMedCrossRefGoogle Scholar
  51. Levi-Setti, R. (1975). Trilobites, a photographic atlas. Chicago: University of Chicago Press.Google Scholar
  52. Lindquist, E. E. (1984). Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In D. A. Griffiths & C. E. Bowman (Eds.), Acarology VI (Vol. 1, pp. 28–62). New York: Wiley.Google Scholar
  53. Manning, P. L., & Dunlop, J. A. (1995). The respiratory organs of eurypterids. Palaeontology, 38, 287–297.Google Scholar
  54. Mans, B. J., de Klerk, D., Pienaar, R., & Latif, A. A. (2011). Nuttalliella namaqua: A living fossil and closest relative to the ancestral tick lineage: Implications for the evolution of blood-feeding in ticks. PLoS One, 6(8), e23675. doi: 10.1371/journal.pone.0023675.PubMedCrossRefGoogle Scholar
  55. Maxmen, A., Browne, W. E., Martindale, M. Q., & Giribet, G. (2005). Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature, 437, 1144–1148.PubMedCrossRefGoogle Scholar
  56. McKeller, R. C., & Wolfe, A. P. (2010). Canadian amber. In D. Penney (Ed.), Biodiversity of fossils in amber from the major world deposits (pp. 96–113). Manchester: Siri Scientific. ISBN 978-0-9558636-4-6.Google Scholar
  57. McLaughlin, P. A. (1980). Comparative morphology of recent crustacea. San Francisco: W.H. Freeman and Company.Google Scholar
  58. Monniot, F. (1966). Un Palpigrade interstitiel: Leptokoeninia scurra n. sp. Revue Ecologie Biologie du Sol, 3, 41–64.Google Scholar
  59. Norton, R. A., Bonamo, P. M., Grierson, J. D., & Shear, W. A. (1988). Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. Journal of Paleontology, 62, 259–269.Google Scholar
  60. Paterson, J. R., García-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., & Edgecombe, G. D. (2011). Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480, 237–240.PubMedCrossRefGoogle Scholar
  61. Pepato, R., da Rocha, C. E. F., & Dunlop, J. (2010). Phylogenetic position of the acariform mites: Sensitivity to homology assessment under total evidence. BMC Evolutionary Biology, 10, 235. Scholar
  62. Plotnick, R. (1996). The scourge of the Silurian seas. American Paleontologist, 4, 2–3.Google Scholar
  63. Raff, R. A. (1996). The shape of life: Genes, development and the evolution of animal form. Chicago: University of Chicago Press.Google Scholar
  64. Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., Martin, J. W., & Cunningham, C. W. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463, 1079–1084.PubMedCrossRefGoogle Scholar
  65. Savory, T. (1977). Arachnida. New York: Academic Press.Google Scholar
  66. Schaefer, I., Norton, R. A., Scheu, S., & Maraun, M. (2010). Precambrian mites colonized land and formed parthenogenetic clusters. Molecular Phylogenetics and Evolution, 57, 113–121.PubMedCrossRefGoogle Scholar
  67. Schmidt, A. R., Jancke, S., Lindquist, E. E., Ragazzi, E., Roghi, G., Nascimbene, P. C., Schmidt, K., Wappler, T., & Grimaldi, D. A. (2012). Arthropods in amber from the Triassic Period. Proceeding of the National Academy of Sciences of the USA, 109, 14796–14801. doi: 10.1073/pnas.1208464109. Scholar
  68. Scholtz, G., & Edgecombe, G. D. (2006). The evolution of arthropod heads: Reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216, 395–415.PubMedCrossRefGoogle Scholar
  69. Selden, P. A. (1993). Arthropoda (Aglaspidida, Pycnogonida and Chelicerata). In M. J. Benton (Ed.), The fossil record 2 (pp. 297–320). New York: Chapman & Hall.Google Scholar
  70. Selden, P., & Read, H. (2008). The oldest land animals: Silurian millipedes from Scotland. Bulletin of the British Myriapod & Isopod Group, 23, 36–37.Google Scholar
  71. Shear, W. A., & Kukalová-Peck, J. (1990). The ecology of Paleozoic terrestrial arthropods: The fossil evidence. Canadian Journal of Zoology, 68, 1807–1834.CrossRefGoogle Scholar
  72. Shultz, J. W. (1993). Muscular Anatomy of the Giant Whipscorpion Mastigoproctus giganteus (Luca) (Arachnida: Uropygida) and its Evolutionary Significance. Zoological Journal of the Linnean Society, 108, 335–365.CrossRefGoogle Scholar
  73. Sissom, W. D. (1990). Systematics, biogeography, and paleontology. In G. A. Polis (Ed.), The biology of scorpions (pp. 64–160). Stanford: Stanford University Press.Google Scholar
  74. Snodgrass, R. E. (1952). A textbook of arthropod anatomy. Ithaca: Comstock.Google Scholar
  75. Stanley, S. M. (1973). An explanation for Cope's rule. Evolution, 27, 1–26.CrossRefGoogle Scholar
  76. Talarico, G., Lipke, E., & Alberti, G. (2011). Gross morphology, histology, and ultrastructure of the alimentary system of Ricinulei (Arachnida) with emphasis on functional and phylogenetic implications. Journal of Morphology, 272, 89–117.PubMedCrossRefGoogle Scholar
  77. Tollerton, V. P. (1989). Morphology, taxonomy, and classification of the order Eurypterida, Burmeister, 1843. Journal of Paleontology, 63, 642–657.Google Scholar
  78. van der Hammen, L. (1989). An introduction to comparative arachnology. The Hague: SPB Academic Publishing.Google Scholar
  79. Weygoldt, P. (1998). Evolution and systematics of the chelicerata. The Third Symposium of the European Association of Acarologists, Amsterdam. Experimental & Applied Acarology, 22, 63–79.CrossRefGoogle Scholar
  80. Weygoldt, P., & Paulus, H. F. (1979). Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. 2 Cladogramme und die Entfaltung der Chelicerata. Zeitschrift fur Zoologische Systematik und Evolutionforschung, 17, 177–200.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • David Evans Walter
    • 1
  • Heather C. Proctor
    • 2
  1. 1.Invertebrate ZoologyUniversity of the Sunshine Coast Royal Alberta MuseumEdmontonCanada
  2. 2.Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations