Metastatic Dissemination

  • Stefania Staibano


In spite of recent developments in diagnosis, staging and treatment, most patients with advanced prostate cancer will ultimately progress from androgen-sensitive to an irreversible castration-resistant disease. These androgen-independent cancers frequently give rise to widespread metastasis, dramatically reducing the median survival of patients (Tannock et al, N Engl J Med, 351(15):1502–1512, 2004) and accounting for more than 32, 000 deaths/year in USA (Jemal et al, CA Cancer J Clin, 60:277–300, 2010), which correspond to over 90 % of PC related mortality (Man, Gardner, Int J Biol Sci, 4(4):246–258, 2008).

It is a common belief that cancer metastasis result from a multi-stage nonrandom process characterized by intricate interactions between cancer cells and the host microenvironment, leading to the detachment of cancer cells from their tissue of origin, their dissemination through the bloodstream and to invasion of the target metastatic site (Patel et al, Future Oncol, 7(11):1285–1297, 2011).

Metastasis represents yet one of the most enigmatic aspects of prostate cancer pathogenesis, in which a cascade of proteolytic enzymes, inflammatory cytokines, growth factors, activated oncogenes, oxidative stress and hypoxia linked proteins and adhesion molecules, orchestrate a continuous loop that enable migrating cancer cells detached from the primary tumor bulk, to survive and proliferate in an adverse remote body microenvironment.

In this chapter, we discuss the nature and alterations of the signaling pathways involved in the development of prostate cancer metastasis, reporting the current status of knowledge on the changes occurring either in prostate cancer cells and in tumor-associated stromal tissue, with particular emphasis to the process of epithelial-mesenchymal transition (“phenotypic plasticity”) and to the role of cancer stem cells in prostate cancer progression and metastasis.

We will highlight, also, the emerging data concerning new therapeutic targets for treatment of metastatic prostate cancer that, while deserving further inquiry, look very promising to improve our chances to successful approach the advanced disease or, even, primarily reduce the risk of metastasis from castration-resistant prostate cancer (Vashisht, Bagler, PLoS One, 7(11):e49401, 2012).


Prostate Cancer Androgen Receptor Prostate Cancer Cell Stem Cell Marker Bone Marrow Niche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846CrossRefPubMedGoogle Scholar
  2. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988CrossRefPubMedGoogle Scholar
  3. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory microenvironment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9CrossRefPubMedGoogle Scholar
  4. Arai F, Yoshihara H, Hosokawa K, Nakamura Y, Gomei Y et al (2009) Niche regulation of hematopoietic stem cells in the endosteum. Ann N Y Acad Sci 1176:36–46CrossRefPubMedGoogle Scholar
  5. Augello MA, Burd CJ, Birbe R, McNair C, Ertel A, Magee MS, Frigo DE, Wilder-Romans K, Shilkrut M, Han S, Jernigan DL, Dean JL, Fatatis A, McDonnell DP, Visakorpi T, Feng FY, Knudsen KE (2013) Convergence of oncogenic and hormone receptor pathways promotes metastatic phenotypes. J Clin Invest 123(1):493–508CrossRefPubMedGoogle Scholar
  6. Bisson I, Prowse DM (2009) WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19:683–697CrossRefPubMedGoogle Scholar
  7. Brennan SC, Thiem U, Roth S, Aggarwal A, Fetahu IS, Tennakoon S, Gomes AR, Brandi ML, Bruggeman F, Mentaverri R, Riccardi D, Kallay E (2013) Calcium sensing receptor signalling in physiology and cancer. Biochim Biophys Acta 1833(7):1732–1744CrossRefPubMedGoogle Scholar
  8. Brett A, Pandey S, Fraizer G (2013) The Wilms’ tumor gene (WT1) regulates E-cadherin expression and migration of prostate cancer cells. Mol Cancer 12:3CrossRefPubMedGoogle Scholar
  9. Bussard KM, Gay CV, Mastro AM (2008) The bone microenvironment in metastasis; what is special about bone? Cancer Metastasis Rev 27:41–55CrossRefPubMedGoogle Scholar
  10. Castellón EA, Valenzuela R, Lillo J, Castillo V, Contreras HR, Gallegos I, Mercado A, Huidobro C (2012) Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biol Res 45(3):297–305CrossRefPubMedGoogle Scholar
  11. Chappard D, Bouvard B, Baslé MF, Legrand E, Audran M (2011) Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations. A review. Morphologie 95(309):65–75. Epub 2011 May 28CrossRefPubMedGoogle Scholar
  12. Cher ML, Towler DA, Rafii S et al (2006) Cancer interaction with the bone microenvironment: a workshop of the National Institutes of Health Tumor Microenvironment Study Section. Am J Pathol 168:1405–1412CrossRefPubMedGoogle Scholar
  13. Chu P, Clanton DJ, Snipas TS, Lee J, Mitchell E, Nguyen ML et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124:1312–1321CrossRefPubMedGoogle Scholar
  14. Chung LW, Baseman A, Assikis V, Zhau HE (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173:10–20CrossRefPubMedGoogle Scholar
  15. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951CrossRefPubMedGoogle Scholar
  16. Colombel M, Eaton CL, Hamdy F, Ricci E, van der Pluijm G, Cecchini M, Mege-Lechevallier F, Clezardin P, Thalmann G (2012) Increased expression of putative cancer stem cell markers in primary prostate cancer is associated with progression of bone metastases. Prostate 72(7):713–720CrossRefPubMedGoogle Scholar
  17. Cui F, Wang J, Chen D, Chen YJ (2011) CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer. Oncol Rep 25:701–708PubMedGoogle Scholar
  18. Czyż J, Szpak K, Madeja Z (2012) The role of connexins in prostate cancer promotion and progression. Nat Rev Urol 9(5):274–282CrossRefPubMedGoogle Scholar
  19. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163CrossRefPubMedGoogle Scholar
  20. Desiniotis A, Kyprianou N (2011) Significance of talin in cancer progression and metastasis. Int Rev Cell Mol Biol 289:117–147CrossRefPubMedGoogle Scholar
  21. Doan PL, Chute JP (2012) The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 26(1):54–62CrossRefPubMedGoogle Scholar
  22. Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200:249–258CrossRefPubMedGoogle Scholar
  23. Du WW, Yang W, Yee AJ (2013) Roles of versican in cancer biology – tumorigenesis, progression and metastasis. Histol Histopathol 28(6):701–713PubMedGoogle Scholar
  24. Eastham JA (2007) Bone health in men receiving androgen deprivation therapy for prostate cancer. J Urol 177(1):17–24CrossRefPubMedGoogle Scholar
  25. Eaton CL, Colombel M, van der Pluijm G, Cecchini M, Wetterwald A, Lippitt J et al (2010) Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate 70:875–882PubMedGoogle Scholar
  26. Efstathiou E, Logothetis CJ (2010) A new therapy paradigm for prostate cancer founded on clinical observations. Clin Cancer Res 16:1100–1107CrossRefPubMedGoogle Scholar
  27. Eriksson S, Killander J, Wadman B (1972) Leuco-erythroblastic anaemia in prostatic cancer. Report of two cases with complete haematological remission. Scand J Haematol 9(6):648–653PubMedGoogle Scholar
  28. Fan L, Wang H, Xia X, Rao Y, Ma X, Ma D, Wu P, Chen G (2012) Loss of E-cadherin promotes prostate cancer metastasis via upregulation of metastasis-associated gene 1 expression. Oncol Lett 4(6):1225–1233. Epub 2012 Sep 21PubMedGoogle Scholar
  29. Goldstein AS, Huang J, Guo C, Garraway IP, Witte ON (2010) Identification of a cell of origin for human prostate cancer. Science 329:568–571CrossRefPubMedGoogle Scholar
  30. Hu YY, Zheng MH, Zhang R, Liang YM, Han H (2012) Notch signaling pathway and cancer metastasis. Adv Exp Med Biol 727:186–198CrossRefPubMedGoogle Scholar
  31. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288. A comprehensive review of cell death pathways and survival mechanisms exploited by cancerCrossRefPubMedGoogle Scholar
  32. Jacobs SC (1983) Spread of prostatic cancer to bone. Urology 21(4):337–344CrossRefPubMedGoogle Scholar
  33. Jemal A, Siegel R, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300CrossRefPubMedGoogle Scholar
  34. Jiang B, Mason J, Jewett A, Liu ML, Chen W, Qian J, Ding Y, Ding S, Ni M, Zhang X, Man YG (2013) Tumor-infiltrating immune cells: triggers for tumor capsule disruption and tumor progression? Int J Med Sci 10(5):475–497CrossRefPubMedGoogle Scholar
  35. Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J (2013) Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 73(12):3725–3736CrossRefPubMedGoogle Scholar
  36. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252CrossRefPubMedGoogle Scholar
  37. Jung Y, Wang J, Song J, Shiozawa Y, Havens A et al (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110(1):82–90CrossRefPubMedGoogle Scholar
  38. Karlou M, Tzelepi V, Efstathiou E (2010) Therapeutic targeting of the prostate cancer microenvironment. Nat Rev Urol 7:494–509CrossRefPubMedGoogle Scholar
  39. Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK et al (2001) Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev 20(3–4):333–349CrossRefPubMedGoogle Scholar
  40. Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8(4):290–301CrossRefPubMedGoogle Scholar
  41. Lawson DA, Zong Y, Memarzadeh S, Xin L, Huang J, Witte ON (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 107:2610–2615CrossRefPubMedGoogle Scholar
  42. Lazari P, Poulias H, Gakiopoulou H, Thomopoulou GH, Barbatis C, Lazaris AC (2013) Differential immunohistochemical expression of CD44s, E-cadherin and β-catenin among hyperplastic and neoplastic lesions of the prostate gland. Urol Int 90(1):109–116. Epub 2012 Dec 5 Leukemia. 2011CrossRefPubMedGoogle Scholar
  43. Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z et al (2010) ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest 90:234–244CrossRefPubMedGoogle Scholar
  44. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215CrossRefPubMedGoogle Scholar
  45. Loberg RD, Logothetis CJ, Keller ET, Pienta KJ (2005) Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J Clin Oncol 23:8232–8241CrossRefPubMedGoogle Scholar
  46. Mai J, Waisman DM, Sloane BF (2000) Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim Biophys Acta 1477(1–2):215–230CrossRefPubMedGoogle Scholar
  47. Man YG, Gardner WA (2008) Bad seeds produce bad crops: a single stage-process of prostate tumor invasion. Int J Biol Sci 4(4):246–258CrossRefPubMedGoogle Scholar
  48. Miki J, Furusato B, Li H, Gu Y, Takahashi H, Egawa S et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67:3153–3161CrossRefPubMedGoogle Scholar
  49. Morgan TM, Lange PH, Porter MP, Lin DW, Ellis WJ et al (2009) Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res 15(2):677–683CrossRefPubMedGoogle Scholar
  50. Morrissey C, Vessella RL (2007) The role of tumor microenvironment in prostate cancer bone metastasis. J Cell Biochem 101:873–886CrossRefPubMedGoogle Scholar
  51. Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8(5):341–352CrossRefPubMedGoogle Scholar
  52. Norgaard M, Jensen AO, Jacobsen JB, Cetin K, Fryzek JP, Sorensen HT (2010) Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol 184(1):162–167CrossRefPubMedGoogle Scholar
  53. Osanto S, Van Poppel H (2012) Emerging novel therapies for advanced prostate cancer. Ther Adv Urol 4(1):3–12CrossRefPubMedGoogle Scholar
  54. Pal M, Koul S, Koul HK (2013) The transcription factor sterile alpha motif (SAM) pointed domain-containing ETS transcription factor (SPDEF) is required for E-cadherin expression in prostate cancer cells. J Biol Chem 288(17):12222–12231CrossRefPubMedGoogle Scholar
  55. Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS (2011) Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol 7(11):1285–1297CrossRefPubMedGoogle Scholar
  56. Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708CrossRefPubMedGoogle Scholar
  57. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, Tang DG (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805CrossRefPubMedGoogle Scholar
  58. Pfitzenmaier J, Ellis WJ, Hawley S, Arfman EW, Klein JR et al (2007) The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. Urol Oncol 25(3):214–220CrossRefPubMedGoogle Scholar
  59. Qu Y, Li WC, Hellem MR, Rostad K, Popa M, McCormack E, Oyan AM, Kalland KH, Ke XS (2013) MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. Int J Cancer 133(3):544–555CrossRefPubMedGoogle Scholar
  60. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nat Commun 2:162CrossRefPubMedGoogle Scholar
  61. Roca H, Varsos ZS, Mizutani K, Pienta KJ (2008) CCL2, survivin and autophagy: new links with implications in human cancer. Autophagy 4(7):969–971PubMedGoogle Scholar
  62. Rodenhiser DI (2009) Epigenetic contributions to cancer metastasis. Clin Exp Metastasis 26(1):5–18CrossRefPubMedGoogle Scholar
  63. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664CrossRefPubMedGoogle Scholar
  64. Ross JS, Kallakury BV, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P et al (2004) Expression of nuclear factor-kappa B and I kappa B alpha proteins in prostatic adenocarcinomas: correlation of nuclear factor-kappa B immunoreactivity with disease recurrence. Clin Cancer Res 10:2466–2472CrossRefPubMedGoogle Scholar
  65. Roudier MP, True LD, Higano CS et al (2003) Phenotypic heterogeneity of end-stage prostate carcinoma metastatic to bone. Hum Pathol 34:646–653CrossRefPubMedGoogle Scholar
  66. Roudier MP, Morrissey C, True LD, Higano CS, Vessella RL et al (2008) Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol 180(3):1154–1160CrossRefPubMedGoogle Scholar
  67. Shamdas GJ, Ahmann FR, Matzner MB, Ritchie JM (1993) Leukoerythroblastic anemia in metastatic prostate cancer. Clinical and prognostic significance in patients with hormone-refractory disease. Cancer 71(11):3594–3600CrossRefPubMedGoogle Scholar
  68. Shi MF, Jiao J, Lu WG, Ye F, Ma D, Dong QG et al (2010) Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line. Cell Mol Life Sci 67:3915–3925CrossRefPubMedGoogle Scholar
  69. Shiozawa Y, Havens AM, Jung Y, Ziegler AM, Pedersen EA et al (2008a) Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. J Cell Biochem 105(2):370–380CrossRefPubMedGoogle Scholar
  70. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS (2008b) The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 22(5):941–950CrossRefPubMedGoogle Scholar
  71. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A et al (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121(4):1298–1312CrossRefPubMedGoogle Scholar
  72. Sottnik JL, Daignault-Newton S, Zhang X, Morrissey C, Hussain MH, Keller ET, Hall CL (2013) Integrin alpha2beta 1 (α 2β 1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis 30(5):569–578CrossRefPubMedGoogle Scholar
  73. Spivak JL (1994) Cancer-related anemia: its causes and characteristics. Semin Oncol 21(2 Suppl 3):3–8PubMedGoogle Scholar
  74. Sturge J, Caley MP, Waxman J (2011) Bone metastasis in prostate cancer: emerging therapeutic strategies. Nat Rev Clin Oncol 8(6):357–368. doi: 10.1038/nrclinonc.2011.67. Epub 2011 May 10PubMedGoogle Scholar
  75. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM et al (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89(3):462–473CrossRefPubMedGoogle Scholar
  76. Sun YX, Schneider A, Jung Y, Wang J, Dai J et al (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20(2):318–329CrossRefPubMedGoogle Scholar
  77. Sun YX, Fang M, Wang J, Cooper CR, Pienta KJ et al (2007) Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67(1):61–73CrossRefPubMedGoogle Scholar
  78. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639CrossRefPubMedGoogle Scholar
  79. Tang DG, Patrawala L, Calhoun T, Bhatia B, Choy G, Schneider-Broussard R et al (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46:1–14CrossRefPubMedGoogle Scholar
  80. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, Oudard S, Théodore C, James ND, Turesson I, Rosenthal MA, Eisenbergee MA (2004) TAX 327 investigators. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351(15):1502–1512CrossRefPubMedGoogle Scholar
  81. Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5(16):1744–1750CrossRefPubMedGoogle Scholar
  82. Tsujimura A, Koikawa Y, Salm S, Takao T, Coetzee S, Moscatelli D et al (2002) Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. J Cell Biol 157:1257–1265CrossRefPubMedGoogle Scholar
  83. van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70:5163–5173CrossRefPubMedGoogle Scholar
  84. Vashisht S, Bagler G (2012) An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis. PLoS One 7(11):e49401CrossRefPubMedGoogle Scholar
  85. Wang J, Shiozawa Y, Wang Y, Jung Y, Pienta KJ et al (2008) The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem 283(7):4283–4894CrossRefPubMedGoogle Scholar
  86. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461:495–500CrossRefPubMedGoogle Scholar
  87. Wang H, Fan L, Wei J, Weng Y, Zhou L, Shi Y, Zhou W, Ma D, Wang C (2012) Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of E-cadherin and promoting the invasiveness of prostate cancer cells. PLoS One 7(12):e46888. Epub 2012 Dec 5CrossRefPubMedGoogle Scholar
  88. Wang X, Lee SO, Xia S, Jiang Q, Luo J, Li L, Yeh S, Chang C (2013) Endothelial cells enhance prostate cancer metastasis via IL-6->Androgen Receptor->TGF-β->MMP-9 signals. Mol Cancer Ther 12(6):1026–1037CrossRefPubMedGoogle Scholar
  89. Yates C (2011) Prostate tumor cell plasticity: a consequence of the microenvironment. Adv Exp Med Biol 720:81–90CrossRefPubMedGoogle Scholar
  90. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1–2):15–33CrossRefPubMedGoogle Scholar
  91. Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116(5):1195–1201CrossRefPubMedGoogle Scholar
  92. Yu C, Yao Z, Jiang Y, Keller ET (2012) Prostate cancer stem cell biology. Minerva Urol Nefrol 64(1):19–33PubMedGoogle Scholar
  93. Zetter BR (1990) The cellular basis of site-specific tumor metastasis. N Engl J Med 322(9):605–612CrossRefPubMedGoogle Scholar
  94. Zhang HL, Qin XJ, Cao DL, Zhu Y, Yao XD, Zhang SL, Dai B, Ye DW (2013) An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl 15(2):231–235. Epub 2013 Feb 4CrossRefPubMedGoogle Scholar
  95. Zhao J, Wu XY, Ling XH, Lin ZY, Fu X, Deng YH, He HC, Zhong W (2013) Analysis of genetic aberrations on chromosomal region 8q21-24 identifies E2F5 as an oncogene with copy number gain in prostate cancer. Med Oncol 30(1):465CrossRefPubMedGoogle Scholar
  96. Zheng D, Decker KF, Zhou T, Chen J, Qi Z, Jacobs K, Weilbaecher KN, Corey E, Long F, Jia L (2013) Role of WNT7B-induced non-canonical pathway in advanced prostate cancer. Mol Cancer Res 11(5):482–493CrossRefPubMedGoogle Scholar
  97. Zhu KC, Lu JJ, Xu XL, Sun JM (2013) MicroRNAs in androgen-dependent PCa. Front Biosci 18:748–755CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Advanced Biomedical Sciences, Pathology Section, Faculty of Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations