Expression Signature

  • Stefania Staibano
  • Angela Celetti


The prostate gland can be the site of multiple neoplastic transformation events, many of which give rise only to latent prostate cancer that does not progress to clinically detectable disease.

While evidence of major subtypes of prostate cancer is lacking at the histopathological level, recent genomic analyses have provided increasing evidence for molecularly defined subtypes (Tomlins et al., Neoplasia 10(2):177–188, 2008; Palanisamy et al., Nat Med 16(7):793–798, 2010; Taylor et al., Cancer Cell 18(1):11–22, 2010) but expression profiling analyses of tumor specimens have not strictly defined molecular signatures associated with distinct subtypes that specifically correlate with disease outcome (Singh et al., J Androl 23(5):652–660, 2002a; Singh et al., Cancer Cell 1: 203–209, 2002b; Lapointe et al., Proc Natl Acad Sci USA 101(3):811–886, 2004; Tomlins et al., Nat Genet 39(1):41–51, 2007a; Tomlins et al., Nature 448(7153), 595–599, 2007b). However, oncogenomic pathway analyses that integrate analyses of gene expression, copy number alterations, and exon resequencing may provide a unified approach for distinguishing prostate cancer subtypes and stratifying patient outcome (Taylor et al., Cancer Cell 18(1):11–22, 2010).

Integrating “omics” analyses with epigenetics will probably allow the identification of true different subtypes of prostate cancers characterized by divergent biological behavior and/or response to therapy.

This chapter aims to summarize the most exciting data emerging from recent genetic and translational studies on prostate cancer, potentially shedding new light on surprising aspects concerning its biology and extremely promising for the generation of more effective and safe new molecular therapies.


Prostate Cancer Androgen Receptor Fusion Transcript Fusion Product Androgen Receptor Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Afar DE, Vivanco I, Hubert RS, Kuo J, Chen E, Saffran DC, Raitano AB, Jakobovits A (2001) Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia. Cancer Res 61:1686–1692PubMedGoogle Scholar
  2. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van Allen E, Stransky N, Nickerson E, Chae SS, Boysen G, Auclair D, Onofrio RC, Park K, Kitabayashi N, MacDonald TY, Sheikh K, Vuong T, Guiducci C, Cibulskis K, Sivachenko A, Carter SL, Saksena G, Voet D, Hussain WM, Ramos AH, Winckler W, Redman MC, Ardlie K, Tewari AK, Mosquera JM, Rupp N, Wild PJ, Moch H, Morrissey C, Nelson PS, Kantoff PW, Gabriel SB, Golub TR, Meyerson M, Lander ES, Getz G, Rubin MA, Garraway LA (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44(6):685–689PubMedCrossRefGoogle Scholar
  3. Cai C, Hsieh CL, Omwancha J, Zheng Z, Chen SY, Baert JL, Shemshedini L (2007) ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Mol Endocrinol 21:1835–1846PubMedCrossRefGoogle Scholar
  4. Clark J, Merson S, Jhavar S, Flohr P, Edwards S, Foster CS, Eeles R, Martin FL, Phillips DH, Crundwell M, Christmas T, Thompson A, Fisher C, Kovacs G, Cooper C (2007) Diversity of TMPRSS2 – ERG fusion transcripts in the human prostate. Oncogene 26:2667–2673PubMedCrossRefGoogle Scholar
  5. Dong JT (2006) Prevalent mutations in prostate cancer. J Cell Biochem 7(3):433–447. ReviewCrossRefGoogle Scholar
  6. Gimba ER, Barcinski MA (2003) Molecular aspects of prostate cancer: implications for future directions. Int Braz J Urol 29(5):401–410; discussion 411PubMedCrossRefGoogle Scholar
  7. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158PubMedCrossRefGoogle Scholar
  8. Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR, Cao X, Singla N, Montie JE, Varambally S, Mehra R, Chinnaiyan AM (2008) Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer. Cancer Res 68:73–80PubMedCrossRefGoogle Scholar
  9. Hermans KG, van Marion R, van Dekken H, Jenster G, van Weerden WM, Trapman J (2006) TMPRSS2ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res 66:10658–10663PubMedCrossRefGoogle Scholar
  10. Hermans KG, Bressers AA, van der Korput HA, Dits NF, Jenster G, Trapman J (2008) Two unique novel prostate-specific and androgen-regulated fusion partners of ETV4 in prostate cancer. Cancer Res 68:3094–3098PubMedCrossRefGoogle Scholar
  11. Johnston PG, Lawler M (2012) Expert opinion: future frontiers and challenges in cancer medicine. Oncologist 17(5):e3–e5PubMedCrossRefGoogle Scholar
  12. Kumar A et al (2011) Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci USA 108:17087–17092PubMedCrossRefGoogle Scholar
  13. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8(7):497–511PubMedCrossRefGoogle Scholar
  14. Lapointe J et al (2004) Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 101(3):811–816PubMedCrossRefGoogle Scholar
  15. Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P et al (2007) Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 67:8504–8510PubMedCrossRefGoogle Scholar
  16. Liu W, Ewing CM, Chang BL, Li T, Sun J, Turner AR, Dimitrov L, Zhu Y, Sun J, Kim JW, Zheng SL, Isaacs WB, Xu J (2007) Multiple genomic alterations on 21q22 predict various TMPRSS2/ERG fusion transcripts in human prostate cancers. Genes Chromosomes Cancer 46(11):972–980PubMedCrossRefGoogle Scholar
  17. Magee JA, Araki T, Patil S, Shrig T, True L, Humphrey PA et al (2001) Expression profile reveals hepsin overexpression in prostate cancer. Cancer Res 61:5692–5696PubMedGoogle Scholar
  18. Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY et al (2007) Expression of the TMPRSS2:ERGfusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br J Cancer 97:1690–1695PubMedCrossRefGoogle Scholar
  19. Palanisamy N et al (2010) Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 16(7):793–798PubMedCrossRefGoogle Scholar
  20. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, Tchinda J, Tomlins SA, Hofer MD, Pienta KG, Kuefer R, Vessella R, Sun XW, Meyerson M, Lee C, Sellers WR, Chinnaiyan AM, Rubin MA (2006) TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 66:8337–8341PubMedCrossRefGoogle Scholar
  21. Petrovics G, Liu A, Shaheduzzaman S, Furasato B, Sun C, Chen Y, Nau M, Ravindranath L, Chen Y, Dobi A, Srikantan V, Sesterhenn IA, McLeod DG, Vahey M, Moul JW, Srivastava S (2005) Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24:3847–3852PubMedCrossRefGoogle Scholar
  22. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR (2010a) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196PubMedCrossRefGoogle Scholar
  23. Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordoñez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ (2010b) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190PubMedCrossRefGoogle Scholar
  24. Pourmand G, Ziaee AA, Abedi AR, Mehrsai A, Alavi HA, Ahmadi A, Saadati HR (2007) Role of PTEN gene in progression of prostate cancer. Urol J 4(2):95–100PubMedGoogle Scholar
  25. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, Fazli L, Jones EC, Palmer JB, Gleave ME, Cox ME, Huntsman DG (2007) Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol 60:1238–1243PubMedCrossRefGoogle Scholar
  26. Ribeiro FR, Henrique R, Hektoen M, Berg M, Jeronimo C, Teixeira MR et al (2006) Comparison of chromosomal and array-based comparative genomic hybridization for the detection of genomic imbalances in primary prostate carcinomas. Mol Cancer 5:33PubMedCrossRefGoogle Scholar
  27. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al (2002a) Gene expression correlates of clinical prostate behavior. Cancer Cell 1:203–209PubMedCrossRefGoogle Scholar
  28. Singh J et al (2002b) Prostate epithelial expression of a novel androgen target gene. J Androl 23(5):652–660PubMedGoogle Scholar
  29. Soller MJ, Isaksson M, Elfving P, Soller W, Lundgren R, Panagopoulos I (2006) Confirmation of the high frequency of the TMPRSS2/ERG fusion gene in prostate cancer. Genes Chromosomes Cancer 45:717–719PubMedCrossRefGoogle Scholar
  30. Sun J, Liu W, Adams TS, Sun J, Li X, Turner AR et al (2007) DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies. Prostate 67:692–700PubMedCrossRefGoogle Scholar
  31. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11–22PubMedCrossRefGoogle Scholar
  32. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648PubMedCrossRefGoogle Scholar
  33. Tomlins SA, Mehra R, Rhodes DR, Smith LR, Roulston D, Helgeson BE, Cao X, Wei JT, Rubin MA, Shah RB, Chinnaiyan AM (2006) TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Res 66:3396–3400PubMedCrossRefGoogle Scholar
  34. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS, Menon A, Jing X, Cao Q, Han B, Yu J, Wang L, Montie JE, Rubin MA, Pienta KJ, Roulston D, Shah RB, Varambally S, Mehra R, Chinnaiyan AM (2007a) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448(7153):595–599PubMedCrossRefGoogle Scholar
  35. Tomlins SA et al (2007b) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39(1):41–51PubMedCrossRefGoogle Scholar
  36. Tomlins SA et al (2008) Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10(2):177–188PubMedCrossRefGoogle Scholar
  37. Tu JJ, Rohan S, Kao J, Kitabayashi N, Mathew S, Chen YT (2007) Gene fusions between TMPRSS2 and ETS family genes in prostate cancer: frequency and transcript variant analysis by RT–PCR and FISH on paraffin-embedded tissues. Mod Pathol 20:921–928PubMedCrossRefGoogle Scholar
  38. Wang J, Cai Y, Ren C, Ittmann M (2006) Expression of variant TMPRSS2/ ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res 66:8347–8351PubMedCrossRefGoogle Scholar
  39. Yoshimoto M, Joshua AM, Chilton-Macneill S, Bayani J, Selvarajah S, Evans AJ, Zielenska M, Squire JA (2006) Three-color FISH analysis of TMPRSS2/ERG fusions in prostate cancer indicates that genomic microdeletion of chromosome 21 is associated with rearrangement. Neoplasia 8:465–469PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Advanced Biomedical Sciences, Pathology Section, Faculty of Medicine and SurgeryUniversity of Naples “Federico II”NaplesItaly
  2. 2.Department of Cellular and Molecular Biology and PathologyCNR, Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’ EOS-CNRNaplesItaly

Personalised recommendations