Skip to main content

Evolution of Reproductive Patterns in Cheilostomata

  • Chapter
  • First Online:
Evolution of Sexual Reproduction in Marine Invertebrates

Abstract

This chapter contains an analysis of the main directions in the evolution of sexual reproduction in bryozoans – changes in modes of oogenesis and fertilization, the transition from planktotrophy to a non-feeding larva and its consequences, the origin of embryo incubation, and the repeated evolution of matrotrophy and placental analogues. The trends that emerge from this analysis are compared with reproductive analogues in the evolution of the bryozoan order Ctenostomata as well as other marine invertebrate groups (predominantly echinoderms, molluscs and polychaetes). The conditions under which the cheilostomes radiated in the Late Cretaceous are considered in detail, and the consequences of the transitions to new reproductive patterns are analyzed. It is suggested that a shift in oogenesis (reduction in egg number and increase in their size) and parental care can apparently evolve in Cheilostomata sequentially, with a short time lag: oogenesis becomes modified first, with the decrease in the number of offspring compensated soon after by the origin of brooding. Finally, the stages in the evolution of sexual reproduction in other bryozoan groups (classes Phylactolaemata and Stenolaemata) are reconstructed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adiyodi KG, Adiyodi RG (eds) (1989) Reproductive biology of invertebrates, vol 4, Part A: fertilization, development, and parental care. IBH Publishing Co Pvt Ltd, New Delhi/Bombay/Calcutta/Oxford

    Google Scholar 

  • Adiyodi KG, Adiyodi RG (eds) (1990) Reproductive biology of invertebrates, vol 4, Part B: fertilization, development, and parental care. IBH Publishing Co Pvt Ltd, New Delhi/Bombay/Calcutta/Oxford

    Google Scholar 

  • Adiyodi RG, Subramoniam T (1983) Arthropoda – Crustacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 1, Oogenesis, oviposition, and oosorption. John Wiley and Sons, Chichester, pp 443–495

    Google Scholar 

  • Alatalo P, Berg J, Carl J, D’Asaro CN (1984) Reproduction and development in the lucinid clam Codakia orbicularis (Linne, 1758). Bull Mar Sci 34(3):424–434

    Google Scholar 

  • Allen JD, Pernet B (2007) Intermediate modes of larval development: bridging the gap between planktotrophy and lecithotrophy. Evol Dev 9(6):643–653

    PubMed  Google Scholar 

  • Allman G (1856) A monograph of the fresh-water Polyzoa, including all the known species, both British and foreign. Ray Society, London

    Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, New York

    Google Scholar 

  • Arias A, Reznick D (2000) Life history of Phalloceros caudimaculatus: a novel variation on the theme of lifebearing in the family Poeciliidae. Copeia 2000(3):792–798

    Google Scholar 

  • Atkins D (1955) The cyphonautes larvae of the Plymouth area and the metamorphosis of Membranipora membranacea (L.). J Mar Biol Assoc UK 34:441–449

    Google Scholar 

  • Balon EK (1991) Probable evolution of the coelacanth’s reproductive style: lecithotrophy and orally feeding embryos in cichlid fishes and in Latimeria chalumnae. Environ Biol Fish 32:249–265

    Google Scholar 

  • Bancroft AJ (1986) Ovicells in Palaeozoic bryozoan order Fenestrata. Palaeontology 29(1):155–164

    Google Scholar 

  • Banta WC (1967) A new species of Victorella from Southern California (Bryozoa, Ctenostomata). Proc US Natl Mus 122(3593):1–18

    Google Scholar 

  • Banta WC (1968) Mimosella cookae, new species (Bryozoa, Ctenostomata) with a review of the family Mimosellidae. Bull South Calif Acad Sci 67:245–254

    Google Scholar 

  • Barrera E, Savin SM (1999) Evolution of the Late Campanian-Maastrichtian marine climates and oceans. In: Barrera E, Johnston CC (eds) Evolution of the Cretaceous ocean-climate system. Geological Society of America, Boulder, pp 245–282

    Google Scholar 

  • Barrois J (1877) Recherches sur l’embryologie des bryozoaires. Trav St Zool Wimereux 1:1–305

    Google Scholar 

  • Batygina TB, Bragina EA, Ereskovsky AV, Ostrovsky AN (2006) Viviparity in plants and animals: invertebrates and lower chordates. Unipress, St Petersburg State University, St Petersburg [in Russian with English summary]

    Google Scholar 

  • Bermingham J, Wilkinson TL (2009) Embryo nutrition in parthenogenetic viviparous aphids. Physiol Entomol 34:103–109

    CAS  Google Scholar 

  • Bishop JDD, Pemberton AJ (2006) The third way: spermcast mating in sessile marine invertebrates. Integr Comp Biol 46:398–406

    CAS  PubMed  Google Scholar 

  • Bishop JDD, Manríquez PH, Hughes RN (2000) Water-borne sperm trigger vitellogenic egg growth in two sessile marine invertebrates. Proc R Soc B 267:1165–1169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackburn DG (1992) Convergent evolution of viviparity, matrotrophy, and specializations for fetal nutrition in reptiles and other vertebrates. Am Zool 32(2):313–321

    Google Scholar 

  • Blackburn DG (1993) Chorioallantoic placentation in squamate reptiles – structure, function, development and evolution. J Exp Zool 266:414–430

    Google Scholar 

  • Blackburn DG (1994) Standardized criteria for the recognition of embryonic nutritional patterns in squamate reptiles. Copeia 4:925–935

    Google Scholar 

  • Blackburn DG (1999a) Viviparity and oviparity: evolution and reproductive strategies. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction. Academic Press, New York, pp 994–1003

    Google Scholar 

  • Blackburn DG (1999b) Placenta and placental analogs in reptiles and amphibians. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction. Academic Press, New York, pp 840–847

    Google Scholar 

  • Blackburn DG (1999c) Are viviparity and egg-guarding evolutionarily labile in squamates? Herpetologica 55:556–572

    Google Scholar 

  • Blackburn DG (2005a) Amniote perspectives on the evolution of viviparity and placentation. In: Grier H, Uribe MC (eds) Viviparity in fishes. New Life Publications, Homestead, pp 319–340

    Google Scholar 

  • Blackburn DG (2005b) Evolutionary origins of viviparity in fishes. In: Grier H, Uribe MC (eds) Viviparity in fishes. New Life Publications, Homestead, pp 303–317

    Google Scholar 

  • Blackburn DG (2006) Squamate reptiles as model organisms for the evolution of viviparity. Herpetol Monogr 20:131–146

    Google Scholar 

  • Blackburn DG, Evans HE, Vitt LJ (1985) The evolution of fetal nutritional adaptations. Fortschr Zool 30:437–439

    Google Scholar 

  • Boardman RS, Cheetham AH (1973) Degrees of colony dominance in stenolaemate and gymnolaemate Bryozoa. In: Boardman RS, Cheetham AH, Oliver WA Jr (eds) Animal colonies: development and function through time. Dowden, Hutchinson and Ross, Stroudsburg, pp 121–220

    Google Scholar 

  • Boardman RS, Cheetham AH, Blake DB, Utgaard J, Karklins OL, Cook PL, Sandberg PA, Lutaud G, Wood TS (1983) Bryozoa (Part G, revised). In: Robinson RA (ed) Treatise on invertebrate paleontology, vol 1. Geological Society of America/University of Kansas, Lawrence/Boulder, pp 1–625

    Google Scholar 

  • Bobin G, Prenant M (1954) Sur un Bryozoaire perforant, Terebripora comma (Soule), trouvé en Mediterranée. Arch Zool Exp Gen 91:130–144

    Google Scholar 

  • Bonnevie K (1907) Untersuchungen über Keimzellen. II. Physiologische Polyspermie bei Bryozoen. Jen Z Naturwis 42, NF 35:567–598

    Google Scholar 

  • Borg F (1926) Studies on recent cyclostomatous Bryozoa. Zool Bid Uppsala 10:181–507

    Google Scholar 

  • Borg F (1947) Zur Kenntnis der Ökologie und des Lebenszyklus von Electra crustulenta. Zool Bid Uppsala 25:344–377

    Google Scholar 

  • Bosch I (1989) Contrasting modes of reproduction in two Antarctic asteroids of the genus Porania, with a description of unusual feeding and non-feeding larval types. Biol Bull 177:77–82

    Google Scholar 

  • Bown PR (ed) (1998) Calcareous nannofossil biostratugraphy. Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  • Braem F (1896) Die geschlechtlische Entwicklung von Paludicella ehrenbergii. Zool Anz 19(493):54–57

    Google Scholar 

  • Braem F (1940) Victorella sibogae Harmer. Z Morphol Okol Tiere 36:267–278

    Google Scholar 

  • Braem F (1951) Über Victorella und einige ihrer nächsten Vermandten, sowie über die Bryozoenfauna des Rysk bei Greifswald. Zoologica 102(37):1–59

    Google Scholar 

  • Braiko VB (1967) Biology of reproduction of Membranipora zostericola Nordm. (Bryozoa). Zool Zhurn 46:1119–1121 [in Russian]

    Google Scholar 

  • Brawand D, Wahli W, Kaessmann H (2008) Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol 6:507–517

    CAS  Google Scholar 

  • Brien P (1953) Etude sur les Phylactolemates. Ann Soc R Zool Belg 84:301–440

    Google Scholar 

  • Brown DA (1952) The Tertiary cheilostomatous Polyzoa of New Zealand. Trustees of British Museum (Natural History), London

    Google Scholar 

  • Buttler CJ (1991) Possible brooding structures in rhinoporid cystoporate bryozoans. In: Bigey FP (ed) Bryozoaires actuels et fossiels: Bryozoa living and fossil. Bull Soc Sci Nat Ouest France, Mem HS 1:61–70

    Google Scholar 

  • Byrne M (1991a) Reproduction, development and population biology of the Caribbean ophiuroid Ophionereis olivacea, a protandric hermaphrodite that broods its young. Mar Biol 111:387–399

    Google Scholar 

  • Byrne M (1991b) Developmental diversity in the starfish genus Patiriella (Asteroidea: Asterinidae). In: Yanagisawa T, Yasumasu I, Oguro C, Suzuki N, Motokawa T (eds) Biology of Echinodermata. AA Balkema Publishers, Rotterdam, pp 499–508

    Google Scholar 

  • Byrne M (1995) Changes in larval morphology in the evolution of benthic development by Patriella exigua (Asteroidea: Asterinidae), a comparison with the larvae of Patriella species with planctonic development. Biol Bull 188:293–305

    Google Scholar 

  • Byrne M (2006) Life history diversity and evolution in the Asterinidae. Integr Comp Biol 46(3):243–254

    CAS  PubMed  Google Scholar 

  • Byrne M, Barker MF (1991) Embryogenesis and larval development of the asteroid Patriella regularis viewed by the light and scanning electron microscopy. Biol Bull 180:332–345

    Google Scholar 

  • Byrne M, Cerra A (1996) Evolution of intragonadal development in the diminutive asterinid sea stars Patiriella vivipara and P. parvivipara with an overview of development in the Asterinidae. Biol Bull 191:17–26

    Google Scholar 

  • Byrne M, Cerra A (2000) Lipid dynamics in the embryos of Patiriella species with divergent modes of development. Dev Growth Differ 42:79–86

    CAS  PubMed  Google Scholar 

  • Byrne M, Cerra A, Villinski JT (1999) Oogenic strategies in the evolution of development in Patiriella (Echinodermata: Asteroidea). Invert Reprod Dev 36(1–3):195–202

    Google Scholar 

  • Byrne M, Selvakamaraswamy P, Cisternas P, Villinski JT, Raff RA (2003) Evolution of maternal provisioning in ophiuroids, asteroids and echinoids. In: Féral JP, David B (eds) Echinoderm research 2001. Swets and Zeitlinger, Lisse/Rotterdam, pp 171–175

    Google Scholar 

  • Byrne M, Cisternas P, O'Hara T (2008) Brooding of pelagic-type larvae in Ophiopeza spinosa: reproduction and development in a tropical ophiodermatid brittlestar. Invert Biol 127:98–107

    Google Scholar 

  • Cable J, Tinsley RC (1991) Intra-uterine larval development of the polystomatid monogeneans, Pseudodiplorchis americanus and Neodiplorchis scaphiopodis. Parasitology 103:253–266

    PubMed  Google Scholar 

  • Cadman PS, Ryland JS (1996) The characters, reproduction, and growth of Alcyonidium mytili Dalyell, 1848 (Ctenostomatida). In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. National Institute of Water and Atmospheric Research, Wellington, pp 237–242

    Google Scholar 

  • Calvet L (1900) Contribution à l’histoire naturelle des Bryozoaires Ectoproctes marins. Trav Inst Zool Univ Montpellier NS 8:1–488

    Google Scholar 

  • Cancino JM, Hughes RN (1988) The zooidal polymorphism and astogeny of Celleporella hyalina (Bryozoa: Cheilostomata). J Zool 215:167–181

    Google Scholar 

  • Cancino JM, Castañeda B, Orellana C (1991) Reproductive strategies in bryozoans: experimental test of the effects of conspecific neighbours. In: Bigey FP (ed) Bryozoaires actuels et fossiels: Bryozoa living and fossil. Bull Soc Sci Nat Ouest France, Mem HS 1:81–88

    Google Scholar 

  • Chaney HW, Soule DF, Soule JD (1989) Systematics and zoogeography of Thalamoporella gothica and its allied species (Bryozoa, Cheilostomata). Bull Mar Sci 45(2):338–355

    Google Scholar 

  • Cheetham AH, Cook PL (1983) General features of the class Gymnolaemata. In: Robinson RA (ed) Treatise on invertebrate paleontology, vol 1. Geological Society of America/University of Kansas, Lawrence/Boulder, pp 138–207

    Google Scholar 

  • Cheetham AH, Sanner J, Taylor PD, Ostrovsky АN (2006) Morphological differentiation of avicularia and the proliferation of species in mid-Cretaceous Wilbertopora Cheetham, 1954 (Bryozoa: Cheilostomata). J Paleontol 80(1):49–71

    Google Scholar 

  • Chia FS (1974) Classification and adaptive significance of developmental patterns in marine invertebrates. Thalassia Jugoslav 10(½):121–130

    Google Scholar 

  • Chrétien M (1958) Histologie et dévelopment de l’ovaire chez Alcyonidium gelatinosum (L.) (Bryozoaire cténostome). Bull Lab Marit Dinard 43:25–51

    Google Scholar 

  • Christiansen FB, Fenchel TM (1979) Evolution of marine invertebrate reproductive patterns. Theor Popul Biol 16:267–282

    CAS  PubMed  Google Scholar 

  • Clark KB, Goetzfried A (1978) Zoogeographic influences on development patterns of N. Atlantic Ascoglossa and Nudibranchia, with a discussion of factors affecting egg size and number. J Mollusc Stud 44:283–294

    Google Scholar 

  • Clark KB, Busacca M, Stirts H (1979) Nutritional aspects of development of the ascoglossan, Elysia cauze. In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, Columbia, pp 11–24

    Google Scholar 

  • Clarke A (1982) Temperature and embryonic development in polar marine invertebrates. Int J Invert Reprod 5:71–82

    Google Scholar 

  • Clarke A (1992) Reproduction in the cold: Thorson revisited. Invert Reprod Dev 22(1–3):175–184

    Google Scholar 

  • Collin R (2004) Phylogenetic effects, the loss of complex characters, and the evolution of development in calyptraeid gastropods. Evolution 58(7):1488–1502

    PubMed  Google Scholar 

  • Collin R, Chaparro OR, Winkler F, Véliz D (2007) Molecular phylogenetic and embryological evidence that feeding larvae have been reacquired in a marine gastropod. Biol Bull 212(2):83–92

    CAS  PubMed  Google Scholar 

  • Cook PL (1960) The development of Electra crustulenta (Pallas) (Polyzoa, Ectoprocta). Essex Nat 30(4):258–266

    Google Scholar 

  • Cook PL (1962) The early larval development of Membranipora seurati (Canu) and Electra crustulenta (Pallas), Polyzoa. Cah Biol Mar 3(1):57–60

    Google Scholar 

  • Cook PL (1964) The development of Electra monostachys (Busk) and Conopeum reticulum (Linnaeus), Polyzoa, Anasca. Cah Biol Mar 5:391–397

    Google Scholar 

  • Cook PL (1977a) Colony-wide water currents in living Bryozoa. Cah Biol Mar 18:31–47

    Google Scholar 

  • Cook PL (1977b) Early colony development in Aetea (Bryozoa). Am Zool 17:55–61

    Google Scholar 

  • Cook PL (1980) Further observations on water current patterns in living Bryozoa. Cah Biol Mar 21:393–402

    Google Scholar 

  • Cook PL (1985) Bryozoa from Ghana. Zool Wet Mus R Afr Centr Tervuren Belg 238:1–315

    Google Scholar 

  • Cook PL, Hayward PJ (1966) The development of Conopeum seurati (Canu), and some other species of membraniporine Polyzoa. Cah Biol Mar 7:437–443

    Google Scholar 

  • Cori CJ (1941) Bryozoa. Ordnung der Tentaculata. Handb Zool III 2(5):263–374, 375–502

    Google Scholar 

  • Corrêa DD (1948) A embryologia de Bugula flabellata (J. V. Thompson) Bryozoa Ectoprocta. Bol Fac Fil Ci Letr Univ Sao Paulo Zool 13:7–71

    Google Scholar 

  • Cox LR, Nuttall CP, Trueman ER (1969) Mollusca 6, Bivalvia. In: Moore RC (ed) Treatise on invertebrate paleontology. Part N, vol 1–3. Geological Society of America, New York, pp i–xxxviii, 1–1224

    Google Scholar 

  • Domenici L, Gremigni V (1977) Fine structure and functional role of the coverings of the eggs in Mesostoma ehrenbergii (Focke) (Turbellaria, Neorhabdocoela). Zoomorphology 88:247–257

    Google Scholar 

  • Drozdov AL, Ivankov VN (2000) Morphology of animal gametes. Krugliy God, Moscow [in Russian]

    Google Scholar 

  • Dudley JE (1973) Observations on the reproduction, early larval development, and colony astogeny of Conopeum tenuissimum (Canu). Chesap Sci 14(4):270–278

    Google Scholar 

  • Dulvy NK, Reynolds JD (1997) Evolutionary transitions among egg-laying, live-bearing and maternal inputs in sharks and rays. Proc R Soc B 264:1309–1315

    PubMed Central  Google Scholar 

  • Dyrynda PEJ (1981) A preliminary study of patterns of polypide generation-degeneration in marine cheilostome Bryozoa. In: Larwood GP, Nielsen C (eds) Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg, pp 73–81

    Google Scholar 

  • Dyrynda PEJ, King PE (1982) Sexual reproduction in Epistomia bursaria (Bryozoa: Cheilostomata), an endozooidal brooder without polypide recycling. J Zool 198:337–352

    Google Scholar 

  • Dyrynda PEJ, King PE (1983) Gametogenesis in placental and non-placental ovicellate cheilostome Bryozoa. J Zool 200:471–492

    Google Scholar 

  • Dyrynda PEJ, Ryland JS (1982) Reproductive strategies and life histories in the cheilostome marine bryozoans Chartella papyracea and Bugula flabellata. Mar Biol 71:241–256

    Google Scholar 

  • Eckelbarger KJ (1994) Diversity of metazoan ovaries and vitellogenic mechanisms: implications for life history theory. Proc Biol Soc Wash 107(1):193–218

    Google Scholar 

  • Eggleston D (1963) The marine Polyzoa of the Isle of Man. PhD dissertation, University of Liverpool

    Google Scholar 

  • Eggleston D (1972) Patterns of reproduction in the marine Ectoprocta of the Isle of Man. J Nat Hist 6:31–38

    Google Scholar 

  • Ehlers E (1876) Hypophorella expansa. Ein beitrag zur Kenntniss der minirenden Bryozoen. Abh Phys Clas Koniglichen Ges Wiss Göttingen 21:3–157

    Google Scholar 

  • Elkin C, Marshall DJ (2007) Desperate larvae: influence of deferred costs and habitat requirements on habitat selection. Mar Ecol Prog Ser 335:143–153

    Google Scholar 

  • Ellingson R, Krug P (2006) Evolution of poecilogony from planktotrophy: cryptic speciation, phylogeography, and larval development in the gastropod genus Alderia. Evolution 60(11):2293–2310

    CAS  PubMed  Google Scholar 

  • Emig CC (1982) Biology of Phoronida. In: Russell FS, Yonge CM (eds) Advances in marine biology, vol 14. Academic Press, London, pp 1–89

    Google Scholar 

  • Emig CC (1983) Phoronida. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 1, Oogenesis, oviposition, and oosorption. John Wiley and Sons, Chichester, pp 535–542

    Google Scholar 

  • Emlen JM (1973) The ecology: an evolutionary approach. Addison-Wesley, Reading

    Google Scholar 

  • Emlet RB (1986) Facultative planktotrophy in the tropical echinoid Clypeaster rosaceus (Linnaeus) and a comparison with obligate planktotrophy in Clypeaster subdepressus (Gray) (Clypeasteroida: Echinoidea). J Exp Mar Biol Ecol 95:183–202

    Google Scholar 

  • Emlet RB (1990) World patterns of developmental mode in echinoid echinoderms. In: Hoshi M, Yamashita O (eds) Advances in invertebrate reproduction 5. Elsevier Science Publishers, Amsterdam/New York/Oxford, pp 329–335

    Google Scholar 

  • Emlet RB, Hoegh-Guldberg O (1997) The effects of egg size on post-larval performance: experimental evidence from a sea urchin. Evolution 51:141–152

    Google Scholar 

  • Emlet RB, McEdward LR, Strathmann RR (1987) Echinoderm larval ecology viewed from the egg. In: Jangoux M, Lawrence JM (eds) Echinoderm studies. AA Balkema Publishers, Rotterdam, pp 55–136

    Google Scholar 

  • Ereskovsky AV (2010) The comparative embryology of sponges. Springer, Dordrecht/Heidelberg/London/New York

    Google Scholar 

  • Ernst A, Schäfer P (2006) Palaeozoic vs. post-Palaeozoic Stenolaemata: phylogenetic relationship or morphological convergence? Cour Forsch Senck 257:49–63

    Google Scholar 

  • Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci USA 98(10):5399–5403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falkner I, Byrne M, Sewell MA (2006) Maternal provisioning in Ophionereis fasciata and O. schayeri: brittle stars with contrasting modes of development. Biol Bull 211:204–207

    PubMed  Google Scholar 

  • Farley RD (2001) Structure, reproduction and development. In: Brownell PH, Polis GA (eds) Scorpion biology and research. Oxford University Press, Oxford, pp 13–78

    Google Scholar 

  • Farre AB (1837) Observations on the minute structure of some of the higher forms of polypi, with views of a more natural arrangement of the class. Philos Trans R Soc 1:387–426

    Google Scholar 

  • Fensome RA, MacRae RA, Moldowan JM, Taylor FJR, Williams GL (1996) The early Mesozoic radiation of dinoflagellates. Paleobiology 22(3):329–338

    Google Scholar 

  • Fensome RA, Saldarriaga JF, Taylor FJR (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana 38:66–80

    Google Scholar 

  • Flemming AF, Blackburn DG (2003) Evolution of placental specializations in viviparous African and South American lizards. J Exp Zool 299A:33–47

    Google Scholar 

  • Francke OF (1982) Parturition in scorpions (Arachnida, Scorpiones): a review of the ideas. Rev Arachnol 4:27–37

    Google Scholar 

  • Franzén Å (1956) On spermiogenesis, morphology of the spermatozoon, and biology of fertilization among invertebrates. Zool Bidr Uppsala 31:355–481

    Google Scholar 

  • Franzén Å (1970) Phylogenetic aspects of the morphology of spermatozoa and spermiogenesis. In: Baccetti B (ed) Comparative spermatology. Academic Press, New York, pp 29–46

    Google Scholar 

  • Franzén Å (1987) Sperm ultrastructure in the Bryozoa. In: Ross JRP (ed) Bryozoa: present and past. Western Washington University, Billingham, pp 89–96

    Google Scholar 

  • Frick JE (1998) Evidence of matrotrophy in the viviparous holothuroid echinoderm Synaptula hydriformis. Invert Biol 117:169–179

    Google Scholar 

  • Fuchs J, Obst M, Sundberg P (2009) The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes. Mol Phylogenet Evol 52:225–233

    CAS  PubMed  Google Scholar 

  • Fuchs J, Martindale MQ, Hejnol A (2011) Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle. Evol Dev 2:13

    Google Scholar 

  • Gautier YV (1962) Recherches écologiques sur les Bryozoaires chilostomes en Méditerranèe Occidentale. Rec Trav Stat Mar Endoume 39:1–434

    Google Scholar 

  • George SB (1990) Population and seasonal differences in egg quality of Arbacia lixula (Echinodermata: Echinoidea). Invert Rep Dev 17(2):111–121

    Google Scholar 

  • George SB, Cellario C, Fenaux L (1990) Population differences in egg quality of Arbacia lixula (Echinodermata: Echinoidea): proximate composition of eggs and larval development. J Exp Mar Biol Ecol 141:107–118

    Google Scholar 

  • Ghiselin MT (1987) Evolutionary aspects of marine invertebrate reproduction. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 9, General aspects: seeking unity in diversity. Blackwell Scientific Publications/The Boxwood Press, Palo Alto/Pacific Grove, pp 609–665

    Google Scholar 

  • Gibson GD, Gibson AJF (2004) Heterochrony and the evolution of poecilogony: generating larval diversity. Evolution 58:2704–2717

    PubMed  Google Scholar 

  • Gilbert JJ (1983) Rotifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 1, Oogenesis, oviposition, and oosorption. John Wiley and Sons, Chichester, pp 181–209

    Google Scholar 

  • Gilbert JJ (1989) Rotifera. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 4, Part A: fertilization, development, and parental care. IBH Publishing Co Pvt Ltd, New Delhi/Bombay/Calcutta/Oxford, pp 179–199

    Google Scholar 

  • Godeaux JEA (1990) Urochordata – Thaliacea. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 4, Part B: fertilization, development, and parental care. IBH Publishing Co Pvt Ltd, New Delhi/Bombay/Calcutta/Oxford, pp 453–469

    Google Scholar 

  • Goodwin NB, Dulvy NK, Reynolds JD (2002) Life-history correlates of the evolution of life-bearing of fishes. Proc R Soc B 357:259–267

    Google Scholar 

  • Gordon DP (1970) Reproductive ecology of some northern New Zealand Bryozoa. Cah Biol Mar 11:307–323

    Google Scholar 

  • Gordon DP (1977) The aging process in bryozoans. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York/San Francisco/London, pp 335–376

    Google Scholar 

  • Gordon DP (1986) The marine fauna of New Zealand: Bryozoa: Gymnolaemata (Ctenostomata and Cheilostomata Anasca) from the Western South Island continental shelf and slope. NZ Oceanogr Inst Mem 95:1–121

    Google Scholar 

  • Gordon DP (2000) Towards a phylogeny of cheilostomes – morphological models of frontal wall/shield evolution. In: Herrera Cubilla A, Jackson JBC (eds) Proceedings of the 11th international bryozoology association conference. Smithsonian Tropical Research Institute, Panama, pp 17–37

    Google Scholar 

  • Gordon DP (2012) (unpublished, available from author) Genera and subgenera of cheilostome Bryozoa. Interim classification (working list for Treatise on invertebrate paleontology)

    Google Scholar 

  • Gordon DP, Voigt E (1996) The kenozooidal origin of the ascophorine hypostegal coelom and associated frontal shield. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. National Institute of Water and Atmospheric Research, Wellington, pp 89–107

    Google Scholar 

  • Grave BH (1930) The natural history of Bugula flabellata at Woods Hole, Massachusetts, including the behaviour and attachment of the larva. J Morphol 49:355–383

    Google Scholar 

  • Hadfield MG, Strathmann MF (1996) Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanol Acta 19(3–4):323–334

    Google Scholar 

  • Hagan HR (1951) Embryology of viviparous insects. Ronald Press, New York

    Google Scholar 

  • Hageman GS (1983) A fine structural analysis of ovarian morphology, oogenesis, and ovulation in marine bryozoan Membranipora serrilamella (Cheilostomata, Anasca). PhD dissertation, University of Southern California

    Google Scholar 

  • Hancock JM, Kauffman EG (1979) The great transgressions of the Late Cretaceous. J Geol Soc Lond 136:175–186

    Google Scholar 

  • Haq BU (1983) Calcareous nannoplancton. In: Haq BU, Boersma A (eds) Introduction to marine micropaleontology. Elsevier Biomedical, New York/Amsterdam/Oxford, pp 79–107

    Google Scholar 

  • Harmer SF (1926) The Polyzoa of the Siboga expedition. II. Cheilostomata Anasca. Rep Siboga Exp 28b:181–501, EJ Brill, Leiden

    Google Scholar 

  • Hart M (1996) Evolutionary loss of larval feeding: development, form and function in a facultatively feeding larva, Brisaster latifrons. Evolution 50(1):174–187

    Google Scholar 

  • Hart MW, Byrne M, Smith MJ (1997) Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evolution 51(6):1848–1861

    Google Scholar 

  • Hastings AB (1930) Cheilostomatous Polyzoa from the vicinity of the Panama Canal collected by Dr. C. Crossland on the cruise of the S.Y. “St. George”. Proc Zool Soc Lond 4(47):697–740

    Google Scholar 

  • Hastings AB (1941) The British species of Scruparia (Polyzoa). Ann Mag Nat Hist, 11 Ser, 7(41):465–472

    Google Scholar 

  • Haszprunar G, von Salvini-Plawen L, Rieger RM (1995) Larval planktotrophy – a primitive trait in the Bilateria? Acta Zool 76(2):141–154

    Google Scholar 

  • Havenhand JN (1993) Egg to juvenile period, generation time, and the evolution of larval type in marine invertebrates. Mar Ecol Prog Ser 97:247–260

    Google Scholar 

  • Havenhand JN (1995) Evolutionary ecology of larval types. In: McEdwards L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC, pp 79–121

    Google Scholar 

  • Hayward PJ (1981) Cheilostomata (Bryozoa) of the deep sea. Galathea Rep 15:21–68

    Google Scholar 

  • Hayward PJ (1983) Bryozoa Ectoprocta. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 1, Oogenesis, oviposition and oosorption. John Wiley and Sons, Chichester, pp 543–560

    Google Scholar 

  • Hayward PJ (1985) Ctenostome bryozoans. Synop Br Fauna 33:1–169

    Google Scholar 

  • Hayward PJ, Ryland JS (1985) Cyclostome bryozoans. Synop Br Fauna 34:1–147

    Google Scholar 

  • Hayward PJ, Ryland JS (1998) Cheilostomatous Bryozoa, Part 1. Aetoidea-Cribrilinoidea. Syn Brit Fauna, 2nd edn. 10:1–366

    Google Scholar 

  • Henry JJ, Raff RA (1990) Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma. Dev Biol 141(1):55–69

    CAS  PubMed  Google Scholar 

  • Hoagland E, Robertson R (1988) An assessment of poecilogony in marine invertebrates: phenomenon or fantasy? Biol Bull 174:109–124

    Google Scholar 

  • Hoegh-Guldberg O, Emlet RB (1997) Energy use during the development of a lecithotrophic and a planktotrophic echinoid. Biol Bull 192:27–40

    Google Scholar 

  • Hoegh-Guldberg O, Pearse JS (1995) Temperature, food availability, and the development of marine invertebrate larvae. Am Zool 35:415–425

    Google Scholar 

  • Hoese B, Janssen HH (1989) Morphological and physiological studies on the marsupium in terrestrial isopods. Monit Zool Ital NS 4:153–173

    Google Scholar 

  • Hughes DJ (1987) Gametogenesis and embryonic brooding in the cheilostome bryozoan Celleporella hyalina. J Zool 212:691–711

    Google Scholar 

  • Hunt OD (1925) The food of the bottom fauna of the Plymouth fishing grounds. J Mar Biol Assoc UK NS 13:560–599

    Google Scholar 

  • Ivanova-Kazas ОМ (1986) Analysis of the larval development of Tentaculata. Zool Zhurn 65(5):757–770 [in Russian]

    Google Scholar 

  • Jablonski D (1986) Larval ecology and macroevolution in marine invertebrates. Bull Mar Sci 39:565–587

    Google Scholar 

  • Jablonski D (2005) Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. J Exp Zool (Mol Dev Evol) 304B:504–519

    Google Scholar 

  • Jablonski D, Lutz RA (1983) Larval ecology of marine benthic invertebrates: paleobiological implications. Biol Rev 58:21–89

    Google Scholar 

  • Jablonski D, Lidgard S, Tayor PD (1997) Comparative ecology of bryozoan radiations: origin of novelties in Cyclostomes and Cheilostomes. Palaios 12:505–523

    Google Scholar 

  • Jaeckle WB (1995) Variation in the size, energy content, and biochemical composition of invertebrate eggs: correlates to the mode of larval development. In: McEdwards L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC, pp 49–77

    Google Scholar 

  • Jägersten G (1972) Evolution of the metazoan life cycle. Academic Press, New York

    Google Scholar 

  • Jebram D (1973) Zooid individuality and brooding organs (Bryozoa). Z Morphol Tiere 75:255–258

    Google Scholar 

  • Jebram D (1978) Preliminary studies of “abnormities” in bryozoans from the point of view of experimental morphology. Zool Jahrb Anat Ont Tier 100:245–275

    Google Scholar 

  • Jebram D (1985) Panolicella nutans, gen. et sp. n., its description, development, and laboratory cultivation. Zool Scr 14:11–18

    Google Scholar 

  • Jebram D (1992) The polyphyletic origin of the Cheilostomata (Bryozoa). Z Zool Syst Evol 30:46–52

    Google Scholar 

  • Jebram D, Everitt B (1982) New victorellids (Bryozoa, Cenostomata) from North America: the use of parallel cultures in bryozoan taxonomy. Biol Bull 163:172–187

    Google Scholar 

  • Jeffery CH (1997) Dawn of echinoid nonplanktotrophy: coordinated shifts in development indicate environmental instability prior to the K-T boundary. Geology 25(11):991–994

    Google Scholar 

  • Jeffery СH, Emlet RB (2003) Macroevolutionary consequences of developmental mode in temnopleurid echinoids from the Tertiary of southern Australia. Evolution 57:1031–1048

    PubMed  Google Scholar 

  • Jeffery CH, Emlet RB, Littlewood DTJ (2003) Phylogeny and evolution of developmental mode in temnopleurid echinoids. Mol Phylogenet Evol 28:99–118

    CAS  PubMed  Google Scholar 

  • Johnson CC (1999) Evolution of Cretaceous surface current circulation patterns, Caribbean and Gulf of Mexico. In: Barrera E, Johnston CC (eds) Evolution of the Cretaceous ocean-climate system. Geological Society of America, Boulder, pp 329–343

    Google Scholar 

  • Joliet L (1877) Contributions à l’histoire naturelle des Bryozoaires des côtes de France. Arch Zool Exp Gen 6:193–304

    Google Scholar 

  • Kasyanov VL (1989) Reproductive strategies of marine bivalvian mollusks and echinoderms. Nauka, Leningrad [in Russian]

    Google Scholar 

  • Kasyanov VL, Kryuchkova GA, Kulikova VA, Medvedeva LA (1998) Larvae of marine bivalves and echinoderms. Pawson DL (ed) Science Publishers, Enfield

    Google Scholar 

  • Kempf SC, Hadfield MG (1985) Planktotrophy by the lecithotrophic larvae of a nudibranch, Phestilla sibogae (Gastropoda). Biol Bull 169:119–130

    Google Scholar 

  • Kempf SC, Todd CD (1989) Feeding potential in the lecithotrophic larvae of Adalaria proxima and Tritonia hombergi: an evolutionary perspective. J Mar Biol Assoc UK 69:659–682

    Google Scholar 

  • Kluge GA (1975) Bryozoa of the northern seas of the USSR. Keys on the fauna of the USSR published by the Zoological Institute, Academy of Sciences of the USSR 76:1–711. Amerind Publishing Co, New Delhi

    Google Scholar 

  • Knight S, Gordon DP, Lavery SDВ (2011) A multi-locus analysis of phylogenetic relationships within cheilostome bryozoans supports multiple origins of ascophoran frontal shields. Mol Phylogenet Evol 61:351–362

    PubMed  Google Scholar 

  • Knowlton N, Jackson JBC (1993) Inbreeding and outbreeding in marine invertebrates. In: Thornhill NW (ed) The natural history of inbreeding and outbreeding. University of Chicago Press, Chicago, pp 200–249

    Google Scholar 

  • Korneva JV (2005) Placental type interactions and evolutionary trends of development of uterus in cestodes. J Evol Biochem Physiol 41:552–560

    Google Scholar 

  • Kosman ET, Pernet B (2009) Diel variation in the size of larvae of Bugula neritina in field populations. Biol Bull 216:85–93

    PubMed  Google Scholar 

  • Kraepelin K (1887) Die Deutschen Süsswasser-Bryozoen. Anatomish-systematischer Teil. Abh Geb Nat Ver Hamburg 10:1–168

    Google Scholar 

  • Krug PJ (1998) Poecilogony in an estuarine opistobranch: planktotrophy, lecithotrophy, and mixed clutches in a population of the ascoglossan Alderia modesta. Mar Biol 132:483–494

    Google Scholar 

  • Krug PJ (2007) Poecilogony and larval ecology in the gastropod genus Alderia. Am Malacol Bull 23:99–111

    Google Scholar 

  • Krug PJ, Ellingson RA, Burton R, Valdés Á (2007) A new poecilogonid species of sea slug (Opistobranchia: Sacoglossa) from California: comparison with planktotrophic congener Alderia modesta (Lovén, 1844). J Mollus Stud 73:29–38

    Google Scholar 

  • Kuklinski P, Porter JS (2004) Alcyonidium disciforme: an exceptional Arctic bryozoan. J Mar Biol Assoc UK 84:267–275

    Google Scholar 

  • Kuznetzov VV (1941) Dynamics of the biocenosis of Microporella ciliata in the Barentz Sea. Proc Zool Inst Acad Sci USSR 7:114–139 [in Russian with French summary]

    Google Scholar 

  • Larwood GP (1979) Colonial integration in Cretaceous cribrimorph Bryozoa. In: Larwood GP, Abbott MB (eds) Advances in bryozoology. Systematics association special, vol 13. Academic Press, London/New York/San Francisco, pp 503–520

    Google Scholar 

  • Larwood GP, Taylor PD (1981) Mesozoic bryozoan evolution: response to increasing predation pressure? In: Larwood GP, Nielsen C (eds) Recent and fossil Bryozoa. Olsen and Olsen, Fredensborg, pp 312–313

    Google Scholar 

  • Lawlor LR (1976) Parental investment and offspring fitness in the terrestrial isopod Armadillium vulgare (Latr.) (Crustacea, Oniscoidea). Evolution 30:775–785

    Google Scholar 

  • Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17(13):1–29

    Google Scholar 

  • Lee MSY, Shine R (1998) Reptilian viviparity and Dollo’s law. Evolution 52:1441–1450

    Google Scholar 

  • Lessios HA (1990) Adaptations and phylogeny as determinants of egg size in echinoderms from the two sides of the Isthmus of Panama. Am Nat 135(1):1–13

    Google Scholar 

  • Levin LA (1984) Multiple patterns of development in Streblospio benedicti Webster (Spionidae) from three coasts of North America. Biol Bull 166:494–508

    Google Scholar 

  • Levin LF, Bridges TS (1995) Pattern and diversity in reproduction and development. In: McEdwards L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC, pp 1–48

    Google Scholar 

  • Lidgard S (2008a) Predation on marine bryozoan colonies: taxa, traits and trophic groups. Mar Ecol Prog Ser 359:17–131

    Google Scholar 

  • Lidgard S (2008b) How should we consider predation risk in marine bryozoans? In: Hageman SJ, Key MMJ Jr, Winston JE (eds) Proceedings of the 14th international bryozoology association, Virginia Mus Nat Hist Spec Publ 15:123–131

    Google Scholar 

  • Lidgard S, McKinney FK, Taylor PD (1993) Competition, clade replacement, and a history of cyclostome and cheilostome bryozoan diversity. Paleobiology 19(3):352–371

    Google Scholar 

  • Lidgard S, Carter MC, Dick MH, Gordon DP, Ostrovsky AN (2012) Division of labor and recurrent evolution of polymorphisms in a group of colonial animals. Evol Ecol 26(2):233–257

    Google Scholar 

  • Lombardi J (1998) Comparative vertebrate reproduction. Kluwer Academic Publishers Group, Boston

    Google Scholar 

  • Mackie GL (1984) Bivalves. In: Tompa AS, Verdonk NH, Van den Biggelaar JAM (eds) The Mollusca, vol 7. Academic Press, London, pp 351–418

    Google Scholar 

  • Macleod RG, Huber DN (1996) Reorganization of deep ocean circulation accompanying a Late Cretaceous extinction event. Nature 380:422–425

    CAS  Google Scholar 

  • Mank JE, Promislow DEL, Avise JC (2005) Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59:1570–1578

    PubMed  Google Scholar 

  • Marcus E (1926a) Beobachtungen und Versuche an lebeden Meeresbryozoen. Zool Jahrb Syst Oekol Geogr Tiere 52:1–102

    Google Scholar 

  • Marcus E (1926b) Bryozoa. In: Grimpe G, Wagler E (eds) Die Tierwelt der Nord und Ostsee, vol 4(7c). AVG, Leipzig, pp 1–100

    Google Scholar 

  • Marcus E (1934) Über Lophopus crystallinus (Pall.). Zool Jahr Abt Anat Ont Tiere 58:501–606

    Google Scholar 

  • Marcus E (1938) Bryozoarios marinhos brasileiros II. Bol Fac Philos Sci Letr Univ Sao Paulo IV Zool 2:1–196

    Google Scholar 

  • Marcus E (1939) Bryozoarios marinhos brasileiros III. Bol Fac Fil Cie Letr Univ Sao Paulo XIII Zool 3:111–354

    Google Scholar 

  • Marcus E (1941a) Sobre Bryozoa do Brasil. Bol Fac Fil Cie Letr Univ Sao Paulo XXII Zool 5:3–208

    Google Scholar 

  • Marcus E (1941b) Sobre o desenvolvimento do bryozoario Synnotum aegyptiacum. Arq Cir Clin Exp 5:227–234

    Google Scholar 

  • Marshall DJ (2008) Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology 89(2):418–427

    PubMed  Google Scholar 

  • Marshall DJ, Bolton TF (2007) Effects of egg size on the development time of non-feeding larvae. Biol Bull 212:6–11

    PubMed  Google Scholar 

  • Marshall DJ, Keough MJ (2003) Variation in the dispersal potential of non-feeding larvae: the desperate larva hypothesis and larval size. Mar Ecol Prog Ser 255:145–153

    Google Scholar 

  • Marshall DJ, Keough MJ (2004a) Variable effects of larval size on post-metamorphic performance in the field. Mar Ecol Prog Ser 279:73–80

    Google Scholar 

  • Marshall DJ, Keough MJ (2004b) When the going gets rough: effect of maternal size manipulation on larval quality. Mar Ecol Prog Ser 272:301–305

    Google Scholar 

  • Marshall DJ, Keough MJ (2006) Complex life-cycles and offspring provisioning in marine invertebrates. Integr Comp Biol 46(5):643–651

    PubMed  Google Scholar 

  • Marshall DJ, Keough MJ (2008a) The relationship between offspring size and performance in the sea. Am Nat 171:214–224

    PubMed  Google Scholar 

  • Marshall DJ, Keough MJ (2008b) Offspring size plasticity in response to intraspecific competition: and adaptive maternal effect across life-history stages. Am Nat 171(2):225–237

    PubMed  Google Scholar 

  • Marshall DJ, Keough MJ (2009) Does interspecific competition affect offspring provisioning? Ecology 90(2):487–495

    PubMed  Google Scholar 

  • Marshall DJ, Bolton TF, Keough MJ (2003) Offspring size affects the post-metamorphic performance of a colonial marine invertebrate. Ecology 84:3131–3137

    Google Scholar 

  • Marshall DJ, Allen RM, Crean AJ (2008) The ecological and evolutionary importance of maternal effects in the sea. Oceanogr Mar Biol 46:203–250

    Google Scholar 

  • Marshall DJ, Krug PJ, Kupriyanova EK, Byrne M, Emlet RB (2012) The biogeography of marine invertebrate life histories. Annu Rev Ecol Evol Syst 43(1):97–114

    Google Scholar 

  • Marsh-Matthews E, Deaton R, Brooks M (2010) Survey of matrotrophy in lecithotrophic poeciliids. In: Uribe MC, Grier HJ (eds) Viviparous fishes II. New Life Publications, Homestead, pp 255–258

    Google Scholar 

  • Martin RE (2003) Marine plankton. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Publishing, Malden, pp 309–312

    Google Scholar 

  • Matricon I (1960) Dégénérescence du polypide femelle et formation d’une poche incubatrice chez Alcyonidium polyoum (Hassal) (Bryozoaire Cténostome). Arch Zool Exp Gen 102:79–93

    Google Scholar 

  • Matricon I (1963) Etude histologique d´Alcyonidium polyoum (Hassall) caractères structuraux spécifiques d´Alcyonidium mytili Dalyell. Cah Biol Mar 1:359–395

    Google Scholar 

  • Matsuda R (1987) Animal evolution in changing environments with special reference to abnormal metamorphosis. John Wiley and Sons, New York

    Google Scholar 

  • Mawatari S (1951) On the natural history of a common fouling bryozoan, Bugula neritina (Linnaeus). Misc Rep Res Inst Nat Res Tokyo 20:47–54

    Google Scholar 

  • Mawatari SF (1973a) The post-larval development of Membranipora serrilamella Osburn (Bryozoa, Cheilostomata). Proc Jap Soc Syst Zool 9:45–53

    Google Scholar 

  • Mawatari S (1973b) Studies on Japanese anascan Bryozoa. 2. Division Scrupariina. Bull Nat Sci Mus Tokyo 16(4):605–624

    Google Scholar 

  • Mawatari SF (1975) The life history of Membranipora serrilamella Osburn (Bryozoa, Cheilostomata). Bull Lib Art Sci Sch Med Nihon Univ 3:19–57

    Google Scholar 

  • Mawatari SF, Itô T (1972) The morphology of cyphonautes larva of Membranipora serrilamella Osburn from Hokkaido. J Fac Sci Hokkaido Univ 18(3):400–405

    Google Scholar 

  • Mawatari S, Mawatari SF (1975) Development and metamorphosis of the cyphonautes of Membranipora serrilamella Osburn. In: Pouyet S (ed) Bryozoa 1974. Doc Lab Geol Fac Sci Lyon, HS 3(1), pp 13–18

    Google Scholar 

  • Maynard Smith J (1989) The causes of extinction. Philos Trans R Soc B 325(1228):241–252

    Google Scholar 

  • McEdward LR (ed) (1995) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC

    Google Scholar 

  • McEdward LR (1996) Experimental manipulation of parental investment in echinoid echinoderms. Am Zool 36:169–179

    Google Scholar 

  • McEdward LR (1997) Reproductive strategies of marine benthic invertebrates revisited: facultative feeding by planctotrophic larvae. Am Nat 150(1):48–72

    CAS  PubMed  Google Scholar 

  • McEdward LR (2000) Adaptive evolution of larvae and life cycles. Semin Cell Dev Biol 11:403–409

    CAS  PubMed  Google Scholar 

  • McEdward LR, Carson SF (1987) Variation in egg organic content and its relationship with egg size in the starfish Solaster stimpsoni. Mar Ecol Prog Ser 37:159–169

    Google Scholar 

  • McEdward LR, Janies DA (1993) Life cycle evolution in asteroids. Biol Bull 184:255–268

    Google Scholar 

  • McEdward LR, Janies DA (1997) Relationships among development, ecology, and morphology in the evolution of echinoderm larvae and life cycles. Biol J Lin Soc 60:381–400

    Google Scholar 

  • McEdward LR, Miner BG (2001) Larval and life-cycle patterns in echinoderms. In: Biology of neglected groups: Echinodemata. Can J Zool 79(7):1125–1170

    Google Scholar 

  • McEdward LR, Miner BG (2003) Fecundity-time models of reproductive strategies in marine benthic invertebrates: fitness differences under fluctuating environmental conditions. Mar Ecol Prog Ser 256:111–121

    Google Scholar 

  • McHugh D, Rouse GW (1998) Life history evolution of marine invertebrates: new views from phylogenetic systematics. Trends Ecol Evol 13(5):182–186

    CAS  PubMed  Google Scholar 

  • McKinney FK (1981) Intercolony fusion suggests polyembryony in Paleozoic fenestrate bryozoans. Paleobiology 7(2):247–251

    Google Scholar 

  • McKinney FK (1986a) Evolution of erect marine bryozoan faunas: repeated success of unilaminate species. Am Nat 128:795–809

    Google Scholar 

  • McKinney FK (1986b) Historical record of erect bryozoan growth forms. Proc R Soc B 228:133–148

    Google Scholar 

  • McKinney FK (1992) Competitive interactions between related clades: evolutionary implications of overgrowth interactions between encrusting cyclostome and cheilostome bryozoans. Mar Biol 114:645–652

    Google Scholar 

  • McKinney FK (1993) A faster-paced world?: contrasts in biovolume and life-process rates in cyclostome (Class Stenolaemata) and cheilostome (Class Gymnolaemata) bryozoans. Paleobiology 19(3):335–351

    Google Scholar 

  • McKinney FK (1995) One hundred million years of competitive interactions between bryozoan clades: asymmetrical but not escalating. Biol J Lin Soc 56:465–481

    Google Scholar 

  • McKinney FK (2000) Phylloporinids and the phylogeny of Fenestrida. In: Herrera Cubilla A, Jackson JBC (eds) Proceedings of the 11th international bryozoology association conference. Smithsonian Tropical Research Institute, Panama, pp 54–65

    Google Scholar 

  • McKinney FK, Jackson JDC (1989) Bryozoan evolution. Unwin Hyman, Boston

    Google Scholar 

  • McKinney FK, Taylor PD (2001) Bryozoan generic extinctions and originations during the last one hundred million years. Palaeontol Electron 4(1):1–26

    Google Scholar 

  • McKinney FK, Lidgard S, Sepkoski JJ, Taylor PD (1998) Decoupled temporal patterns of evolution and ecology in two post-Paleozoic clades. Science 281:807–809

    CAS  PubMed  Google Scholar 

  • McKinney FK, Lidgard S, Taylor PD (2001) Macroevolutionary trends: perception depends on the measure used. In: Jackson JBC, Lidgard S, McKinney FK (eds) Evolutionary patterns. Growth, form, and tempo in evolution. The University of Chicago Press, Chicago/London, pp 348–385

    Google Scholar 

  • McKinney FK, Taylor PD, Lidgard S (2003) Predation on bryozoans and its reflection in the fossil record. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator–prey interactions in the fossil record. Topics in geobiology series, vol 20. Kluwer Academic/Plenum Publishers, New York, pp 239–246

    Google Scholar 

  • McNamara KJ (1994) Diversity of Cenozoic marsupiate echinoids as an environmental indicator. Lethaia 27:257–268

    Google Scholar 

  • Meier R, Kotrba M, Ferrar P (1999) Ovoviviparity and viviparity in the Diptera. Biol Rev 74:199–258

    Google Scholar 

  • Meredith RW, Pires MN, Reznick DN, Springer MS (2011) Molecular phylogenetic relationships and the coevolution of placentotrophy and superfetation in Poecilia (Poeciliidae: Cyprinodontiformes). Mol Phylogenet Evol 59:148–157

    PubMed  Google Scholar 

  • Mileikovsky SA (1971) Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar Biol 10:193–213

    Google Scholar 

  • Miller SE (1993) Larval period and its influence on post-larval life history: comparison of lecithotrophy and facultative planktotrophy in the aeolid nudibranch Phestilla sibogae. Mar Biol 117(4):635–645

    Google Scholar 

  • Moosburgger M, Schwaha T, Walzl MG, Obst M, Ostrovsky AN (2012) The placental analogue and the pattern of sexual reproduction in the cheilostome bryozoan Bicellariella ciliata (Gymnolaemata). Front Zool 9:29

    Google Scholar 

  • Moran AL, McAlister JS (2009) Egg size as a life history character of marine invertebrates: is it all it’s cracked up to be? Biol Bull 216(3):226–242

    PubMed  Google Scholar 

  • Morozova IP (2001) Bryozoans of the order Fenestellida. Proc Paleontol Inst Rus Acad Sci 277:1–177 [in Russian with English summary]

    Google Scholar 

  • Mortensen T (1921) Studies on the development and larval forms of echinoderms. GED Grad, Copenhagen

    Google Scholar 

  • Mukai H, Saito Y, Watanabe H (1987) Viviparous development in Botrylloides (compound ascidians). J Morphol 193:263–276

    Google Scholar 

  • Mukai H, Terakado K, Reed CG (1997) Bryozoa. In: Harrison FW (ed) Microscopic anatomy of invertebrates, vol 13. Wiley-Liss, New York, pp 45–206

    Google Scholar 

  • Nielsen C (1981) On morphology and reproduction of Hippodiplosia insculpta and Fenestrulina malusii (Bryozoa, Cheilostomata). Ophelia 20:91–125

    Google Scholar 

  • Nielsen C (1990) Bryozoa Ectoprocta. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 4, Part B: fertilization, development, and parental care. IBH Publishing Co Pvt Ltd, New Delhi/Bombay/Calcutta/Oxford, pp 185–200

    Google Scholar 

  • Nielsen C (1995) Animal evolution: interrelationships of the living phyla. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C (1998) Origin and evolution of animal life cycles. Biol Rev 73:125–155

    Google Scholar 

  • Nielsen C (2013) Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evol Biol 13(1):1–18

    Google Scholar 

  • Nielsen C, Worsaae K (2010) Structure and occurrence of cyphonautes larvae (Bryozoa, Ectoprocta). J Morphol 271(9):1094–1109

    PubMed  Google Scholar 

  • Nordmann MA (1839) Recherches microscopiques sur l’anatomie et le développement du Tendra zostericola, espèce de polype de la section des Bryozoaires. Ann Sci Nat, Ser 2, 11:185–191

    Google Scholar 

  • Nussbaum RA (1985) The evolution of parental care in salamanders. Misc Publ Mus Zool Univ Mich 169:1–50

    Google Scholar 

  • Nussbaum RA (1987) Parental care and egg size in salamanders: an examination of the safe harbor hypothesis. Res Popul Ecol 29:27–44

    Google Scholar 

  • Nützel A, Lehnert O, Frýda J (2006) Origin of planktotrophy – evidence from early molluscs. Evol Dev 8:325–330

    PubMed  Google Scholar 

  • Okazaki K, Dan K (1954) The metamorphosis of partial larvae of Peronella japonica Mortensen, a sand dollar. Biol Bull 106(1):83–99

    Google Scholar 

  • Olive P (1983) Annelida – Polychaeta. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates, vol 1, Oogenesis, oviposition, and oosorption. John Wiley and Sons, Chichester, pp 357–421

    Google Scholar 

  • Olive PJW (1985) Covariability of reproductive traits in marine invertebrates: implications for the phylogeny of the lower invertebrates. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Oxford University Press, Oxford, pp 42–59

    Google Scholar 

  • Ostroumoff A (1886a) Contribition à l’étude zoologique et morphologique des Bryozoaires du Golfe de Sebastopol. Arch Slav Biol 1:557–569

    Google Scholar 

  • Ostroumoff A (1886b) Research on bryozoans of the Sebastopol Bay in systematic and morphological respects. Works Soc Nat Imp Kazan Univ 16(2):1–124 [In Russian]

    Google Scholar 

  • Ostrovsky AN (1998a) Variability of ooeciostome shape and position in Antarctic idmidroniform bryozoans (Bryozoa: Tubuliporida). Zool Anz 237(2–3):97–106

    Google Scholar 

  • Ostrovsky AN (1998b) The genus Anguisia as a model of a possible origin of erect growth in some Cyclostomatida (Bryozoa). Zool J Linn Soc 124(4):355–367

    Google Scholar 

  • Ostrovsky AN (1998c) Comparative studies of ovicell anatomy and reproductive patterns in Cribrilina annulata and Celleporella hyalina (Bryozoa: Cheilostomatida). Acta Zool 79(4):287–318

    Google Scholar 

  • Ostrovsky AN (2002) Brood chambers in cribrimorphs evolved by fusion of costae: further arguments. In: Wyse Jackson PN, Buttler CJ, Spencer Jones M (eds) Bryozoan studies 2001. AA Balkema Publishers, Lisse/Abingdon/Exton/Tokyo, pp 247–255

    Google Scholar 

  • Ostrovsky AN (2008) External versus internal and self- versus cross-fertilization in Bryozoa: transformation of the view and evolutionary considerations. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of bryozoology 2: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 103–115

    Google Scholar 

  • Ostrovsky AN (2009) Evolution of sexual reproduction in the bryozoan order Cheilostomata (Gymnolaemata). St Petersburg State University, St Petersburg [in Russian with English summary]

    Google Scholar 

  • Ostrovsky AN (2013) From incipient to substantial: evolution of placentotrophy in a phylum of aquatic colonial invertebrates. Evolution 67(5):1368–1382

    Google Scholar 

  • Ostrovsky AN, Shunatova NN (2002) Colonial behaviour and group zooidal reactions in Bryozoa: history of the research. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of bryozoology: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 185–200

    Google Scholar 

  • Ostrovsky AN, Taylor PD (1996) Systematics of some Antarctic Idmidronea and Exidmonea (Bryozoa: Cyclostomata). J Nat Hist 30:1549–1575

    Google Scholar 

  • Ostrovsky AN, Shunatova NN, Antipenko II (2002) Historical review on individual autozooidal behaviour and feeding mechanisms in Bryozoa. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of bryozoology: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 201–228

    Google Scholar 

  • Ostrovsky AN, Grischenko AV, Taylor PD, Bock P, Mawatari SF (2006) Comparative anatomical study of internal brooding in three anascan bryozoans (Cheilostomata) and its taxonomical and evolutionary implications. J Morphol 267(6):739–749

    PubMed  Google Scholar 

  • Ostrovsky AN, Dick MH, Mawatari SF (2007) The internal-brooding apparatus in the bryozoan genus Cauloramphus (Cheilostomata: Calloporidae) and its inferred homology to ovicells. Zool Sci 25(1):36–52

    Google Scholar 

  • Ostrovsky AN, Vávra N, Porter JS (2008a) Sexual reproduction in gymnolaemate Bryozoa: history and perspectives of the research. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of bryozoology 2: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 117–210

    Google Scholar 

  • Ostrovsky AN, Taylor PD, Dick MH, Mawatari SF (2008b) Pre-Cenomanian cheilostome Bryozoa: current state of knowledge. In: Okada H, Mawatari SF, Suzuki N, Gautam P (eds) Origin and evolution of natural diversity, proceedings of the international symposium, Sapporo, pp 69–74

    Google Scholar 

  • Ostrovsky AN, Gordon D, Lidgard S (2009a) Independent evolution of matrotrophy in the major classes of Bryozoa: transitions among reproductive patterns and their ecological background. Mar Ecol Prog Ser 378:113–124

    Google Scholar 

  • Ostrovsky AN, Nielsen C, Vávra N, Yagunova EB (2009b) Diversity of the brooding structures in calloporod bryozoans (Gymnolaemata: Cheilostomata): comparative anatomy and evolutionary trends. Zoomorphology 128(1):13–35

    Google Scholar 

  • Ostrovsky AN, O’Dea A, Rodrígues F (2009c) Comparative anatomy of internal incubational sacs in cupuladriid bryozoans and the evolution of brooding in free-living cheilostomes. J Morphol 270:1413–1430

    PubMed  Google Scholar 

  • Ostrovsky AN, O’Dea A, Rodrígues F (2009c) Comparative anatomy of internal incubational sacs in cupuladriid bryozoans and the evolution of brooding in free-living cheilostomes. J Morphol 270:1413–1430

    Google Scholar 

  • Ostrovsky AN, Porter JS (2011) Pattern of occurrence of supraneural coelomopores and intertentacular organs in gymnolaemate bryozoans and its evolutionary implications. Zoomorphology 130:1–15

    Google Scholar 

  • Ostrovsky AN, Schwaha T (2011) Ultrastructure of the placental analogue in ctenostome bryozoan Zoobotryon verticillatum (Delle Chiaje, 1828) (Gymnolaemata). In: Zaitseva OV, Petrov AA (eds) Modern problems of evolutionary morphology of animals. Proceedings of the 2nd all-Russian and international conference dedicated to the 105th anniversary of academician AV Ivanov. Zoological Institute of the Russian Academy of Sciences, St Petersburg, pp 254–256 [in Russian]

    Google Scholar 

  • Owrid GMA, Ryland JS (1991) Sexual reproduction in Alcyonidium hirsutum (Bryozoa: Ctenostomata). In: Bigey FP (ed) Bryozoaires actuels et fossiels: Bryozoa living and fossil. Bull Soc Sci Nat Ouest France, Mem HS 1:317–326

    Google Scholar 

  • Pace RM (1906) On the early stages in the development of Flustrellidra hispida (Fabricius), and on the existence of a “yolk nucleus” in the egg of this form. Q J Microsc Sci 50:435–478

    Google Scholar 

  • Pachut JF, Fisherkeller MM (2010) Inferring larval type in fossil bryozoans. Lethaia 43:396–410

    Google Scholar 

  • Packard GC, Tracy CR, Roth JJ (1977) The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class Reptilia. Biol Rev 52:71–105

    CAS  PubMed  Google Scholar 

  • Paltschikowa-Ostroumowa MW (1926) Kurze Bemerkung über den Ovidukt bei den Bryozoen. Zool Anz 65:100–102

    Google Scholar 

  • Pearse JS (1994) Cold-water echinoderms break “Thorson’s rule”. In: Young CM, Eckelbarger KJ (eds) Reproduction, larval biology, and recruitment in deep-sea benthos. Columbia University Press, New York, pp 26–43

    Google Scholar 

  • Pearse JS, Bosch I (1994) Brooding in the Antarctic: Östergren had it nearly right. In: David B, Guille F, Féral J-P, Roux M (eds) Echinoderms through time. AA Balkema Publishers, Rotterdam, pp 111–120

    Google Scholar 

  • Pearse JS, Cameron RA (1991) Echinodermata: Echinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 6, Echinoderms and lophophorates. Boxwood Press, Pacific Grove, pp 513–662

    Google Scholar 

  • Pernet B (2003) Persistent ancestral feeding structures in nonfeeding annelid larvae. Biol Bull 205:295–307

    PubMed  Google Scholar 

  • Pernet B, McArthur L (2006) Feeding by larvae of two different developmental modes in Streblospio benedicti (Polychaeta: Spionidae). Mar Biol 149(4):803–811

    Google Scholar 

  • Perron FE (1981) Larval growth and metamorphosis of Conus (Gastropoda: Toxoglossa) in Hawaii. Pac Sci 35(1):25–38

    Google Scholar 

  • Peterson KJ (2005) Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33(12):929–932

    Google Scholar 

  • Picken GB (1980) Reproductive adaptations of Antarctic benthic invertebrates. Biol J Lin Soc 14:67–75

    Google Scholar 

  • Pires MN, Bassar RD, McBride KE, Regus JU, Garland T Jr, Reznick DN (2011) Why do placentas evolve? An evaluation of the life-history facilitation hypothesis in the fish genus Poeciliopsis. Funct Ecol 25:757–768

    Google Scholar 

  • Pollux BJA, Pires MN, Banet AI, Reznick DN (2009) Evolution of placentas in the fish family Poeciliidae: an empirical study of macroevolution. Annu Rev Ecol Evol Syst 40:271–289

    Google Scholar 

  • Porter JS (2004) Morphological and genetic characteristics of erect subtidal species of Alcyonidium (Ctenostomata: Bryozoa). J Mar Biol Assoc UK 84:243–252

    Google Scholar 

  • Porter JS, Hayward PJ (2004) Species of Alcyonidium (Bryozoa: Ctenostomata) from Antarctica and Magellan Strait, defined by morphological, reproductive and molecular characters. J Mar Biol Assoc UK 84:253–265

    CAS  Google Scholar 

  • Porter JS, Hayward PJ, Spencer Jones ME (2001) The identity of Alcyonidium diaphanum (Bryozoa: Ctenostomatida). J Mar Biol Assoc UK 81:1001–1008

    Google Scholar 

  • Poulin É, Féral J-P (1996) Why are there so many species of brooding Antarctic echinoids? Evolution 50(2):820–830

    Google Scholar 

  • Poulsen CJ, Barron EJ, Johnson CC, Fawcett P (1999) Links between major climatic factors and regional oceanic circulation in the mid-Cretaceous. In: Barrera E, Johnston CC (eds) Evolution of the Cretaceous ocean-climate system. Geological Society of America, Boulder, pp 73–89

    Google Scholar 

  • Prenant M, Bobin G (1956) Bryozoaires. 1. Entoproctes, Phylactolèmes, Cténostomes. Faune France 60:1–398

    Google Scholar 

  • Prenant M, Bobin G (1966) Bryozoaires. 2. Chilostomes Anasca. Faune France 68:1–647

    Google Scholar 

  • Prouho H (1889) Sur la reproduction de quelques Bryozoaires cténostomes. Compt Rend Hebd Sean Acad Sci Paris 109:197–198

    Google Scholar 

  • Prouho H (1892) Contribution a l’histoire des Bryozoaires. Arch Zool Exp Gen 10:557–656

    Google Scholar 

  • Prowse T, Byrne M (2012) Evolution of yolk protein genes in the Echinodermata. Evol Dev 14(2):139–151

    CAS  PubMed  Google Scholar 

  • Prowse TAA, Sewell MA, Byrne M (2008) Fuels for development: evolution of maternal provisioning in asterinid sea stars. Mar Biol 153(3):337–349

    Google Scholar 

  • Prowse TA, Falkner I, Sewell MA, Byrne M (2009) Long-term storage lipids and developmental evolution in echinoderms. Evol Ecol Res 11:1069–1083

    Google Scholar 

  • Racki G (1999) Silica-secreting biota and mass extinctions: survival patterns and processes. Palaeogeogr Palaeoclimatol Palaeoecol 154:107–132

    Google Scholar 

  • Raff RA (1996) The shape of life. The University of Chicago Press, London/Chicago

    Google Scholar 

  • Raff RA, Byrne M (2006) The active evolutionary lives of echinoderm larvae. Heredity 97:244–252

    CAS  PubMed  Google Scholar 

  • Raff RA, Kaufman C (1983) Embryos, genes and evolution: the developmental-genetic basis of evolutionary changes. Macmillan, New York

    Google Scholar 

  • Reed CG (1987) Bryozoa. In: Strathmann MF (ed) Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. University of Washington Press, Seattle/Washington, DC, pp 494–510

    Google Scholar 

  • Reed CG (1988) The reproductive biology of the gymnolaemate bryozoan Bowerbankia gracilis (Ctenostomata: Vesiculariida). Ophelia 29(1):1–23

    Google Scholar 

  • Reed CG (1991) Bryozoa. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 6, Echinoderms and lophophorates. Boxwood Press, Pacific Grove, pp 85–245

    Google Scholar 

  • Repiachoff W (1875) Zur Entwickelungsgeschichte der Tendra zostericola. Z Wiss Zool 25:129–142

    Google Scholar 

  • Repiachoff W (1878) Ueber die ersten embryonalen Entwicklungvorgänge bei Tendra zostericola. Z Wiss Zool 30(Suppl):411–423

    Google Scholar 

  • Reynolds JD, Goodwin NB, Freckleton RP (2002) Evolutionary transitions in parental care and live bearing in vertebrates. Proc R Soc B 357:269–281

    Google Scholar 

  • Reznick DN, Mateos M, Springer MS (2002) Independent origins and rapid evolution of the placenta in the fish genus Poeciliopsis. Science 298:1018–1020

    CAS  PubMed  Google Scholar 

  • Reznick D, Meredith R, Collette BB (2007a) Independent evolution of complex life history adaptations in two families of fishes, live-bearing halfbeaks (Zenarchopteridae, Beloniformes) and Poeciliidae (Cyprinodontiformes). Evolution 61:2570–2583

    PubMed  Google Scholar 

  • Reznick D, Hrbek T, Caura S, De Greef J, Roff D (2007b) Life history of Xenodexia ctenolepis: implications for life history evolution in the family Poeciliidae. Biol J Linn Soc 92:77–85

    Google Scholar 

  • Richard PE, Dietz TH, Silverman H (1991) Structure of the gill during reproduction in the unionids Anodonta grandis, Ligumia subrostrata, and Carunculina parva texasensis. Can J Zool 69:1744–1754

    Google Scholar 

  • Rigby S, Milsom CV (2003) Zooplankton. In: Briggs DEG, Crowther P (eds) Palaeobiology II. Blackwell Publishing, Malden, pp 451–454

    Google Scholar 

  • Ross JPR, McCain KW (1976) Schizoporella unicornis (Ectoprocta) in coastal waters of northwestern United States and Canada. Northwest Sci 50(3):160–171

    Google Scholar 

  • Ross JRP, Ross CA (1996) Bryozoan evolution and dispersal and Paleozoic sea-level fluctuations. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. National Institute of Water and Atmospheric Research, Wellington, pp 243–258

    Google Scholar 

  • Rothchild I (2003) The yolkless egg and the evolution of eutherian viviparity. Biol Reprod 68:337–357

    CAS  PubMed  Google Scholar 

  • Ryland JS (1963) Systematic and biological studies on Polyzoa (Bryozoa) from western Norway. Sarsia 14:1–59

    Google Scholar 

  • Ryland JS (1965) Polyzoa (Bryozoa). Order Cheilostomata. Cyphonautes larvae. Conseil international pour l’exploration de la mer. Zooplankton 107:1–6

    Google Scholar 

  • Ryland JS (1967) Polyzoa. Oceanogr Mar Biol 5:343–369

    Google Scholar 

  • Ryland JS (1974) Behaviour, settlement and metamorphosis of bryozoan larvae: a review. Thalassia Jugoslav 10(1/2):239–262

    Google Scholar 

  • Ryland JS (1976) Physiology and ecology of marine bryozoans. In: Russell FS, Yonge CM (eds) Adv Mar Biol 14:285–443

    Google Scholar 

  • Ryland JS (2001) Convergent colonial organization and reproductive function in two bryozoan species epizoic on gastropod shells. J Nat Hist 35:1085–1101

    Google Scholar 

  • Ryland JS, Bishop JDD (1993) Internal fertilization in hermaphroditic colonial invertebrates. Oceanogr Mar Biol 31:445–477

    Google Scholar 

  • Ryland JS, Porter JS (2006) The identification, distribution and biology of encrusting species of Alcyonidium (Bryozoa: Ctenostomatida) around the coasts of Ireland. Proc R Irish Acad 106B(1):19–33

    Google Scholar 

  • Santagata S, Banta WC (1996) Origin of brooding and ovicells in cheilostome bryozoans: interpretive morphology of Scrupocellaria ferox. Invert Biol 115(2):170–180

    Google Scholar 

  • Saunders MI, Metaxas A (2010) Physical forcing of distributions of bryozoan cyphonautes larvae in a coastal embeyment. Mar Ecol Prog Ser 418:131–145

    Google Scholar 

  • Schäfer P (1991) Brutkammern der Stenolaemata (Bryozoa): Konstructionsmorphologie und phylogenetische Bedeutung. Cour Forsch Senck 136:1–263

    Google Scholar 

  • Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. Blackiston, Philadelphia

    Google Scholar 

  • Schmalhausen II (1982) Organism as a whole in its individual and historical development. Mir, Moscow [in Russian]

    Google Scholar 

  • Schwartz ML, Dimock RV (2001) Ultrastructural evidence for nutritional exchange between brooding unionid mussels and their glochidia larvae. Invert Biol 120:227–236

    Google Scholar 

  • Seed R, Hughes RN (1992) Reproductive strategies of epialgal bryozoans. Invert Reprod Dev 22(1–3):291–300

    Google Scholar 

  • Sellmer GP (1967) Functional morphology and ecological life history of the gem clam, Gemma gemma (Eulamellibranchia: Veneridae). Malacologia 5:137–223

    Google Scholar 

  • Sepkoski JJ, McKinney FK, Lidgard S (2000) Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology 26(1):7–18

    PubMed  Google Scholar 

  • Shanks AL (1995) Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In: McEdwards L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC, pp 323–367

    Google Scholar 

  • Shine R (1978) Propagule size and parental care: the “safe harbor” hypothesis. J Theor Biol 75:417–424

    CAS  PubMed  Google Scholar 

  • Shine R (1989) Alternative models for the evolution of offspring size. Am Nat 134:311–317

    Google Scholar 

  • Shine R, Lee MSY (1999) A reanalysis of the evolution of viviparity and egg-guarding in squamate reptiles. Herpetologica 55:538–549

    Google Scholar 

  • Shunatova NN, Ostrovsky AN (2001) Individual autozooidal behaviour and feeding in marine bryozoans. Sarsia 86:113–142

    Google Scholar 

  • Shunatova NN, Ostrovsky AN (2002) Group behaviour and chimneys in marine bryozoans. Mar Biol 140(3):503–518

    Google Scholar 

  • Silbermann S (1906) Untersuchungen über den feineren Bau von Alcyonidium mytili. Arch Nat 72:265–308

    Google Scholar 

  • Silén L (1944) The anatomy of Labiostomella gisleni Silén (Bryozoa Protocheilostomata). Kongl Svenska Vetensk-Akad Handl, Ser 3, 21:1–111

    Google Scholar 

  • Silén L (1945) The main features of the development of the ovum, embryo and ooecium in the ooecioferous Bryozoa Gymnolaemata. Ark Zool 35A(17):1–34

    Google Scholar 

  • Silén L (1947) On the anatomy and biology of Penetrantiidae and Immergentiidae (Bryozoa). Ark Zool 40A(4):1–48

    Google Scholar 

  • Silén L (1954) Developmental biology of Phoronidea of the Gullmar Fiord area (west coast of Sweden). Acta Zool 35(3):215–257

    Google Scholar 

  • Silén L (1966) On the fertilization problem in gymnolaematous Bryozoa. Ophelia 3:113–140

    Google Scholar 

  • Silén L (1977) Polymorphism. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 184–232

    Google Scholar 

  • Silva IP, Sliter WV (1999) Cretaceous paleoceanography: evidence from planctonic foraminiferal evolution. In: Barrera E, Johnston CC (eds) Evolution of the Cretaceous ocean-climate system. Geological Society of America, Boulder, pp 301–328

    Google Scholar 

  • Sinervo B, McEdward LR (1988) Developmental consequences of an evolutionary change in egg size: an experimental test. Evolution 42(5):885–899

    Google Scholar 

  • Skelton PW (2003) Survey of the Cretaceous world. In: Skelton PW (ed) The Cretaceous world. Cambridge University Press, Cambridge, pp 9–41

    Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108(962):499–506

    Google Scholar 

  • Smith DG, Werle SF, Klekowski EJ (2003) The anatomy and brooding biology of Pottsiella erecta (Potts, 1884) (Ectoprocta: Gymnolaemata: Ctenostomata) with an expanded diagnosis of the Pottsiellidae. Hydrobiologia 490:135–145

    Google Scholar 

  • Smitt FA (1865) Om Hafs-Bryozoernas utveckling och fettkroppar. Ofvers Kongl Vetensk Akad Forh 1:5–50

    Google Scholar 

  • Soule JD (1950a) A new species of Terebripora from the Pacific (Bryozoa Ctenostomata). J Wash Acad Sci 40(11):378–381

    Google Scholar 

  • Soule JD (1950b) Penetrantiidae and Immergentiidae from the Pacific (Bryozoa: Ctenostomata). T Am Microsc Soc 69(4):359–367

    Google Scholar 

  • Soule JD, Soule DF (1969a) Systematics and biogeography of burrowing bryozoans. Am Zool 9(3):791–802

    Google Scholar 

  • Soule JD, Soule DF (1969b) Three new species of burrowing bryozoans (Ectoprocta) from the Hawaiian Islands. Occas Pap Calif Acad Sci 78:1–9

    Google Scholar 

  • Soule JD, Soule DF (1975) Spathipora, its anatomy and phylogenetic affinities. In: Pouyet S (ed) Bryozoa 1974. Doc Lab Geol Fac Sci Lyon, HS 3(1):247–253

    Google Scholar 

  • Soule JD, Soule DF (1976) Spathipora mazatlanica, a new species of burrowing Bryozoa (Ctenostomata) from Mazatlan, Sinaloa, Mexico. Bull South Calif Acad Sci 75(1):38–42

    Google Scholar 

  • Southwood DA (1985) Ovicells in some Fenestrata from the Permian of N. E. England. In: Nielsen C, Larwood GP (eds) Bryozoa: Ordovician to recent. Olsen and Olsen, Fredensborg, pp 301–310

    Google Scholar 

  • Spight TM (1975) Factors influencing gastropod embryonic development and their selective cost. Oecologia 21:1–16

    Google Scholar 

  • Stach LW (1938) Observation on Carbasea indivisa Busk (Bryozoa). Proc Zool Soc Lond B 108(3):389–399

    Google Scholar 

  • Stewart JR (1992) Placental structure and nutritional provision to embryos in predominantly lecithotrophic viviparous reptiles. Am Zool 32:303–312

    Google Scholar 

  • Stewart JR, Thompson MB (2000) Evolution of placentation among squamate reptiles: recent research and future directions. Comp Biochem Phys A 127:411–431

    CAS  Google Scholar 

  • Strathmann RR (1975) Larval feeding in echinoderms. Am Zool 15:717–730

    Google Scholar 

  • Strathmann RR (1977) Egg size, larval development and juvenile size in benthic marine invertebrates. Am Nat 111(978):373–376

    Google Scholar 

  • Strathmann RR (1978a) The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32(4):894–906

    Google Scholar 

  • Strathmann RR (1978b) Progressive vacating of adaptive types during Phanerozoic. Evolution 32(4):906–914

    Google Scholar 

  • Strathmann RR (1980) Why does a larva swim so long? Paleobiology 6(4):373–376

    Google Scholar 

  • Strathmann RR (1985) Feeding and non-feeding larval development and life-history evolution in marine invertebrates. Annu Rev Ecol Syst 16:339–361

    Google Scholar 

  • Strathmann RR (1986) What controls the type of larval development? Summary statement for the evolution session. Bull Mar Sci 39(2):616–622

    Google Scholar 

  • Strathmann RR (1990) Why life histories evolve differently in the sea. Am Zool 30:197–207

    Google Scholar 

  • Strathmann RR (1993) Hypotheses on the origins of marine larvae. Annu Rev Ecol Syst 24:89–117

    Google Scholar 

  • Strathmann RR, Eernisse DJ (1994) What molecular phylogenies tell us about evolution of larval morphology. Am Zool 34:502–512

    Google Scholar 

  • Strathmann RR, Strathmann MF (1982) The relationship between adult size and brooding in marine invertebrates. Am Nat 119:91–102

    Google Scholar 

  • Strathmann RR, Vedder K (1977) Size and organic content of eggs of echinoderms and other invertebrates as related to developmental strategies and egg eating. Mar Biol 39(4):305–309

    Google Scholar 

  • Strathmann RR, Strathmann MF, Emson RH (1984) Does limited brood capacity link adult size, brooding and simultaneous hermaphroditism? A test with the starfish Asterina phylactica. Am Nat 123:796–818

    Google Scholar 

  • Strathmann RR, Fenaux L, Strathmann MF (1992) Heterochronic developmental plasticity in larval sea urchins and its implications for the evolution of nonfeeding larvae. Evolution 46:972–986

    Google Scholar 

  • Stratton JF (1975) Ovicells in Fenestella from the Speed Member, North Vernon Limestone (Eifelian, Middle Devonian) in Southern Indiana, U.S.A. In: Pouyet S (ed) Bryozoa 1974. Doc Lab Geol Fac Sci Lyon, HS 3(1):169–177

    Google Scholar 

  • Stratton JF (1981) Apparent ovicells and associated structures in the fenestrate bryozoan Polypora shumardii Prout. J Paleontol 55(4):880–884

    Google Scholar 

  • Ström R (1969) Sexual reproduction in a stoloniferous bryozoan, Triticella koreni (G.O. Sars). Zool Bidr Uppsala 38:113–127

    Google Scholar 

  • Ström R (1977) Brooding patterns of bryozoans. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 23–56

    Google Scholar 

  • Summers K, McKeon CS, Heying H (2006) The evolution of parental care and egg size: a comparative analysis in frogs. Proc R Soc B 273:687–692

    PubMed Central  PubMed  Google Scholar 

  • Swiderski Z, Xylander WER (2000) Vitellocytes and vitellogenesis in cestodes in relation to embryonic development, egg production and life cycle. Int J Parasitol 30:805–817

    CAS  PubMed  Google Scholar 

  • Taylor PD (1986a) The ancestrula and early growth pattern in two primitive cheilostome bryozoans: Pyripora catenularia (Fleming) and Pyriporopsis portlandensis Pohowsky. J Nat Hist 20:101–110

    Google Scholar 

  • Taylor PD (1986b) Charixa Lang and Spinicharixa gen. nov., cheilostome bryozoans from the Lower Cretaceous. Bull Br Mus (Nat Hist) Geol 40(4):197–222

    Google Scholar 

  • Taylor PD (1988a) Major radiation of cheilostome bryozoans: triggered by the evolution of a new larval type. Hist Biol 1:45–64

    Google Scholar 

  • Taylor PD (1988b) Colony growth pattern and astogenetic gradients in the Cretaceous cheilostome bryozoan Herpetopora. Palaeontology 31(2):519–549

    Google Scholar 

  • Taylor PD (1994) An early cheilostome bryozoan from the Upper Jurassic of Yemen. Neues Jahrb Geol P-A 191:331–344

    Google Scholar 

  • Taylor PD (2000) Origin of the modern bryozoan fauna. In: Culver SJ, Rawson PF (eds) Biotic response to global change. The last 145 million years. Cambridge University Press, Cambridge, pp 195–209

    Google Scholar 

  • Taylor PD, Ernst A (2004) Bryozoans. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician diversification event. Columbia University Press, New York, pp 147–156

    Google Scholar 

  • Taylor PD, Larwood GP (1988) Mass extinctions and the pattern of bryozoan evolution. In: Larwood GP (ed) Extinction and survival in the fossil record. Systematics association special, vol 34. Clarendon Press, Oxford, pp 99–119

    Google Scholar 

  • Taylor PD, Larwood GP (1990) Major evolutionary radiations in the Bryozoa. In: Taylor PD, Larwood GP (eds) Major evolutionary radiations. Systematics association special, vol 42. Clarendon Press, Oxford, pp 209–233

    Google Scholar 

  • Taylor PD, McKinney FK (2002) Brooding in the Cretaceous bryozoan Stichomicropora and the origin of ovicells in cheilostomes. In: Wyse Jackson PN, Buttler CJ, Spencer Jones M (eds) Bryozoan studies 2001. AA Balkema Publishers, Lisse/Abingdon/Exton/Tokyo, pp 307–314

    Google Scholar 

  • Taylor PD, Michalik J (1991) Cyclostome bryozoans from the Late Triassic (Rhaetian) of the West Carpathians, Czechoslovakia. Neues Jahrb Geol P-A 182:285–302

    Google Scholar 

  • Taylor PD, Monks N (1997) A new cheilostome genus pseudoplanktonic on molluscs and algae. Invert Biol 116(1):39–51

    Google Scholar 

  • Temkin MH (1994) Gamete spawning and fertilization in the gymnolaemate bryozoan Membranipora membranacea. Biol Bull 187(2):143–155

    CAS  PubMed  Google Scholar 

  • Temkin MH (1996) Comparative fertilization biology of gymnolaemate bryozoans. Mar Biol 127(2):329–339

    Google Scholar 

  • Thompson RJ (1983) The relationship between food rations and reproductive effort in the green sea urchin, Strongylocentrotus droebachiensis. Oecologia 56:50–57

    Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45

    CAS  PubMed  Google Scholar 

  • Todd JA (2000) The central role of ctenostomes in bryozoan phylogeny. In: Herrera Cubilla A, Jackson JBC (eds) Proceedings of the 11th international bryozoology association conference. Smithsonian Tropical Research Institute, Panama, pp 104–135

    Google Scholar 

  • Todd CD, Doyle RW (1981) Reproductive strategies of marine invertebrates: a settlement timing hypothesis. Mar Ecol Prog Ser 4:75–83

    Google Scholar 

  • Tompa AS (1984) Land snails (Stylommatophora). In: Wilbur KM, Tompa AS, Verdonk NH, Van Den Biggelaar JAM (eds) The Mollusca, vol 7, Reproduction. Academic Press, Orlando/San Diego/San Francisco/New York/London/Toronto/Montreal/Sydney/Tokyo/Sao Paulo, pp 47–140

    Google Scholar 

  • Toolson EC (1985) Uptake of leucine and water by Centruroides sculpturatus (Ewing) embryos (Scorpiones, Buthidae). J Arachnol 13:303–310

    Google Scholar 

  • Tsyganov-Bodounov A, Hayward PJ, Porter JS, Skibinski DOF (2009) Bayesian phylogenetics of Bryozoa. Mol Phylogenet Evol 52:904–910

    CAS  PubMed  Google Scholar 

  • Turner CL (1940) Pseudoamnion, pseudochorion, and follicular pseudoplacenta in poeciliid fishes. J Morphol 67:59–89

    Google Scholar 

  • Underwood AJ (1974) On models on reproductive strategy in benthic marine invertebrates. Am Nat 108:874–878

    Google Scholar 

  • Valentine JW (1986) The Permian-Triassic extinction event and invertebrate developmental modes. Bull Mar Sci 39(2):607–615

    Google Scholar 

  • Valentine JW, Jablonski D (1983) Larval adaptations and patterns in brachiopod diversity in space and time. Evolution 37(5):1052–1061

    Google Scholar 

  • van Beneden PJ (1844) Recherches sur l’organisation des Laguncula et l’histoire naturelle des différents polypes Bryozoaires qui habitent la côte d’Ostende. Nouv Mem Acad R Sci Belles Lettr Bruxelles 18:1–29

    Google Scholar 

  • Vance R (1973) On reproductive strategies in marine benthic invertebrates. Am Nat 107:339–352

    Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258

    Google Scholar 

  • Villinski JT, Villinski JC, Byrne V, Raff RA (2002) Convergent maternal provisioning and life-history evolution in echinoderms. Evolution 56(9):1764–1775

    PubMed  Google Scholar 

  • Voigt E (1981) Répartition et utilisation stratigraphique des Bryozoaires du Crétacé Moyen (Aptien-Coniacien). Cretac Res 2:439–462

    Google Scholar 

  • Voigt E (1985) The Bryozoa of the Cretaceous-Tertiary boundary. In: Nielsen C, Larwood GP (eds) Bryozoa: Ordovician to recent. Olsen and Olsen, Fredensborg, pp 329–342

    Google Scholar 

  • von Salvini-Plawen L (1982) A paedomorphic origin of the oligomerous animals? Zool Scr 11:77–81

    Google Scholar 

  • Waeschenbach A, Taylor PD, Littlewood DT (2012) A molecular phylogeny of bryozoans. Mol Phylogenet Evol 62:718–735

    PubMed  Google Scholar 

  • Waters A (1896(1898)) Notes on Bryozoa from Rapallo and other Mediterranean localities – chiefly Cellulariidae. J Linn Soc Zool 26(166):1–21

    Google Scholar 

  • Waters A (1900) Bryozoa from Franz-Josef Land, collected by the Jackson-Harmsworth expedition, 1896–1897. J Linn Soc Zool 28(179):126–133

    Google Scholar 

  • Waters A (1907) Tubucellaria: its species and ovicells. J Linn Soc Zool 30:126–133

    Google Scholar 

  • Waters A (1909) Reports on marine biology of the Sudanese Red Sea, from collections made by Cyril Crossland, M.A., B.Sc., F.Z.S.; together with collections made in the Red Sea by Dr. R. Hartmeyer. – XII. The Bryozoa. Part I. – Cheilostomata. J Linn Soc Zool 31:123–181

    Google Scholar 

  • Waters A (1912) A structure in Adeonella (Laminopora) contorta (Michelin) and some other Bryozoa, together with remarks on the Adeonidae. Ann Mag Nat Hist, 8 Ser, 9(53):489–500

    Google Scholar 

  • Waters A (1913) The marine fauna of British East Africa and Zanzibar, from collections made by Cyril Crossland, M.A., B.Sc., F.Z.S., in the years 1901–1902. Bryozoa-Cheilostomata. Proc Zool Soc Lond, Parts 3–4 32:458–537

    Google Scholar 

  • Wendt DE (1998) Effect of larval swimming duration on growth and reproduction of Bugula neritina (Bryozoa) under field conditions. Biol Bull 195:126–135

    Google Scholar 

  • Wendt DE (2000) Energetics of larval swimming and metamorphosis in four species of Bugula (Bryozoa). Biol Bull 198:346–356

    CAS  PubMed  Google Scholar 

  • Williams GL, Bujak JP (1985) Mesozoic and Cenozoic dinoflagellates. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plancton stratigraphy. Cambridge University Press, London/New York/La Rochelle/Melbourne/Sydney/Cambridge, pp 847–964

    Google Scholar 

  • Winston JE (1977) Feeding in marine bryozoans. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 233–271

    Google Scholar 

  • Winston JE (1978) Polypide morphology and feeding behaviour in marine ectoprocts. Bull Mar Sci 28(1):1–31

    Google Scholar 

  • Wood TS (1983) General features of the class Phylactolaemata. In: Robinson RA (ed) Treatise on invertebrate paleontology, vol 1. Geological Society of America/University of Kansas, Lawrence/Boulder, pp 287–303

    Google Scholar 

  • Wood TS (2008) Development and metamorphosis of cyphonautes larvae in the freshwater ctenostome bryozoan, Hislopia malayensis Annandale, 1916. In: Hageman SJ, Key MMJ Jr, Winston JE (eds) Proceedings of the 14th international bryozoology association conference. Virginia Mus Nat Hist Spec Publ 15:339–346

    Google Scholar 

  • Wooding P, Burton G (2008) Comparative placentation: structures, functions and evolution. Springer, Berlin/Heidelberg

    Google Scholar 

  • Woollacott RM (1999) Bryozoa (Ectoprocta). In: Knobil E, Neill JD (eds) Encylopedia of reproduction, vol 1. Academic, New York, pp 439–448

    Google Scholar 

  • Woollacott RM, Zimmer RL (1972a) A simplified placenta-like brooding system in Bugula neritina (Bryozoa). In: Arceneaux CJ (ed) 30th annual proceedings of the electron microscope society of America. Claitor’s Publishing Division, Baton Rouge, pp 30–31

    Google Scholar 

  • Woollacott RM, Zimmer RL (1972b) Origin and structure of the brood chamber in Bugula neritina (Bryozoa). Mar Biol 16:165–170

    Google Scholar 

  • Woollacott RM, Zimmer RL (1975) A simplified placenta-like system for the transport of extraembryonic nutrients during embryogenesis of Bugula neritina (Bryozoa). J Morphol 147:355–378

    Google Scholar 

  • Wourms JP (1981) Viviparity: the maternal-fetal relationships in fishes. Am Zool 21:473–515

    Google Scholar 

  • Wourms JP (1987) Oogenesis. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 9, General aspects: seeking unity in diversity. Boxwood Press, Pacific Grove, pp 49–178

    Google Scholar 

  • Wourms JP, Lombardi J (1992) Reflections on the evolution of piscine viviparity. Am Zool 32:276–293

    Google Scholar 

  • Wourms JP, Grove PD, Lombardi J (1988) The maternal-embryonic relationship in viviparous fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 11B. Academic Press, Washington, DC/San-Diego, pp 1–134

    Google Scholar 

  • Wray GA (1992) The evolution of larval morphology during the post-paleozoic radiation of echinoids. Paleobiology 18(3):258–287

    Google Scholar 

  • Wray GA (1995a) Evolution of larvae and developmental modes. In: McEdwards L (ed) Ecology of marine invertebrate larvae. CRC Press, Boca Raton/London/New York/Washington, DC, pp 413–447

    Google Scholar 

  • Wray GA (1995b) Punctuated evolution of embryos. Science 267:1115–1116

    CAS  PubMed  Google Scholar 

  • Wray GA (1996) Parallel evolutiom of nonfeeding larvae in echinoids. Syst Biol 45(3):308–322

    Google Scholar 

  • Wray GA (2002) Do convergent developmental mechanisms underlie convergent phenotypes? Brain Behav Evol 59(5–6):327–336

    PubMed  Google Scholar 

  • Wray GA, Raff RA (1990) Novel origins of lineage founder cells in the direct-developing echinoid Heliocidaris erythrogramma. Dev Biol 141:41–54

    CAS  PubMed  Google Scholar 

  • Wray GA, Raff RA (1991) The evolution of developmental strategy in marine invertebrates. Trends Ecol Evol 6:45–50

    CAS  PubMed  Google Scholar 

  • Yoshioka PM (1982) Role of planctonic and benthic factors in the population dynamics of the bryozoan Membranipora membranacea. Ecology 63:457–468

    Google Scholar 

  • Yund PO, McCartney MA (1994) Male reproductive success in sessile invertebrates: competition for fertilization. Ecology 75:2151–2167

    Google Scholar 

  • Zarenkov NA (1982) Arthropoda. Crustaceans. Part I. Moscow University Press, Moscow [in Russian]

    Google Scholar 

  • Zigler KS, Raff EC, Popodi E, Raff RA, Lessios HA (2003) Adaptive evolution of bindin in the genus Heliocidaris is correlated with the shift to direct development. Evolution 57:2293–2302

    CAS  PubMed  Google Scholar 

  • Zimmer RL (1991) Phoronida. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates, vol 6, Echinoderms and lophophorates. Boxwood Press, Pacific Grove, pp 1–45

    Google Scholar 

  • Zimmer RL, Woollacott RM (1977a) Structure and classification of gymnolaemate larvae. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 57–89

    Google Scholar 

  • Zimmer RL, Woollacott RM (1977b) Metamorphosis, ancestrulae, and coloniality in bryozoan life cycles. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 91–142

    Google Scholar 

  • Zirpolo G (1933) Zoobotryon verticillatum (Delle Chiaje). Mem Acad Pontif Nuov Lincei 2(17):109–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ostrovsky, A.(. (2013). Evolution of Reproductive Patterns in Cheilostomata. In: Evolution of Sexual Reproduction in Marine Invertebrates. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7146-8_3

Download citation

Publish with us

Policies and ethics