Skip to main content

Relationship of Chlorophyll Biosynthetic Heterogeneity to the Greening Group Affiliation of Plants

  • Chapter
  • First Online:
Chlorophyll Biosynthesis and Technological Applications
  • 1100 Accesses

Abstract

As we have described at great length in the first 11 chapters, biosynthetic heterogeneity refers to the biosynthesis of a particular metabolite by an organelle, tissue or organism via multiple biosynthetic routes (Rebeiz et al. 2003). It has been well documented in delta-aminolevulinic acid (ALA), chlorophyll (Chl) a and vitamin B12 biosynthesis (Arigoni 1994; Rebeiz et al. 1994; Scott 1994). As described in previous chapters, It has been demonstrated that in green plants, Chl a and Chl b are formed via parallel biosynthetic routes, namely (a) DV Chl a biosynthetic routes, (b) MV routes and (c) mixed DV-MV routes (Kolossov and Rebeiz 2010). Intermediates of the DV carboxylic route consist of dicarboxylic and monocarboxylic tetrapyrroles with vinyl groups at positions 2 and 4 of the macrocycle, such as DV protoporphyrin IX (Proto), DV Mg-Proto, DV Mg-Proto monomethyl ester (Mpe), DV Pchlide a, and DV Chlide a. The MV carboxylic routes involve dicarboxylic and monocarboxylic tetrapyrroles including, MV Mg-Proto, MV Mpe, MV Pchlide a, and MV Chlide a, which have one vinyl and one ethyl group at positions 2 and 4 of the macrocycle, respectively. The mixed DV-MV carboxylic routes involve monocarboxylic tetrapyrroles such as DV and MV Pchlide a and Chlide a.

If scientific reasoning were limited to the logical processes of arithmetic, we should not get very far in our understanding of the physical world (Vannevar Bush).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Mageed HA, El Sahhar KF, Robertson KR et al (1997) Chloroplast biogenesis 77. Two novel monovinyl and divinyl light-dark greening groups of plants and their relationship to the chlorophyll a biosynthetic heterogeneity of green plants. Photochem Photobiol 66:89–96

    Article  CAS  Google Scholar 

  • Adra AN, Rebeiz CA (1998) Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68:852–856

    Article  CAS  Google Scholar 

  • Arigoni D (1994) Summing up. In: Chadwick DJ, Ackrill K (eds) The biosynthesis of the tetrapyrrole pigments. Wiley, New York, pp 285–308

    Google Scholar 

  • Armstrong GA, Runge S, Frick G et al (1995) Identification of NADPH:protochlorophyllide oxidoreductases a and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll deficient mutant of maize. Photobiochem Photobiophys 2:199–207

    CAS  Google Scholar 

  • Belanger FC, Rebeiz CA (1982) Chloroplast biogenesis: detection of monovinyl magnesium protoporphyrin monoester and other monovinyl magnesium porphyrins in higher plants. J Biol Chem 257:1360–1371

    CAS  PubMed  Google Scholar 

  • Carey EE, Rebeiz CA (1985) Chloroplast biogenesis 49. Difference among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79:1–6

    Article  CAS  PubMed  Google Scholar 

  • Carey EE, Tripathy BC, Rebeiz CA (1985) Chloroplast biogenesis 51. Modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol 79:1059–1063

    Article  CAS  PubMed  Google Scholar 

  • Chisholm S, Olson RJ, Zettler ER et al (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Article  Google Scholar 

  • Chisholm SW, Frankel S, Goerike R et al (1992) Prochlorococcus marinus nov. gen. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Mikrobiol 157:297–300

    CAS  Google Scholar 

  • Fasoula DA, Smyth C, A RC (1996) Relationship of the monovinyl protochlorophyllide a content to plant yield. In: Pessarakli M (ed) Handbook of photosynthesis. CRC press, Boca Raton, pp 671–679

    Google Scholar 

  • Goerike R, Repeta D (1992) The pigments of Prochlorococcus marinus. The presence of divinyl-chlorophyll a and b in a marine prochlorophyte. Limnol Oceanogr 37:425–433

    Article  Google Scholar 

  • Holtorf R, Reinbothe S, Reinbothe C et al (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci U S A 92:3254–3258

    Article  CAS  PubMed  Google Scholar 

  • Ioannides IM, Fasoula DM, R RK et al (1994) An evolutionary study of chlorophyll biosynthetic heterogeneity in green plants. Biochem Syst Ecol 22:211–220

    Article  CAS  Google Scholar 

  • Kim JS, Rebeiz CA (1996) Origin of the chlorophyll a biosynthetic heterogeneity in higher plants. J Biochem Mol Biol 29:327–334

    CAS  Google Scholar 

  • Kolossov VL, Rebeiz CA (2010) Evidence for various 4-vinyl reductase activities in higher plants. In: Rebeiz CA, Benning C, Bohnert HJ et al (eds) The chloroplast: basics and applications. Springer, Dordrecht, pp 25–38

    Chapter  Google Scholar 

  • Parham R, Rebeiz CA (1992) Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific NADPH-dependent enzyme. Biochemistry 31:8460–8464

    Article  CAS  PubMed  Google Scholar 

  • Parham R, Rebeiz CA (1995) Chloroplast biogenesis 72: a [4-vinyl] chlorophyllide a reductase assay using divinyl chlorophyllide a as an exogenous substrate. Anal Biochem 231:164–169

    Article  CAS  PubMed  Google Scholar 

  • Rebeiz CA, Wu SM, Kuhadje M et al (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol Cell Biochem 58:97–125

    Article  Google Scholar 

  • Rebeiz CA, Parham R, Fasoula DA et al (1994) Chlorophyll biosynthetic heterogeneity. In: Chadwick DJ, Ackrill K (eds) The biosynthesis of the tetrapyrrole pigments. Wiley, New York, pp 177–193

    Google Scholar 

  • Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 4. American Scientific Publishers, Los Angeles, pp 183–248

    Google Scholar 

  • Rebeiz CA, Kopetz KJ, Kolossov VL (2005) Chloroplast biogenesis: probing the relationship between chlorophyll biosynthetic routes and the topography of chloroplast biogenesis by resonance excitation energy transfer determinations. In: Pessarkli M (ed) Handbook of photosynthesis, 2nd edn. Marcel Dekker, Inc, New York, Revised and Expanded

    Google Scholar 

  • Scott AI (1994) Recent studies of the enzymically controlled steps in B12 biosynthesis. In: Chadwick DJ, Ackrill K (eds) The biosynthesis of the tetrapyrrole pigments. Wiley, New York, pp 285–308

    Google Scholar 

  • Shioi Y, Sasa T (1983) Formation and degradation of protochlorophylls in etiolated and greening cotyledons of cucumber. Plant Cell Physiol 24:835–840

    CAS  Google Scholar 

  • Shioi Y, Takamiya KI (1992) Monovinyl and divinyl protochlorophyllide pools in etiolated tissues of higher plants. Plant Physiol 100:1291–1295

    Article  CAS  PubMed  Google Scholar 

  • Suzuki JY, Bauer CE (1995) Altered monovinyl and divinyl protochlorophyllide pools in bchJ mutants of rhodobacter capsulatus. Possible monovinyl substrate discrimination of light-independent protochlorophyllide reductase. J Biol Chem 270:3732–3740

    Article  CAS  PubMed  Google Scholar 

  • Tripathy BC, Rebeiz CA (1988) Chloroplast biogenesis 60. Conversion of divinyl protochlorophyllide to monovinyl protochlorophyllide in green(ing) barley, a dark monovinyl/light divinyl plant species. Plant Physiol 87:89–94

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis MJW, Kraay GW (1990) Vertical distribution of pigment composition of a picoplankton prochlorophyte in the subtropical north Atlantic: a combined study of pigments and flow cytometry. Mar Ecol Prog Ser 68:121–127

    Article  CAS  Google Scholar 

  • Whyte BJ, Griffiths TW (1993) 8-Vinyl reduction and chlorophyll a biosynthesis in higher plants. Biochem J 291:939–944

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rebeiz, C.A. (2014). Relationship of Chlorophyll Biosynthetic Heterogeneity to the Greening Group Affiliation of Plants. In: Chlorophyll Biosynthesis and Technological Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7134-5_14

Download citation

Publish with us

Policies and ethics