The Chl a Carboxylic Biosynthetic Routes: Conversion of Chlide a to Chl a

  • Constantin A. Rebeiz


Most of the chlorophyll a (Chl a) in higher and lower plants is formed by esterification of chlorophyllide a (Chlide a) (Fig. 10.1). A minor Chl a fraction esterified with long chain fatty acids (LCFA) other than phytol is also formed from MV protochlorophyllide a E (Pchlide a E) as described in  Chap. 9. In this section emphasis will be placed on the biosynthetic heterogeneity of Chl a formed by esterification of Chlide a with phytol.


Long Chain Fatty Acid Light Phase Dark Incubation Photoperiodic Condition Direct Esterification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adra AN, Rebeiz CA (1998) Chloroplast biogenesis 81. Transient formation of divinyl chlorophyll a following a 2.5 ms light flash treatment of etiolated cucumber cotyledons. Photochem Photobiol 68:852–856CrossRefGoogle Scholar
  2. Akoyunoglou G, Tsakiris S, Argyroudi-Akoyunoglou JH (1981) Independent growth of the photosystem I and II units. The role of the light-harvesting pigment-protein complexes. In: Akoyunoglou G (ed) Photosynthesis V. Chloroplast development. Balaban International Science Services, Philadelphia, pp 523–533Google Scholar
  3. Alberte RS, Thornber JP, Naylor AW (1972) Time of appearance of photosystem I and II in chloroplast of greening jack bean leaves. J Exp Bot 23(77):1060–1069CrossRefGoogle Scholar
  4. Bazzaz MB (1981) New chlorophyll chromophores isolated from a chlorophyll deficient mutant of maize. Photobiochem Photobiophys 2:199–207Google Scholar
  5. Benz J, Rudiger W (1981) Chlorophyll biosynthesis: various chlorophyllides as exogenous substrates for chlorophyll synthetase. Z Naturforsch 36c:51–57Google Scholar
  6. Benz J, Wolf C, Rudiger W (1980) Chlorophyll biosynthesis: hydrogenation of geranylgeraniol. Plant Sci Lett 19:225–230CrossRefGoogle Scholar
  7. Chisholm S, Olson RJ, Zettler ER et al (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343CrossRefGoogle Scholar
  8. Chisholm SW, Frankel S, Goerike R et al (1992) Prochlorococcus marinus nov. gen. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300CrossRefGoogle Scholar
  9. Cohen CE, Rebeiz CA (1978) Chloroplast biogenesis 22. Contribution of short wavelength and long wavelength protochlorophyll species to the greening of higher plants. Plant Physiol 61:824–829PubMedCrossRefGoogle Scholar
  10. Cohen CE, Bazzaz MB, Fullet SE et al (1977) Chloroplast biogenesis XX. Accumulation of porphyrin and phorbin pigments in cucumber cotyledons during photoperiodic greening. Plant Physiol 60:743–746PubMedCrossRefGoogle Scholar
  11. Daniell H, Rebeiz CA (1984) Bioengineering of photosynthetic membranes: requirement of magnesium for the conversion of chlorophyllide a to chlorophyll a during the greening of etiochloroplasts in vitro. Biotech Bioeng 26:481–487CrossRefGoogle Scholar
  12. Gaubier P, Wu HJ, Laudie MD et al (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249:58–64PubMedCrossRefGoogle Scholar
  13. Goerike R, Repeta D (1992) The pigments of Prochlorococcus marinus. The presence of divinyl-chlorophyll a and b in a marine prochlorophyte. Limnol Oceanogr 37:425–433CrossRefGoogle Scholar
  14. Helfrich M, Rudiger W (1992) Various metallopheophorbides as substrates for chlorophyll synthetase. Z Naturforsch 47c:231–238Google Scholar
  15. Kolossov VL, Rebeiz CA (2001) Chloroplast biogenesis 84. Solubilization and partial purification of membrane-bound [4-vinyl] chlorophyllide a reductase from etiolated barley leaves. Anal Biochem 295:214–219PubMedCrossRefGoogle Scholar
  16. Ogawa T (1975) An intermediate in the phytylation of chlorophyllide a in vivo. Plant Cell Physiol 16:199–202Google Scholar
  17. Rebeiz CA, Wu SM, Kuhadje M et al (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity. Mol Cell Biochem 58:97–125CrossRefGoogle Scholar
  18. Rebeiz CA, Kolossov VL, Briskin D et al (2003) Chloroplast biogenesis: chlorophyll biosynthetic heterogeneity, multiple biosynthetic routes and biological spin-offs. In: Nalwa HS (ed) Handbook of photochemistry and photobiology. American Scientific Publishers, Los Angeles, pp 183–248Google Scholar
  19. Rudiger W (1993) Esterification of chlorphyllide and its implication for thylakoids development. In: Sundqvist C, Ryberg M (eds) Pigment-protein complexes in plastids: synthesis and assembly. Academic, New York, pp 219–240Google Scholar
  20. Rudiger W, Benz J, Lempert U et al (1976) Inhibition of phytol accumulation with herbicides: geranylgraniol and dihydrogranylgeraniol-containing chlorophyll from wheat seedlings. Z Pflanzenphysiol 80:131–143Google Scholar
  21. Rudiger W, Benz J, Guthoff C (1980) Detection and characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109:193–200PubMedCrossRefGoogle Scholar
  22. Schoch S (1978) The esterification of chlorophyllide a in greening bean leaves. Z Naturforsch 33c:712–714Google Scholar
  23. Schoch S, Hehlein C, Rudiger W (1980) Influence of anaerobiosis on chlorophyll biosynthesis in greening oat seedlings (Avena sativa L.). Plant Physiol 66:576–579PubMedCrossRefGoogle Scholar
  24. Soll J, Schultz G (1981) Phytol synthesis from geranylgeraniol in spinach chloroplasts. Biochem Biophys Res Commun 99:907–912PubMedCrossRefGoogle Scholar
  25. Veldhuis MJW, Kraay GW (1990) Vertical distribution of pigment composition of a picoplankton prochlorophyte in the subtropical north Atlantic: a combined study of pigments and flow cytometry. Mar Ecol Prog Ser 68:121–127CrossRefGoogle Scholar
  26. Wang P, Gao J, Wan C et al (2010) Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol 153:994–1003PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Constantin A. Rebeiz
    • 1
  1. 1.Rebeiz Foundation for Basic ResearchChampaignUSA

Personalised recommendations