Skip to main content

How to Pass the Gap – Functional Morphology and Biomechanics of Spider Bridging Threads

  • Chapter
  • First Online:
Biotechnology of Silk

Part of the book series: Biologically-Inspired Systems ((BISY,volume 5))

Abstract

Many spiders use airborne silk threads for locomotion purposes or web initiation. In the case of bridging, the thread is used to span and cross a gap between two microhabitat structures. In this chapter we report some observations and experiments on bridging behaviour, structure and function of the bridging lines, hoping to inspire new biomechanical and biomimetic research on this fascinating, but sparsely studied mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bristowe WS (1939) The comity of spiders, vol I. Ray Society, London, 228 pp

    Google Scholar 

  • Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non‐silk‐like “spacer regions”. Protein Sci 7:667–672

    Article  PubMed  CAS  Google Scholar 

  • Corcobado G, Rodríguez-Gironés MA, De Mas E, Moya-Laraño J (2010) Introducing the refined gravity hypothesis of extreme sexual size dimorphism. BMC Evol Biol 10:236

    Article  PubMed  Google Scholar 

  • Craig CL (2003) Spiderwebs and silk. Tracing evolution from molecules to genes to phenotypes. Oxford University Press, New York, p 231

    Google Scholar 

  • Eberhard WG (1987) How spiders initiate airborne lines. J Arachnol 15:1–9

    Google Scholar 

  • Filippov A, Popov VL, Gorb SN (2011) Shear induced adhesion: contact mechanics of biological spatula-like attachment devices. J Theor Biol 276:126–131

    Article  PubMed  Google Scholar 

  • Glassmaker NJ, Jagota A, Hui C-Y, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Interface 1:23–33

    Article  PubMed  CAS  Google Scholar 

  • Gorb SN, Landolfa MA, Barth FG (1998) Dragline-associated behaviour of the orb web spider Nephila clavipes (Araneoidea, Tetragnathidae). J Zool 244:323–330

    Article  Google Scholar 

  • Gregorič M, Agnarsson I, Blackledge TA, Kuntner M (2011) How did the spider cross the river? Behavioral adaptations for river-bridging webs in Caerostris darwini (Araneae: Araneidae). PLoS ONE 6(10):e26847

    Article  PubMed  Google Scholar 

  • Hawthorn AC, Opell BD (2003) van der Waals and hygroscopic forces of adhesion generated by spider capture threads. J Exp Biol 206:3905–3911

    Article  PubMed  Google Scholar 

  • Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21:1950–1959

    Article  PubMed  CAS  Google Scholar 

  • Homann H (1957) Haften Spinnen an einer Wasserhaut? Naturwissenschaften 44:318–319

    Article  Google Scholar 

  • Kendall K (1975) Thin-film peeling – the elastic term. J Phys D: Appl Phys 8:1449–1452

    Article  Google Scholar 

  • Kleinteich A (2009) Life history of the bridge spider, Larinioides sclopetarius (Clerck, 1757). PhD thesis, University of Hamburg

    Google Scholar 

  • McCook HC (1889) American spiders and their spinning work, vol I. The author, Philadelphia

    Google Scholar 

  • Moya-Laraño J, Vinković D, De Mass E, Corcobado G, Moreno E (2008) Morphological evolution of spiders predicted by pendulum mechanics. PLoS One 3:e1841

    Article  PubMed  Google Scholar 

  • Niederegger S, Gorb SN (2006) Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A 192:1223–1232

    Article  Google Scholar 

  • Opell BD, Schwend HS (2009) Adhesive efficiency of spider prey capture threads. Zoology 112:16–26

    Article  PubMed  Google Scholar 

  • Peressadko A, Gorb SN (2004) When less is more: experimental evidence for tenacity enhancement by division of contact area. J Adhes 80:247–261

    Article  CAS  Google Scholar 

  • Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Adhes Sci Technol 118:7614–7620

    CAS  Google Scholar 

  • Peters HM (1990) On the structure and glandular origin of bridging lines used by spiders for moving to distant places. Acta Zool Fenn 190:309–314

    Google Scholar 

  • Pugno N, Vanzo J, Buehler M (2011) Simultaneous material and structural optimization in the spider web attachment disk. In: Proceedings of: non equilibrium process: the last 40 years and the future, 29 August–2 September 2011, Obergurgl, Tirol

    Google Scholar 

  • Rodríguez-Gironés MA, Corcobado G, Moya-Laraño J (2010) Silk elasticity as a potential constraint on spider body size. J Theor Biol 266:430–435

    Article  PubMed  Google Scholar 

  • Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19

    Article  PubMed  Google Scholar 

  • Sahni V, Harris J, Blackledge TA, Dhinojwala A (2012) Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat Commun 3:1106

    Article  PubMed  Google Scholar 

  • Stauffer SL, Coguill S, Lewis RV (1994) Comparison of physical properties of three silks from Nephila clavipes and Araneus gemmoides. J Arachnol 22:5–11

    Google Scholar 

  • Wolff JO, Gorb SN (2013) Radial arrangement of Janus-like setae permits friction control in spiders. Sci Rep 3:1101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Victoria Kastner is acknowledged for linguistic corrections of the manuscript. This work was supported by funds from the German Science Foundation DFG (contract No. GO995/10-1) to SG.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wolff, J.O., Schneider, J.M., Gorb, S.N. (2014). How to Pass the Gap – Functional Morphology and Biomechanics of Spider Bridging Threads. In: Asakura, T., Miller, T. (eds) Biotechnology of Silk. Biologically-Inspired Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7119-2_9

Download citation

Publish with us

Policies and ethics