Characterization of Underwater Silk Proteins from Caddisfly Larva, Stenopsyche marmorata

  • Kousaku OhkawaEmail author
  • Takaomi Nomura
  • Ryoichi Arai
  • Koji Abe
  • Masuhiro Tsukada
  • Kimio Hirabayashi
Part of the Biologically-Inspired Systems book series (BISY, volume 5)


The underwater silk threads of a caddisfly larva, Stenopsyche marmorata, is composed of four kinds of proteins, which are designated as Smsp-1 to -4. Smsp-1 has been purified in a electrophoretic homogeneity, and the peptide sequencing of the Smsp-1 tryptic digests indicated the presence of eight kinds of characteristic segments, most of which are enriched in Pro residues. The segments 3 and 4 are the 14-residue sequences of SLGPYGDXLGPYGG (X = G, D, or V) and GVGPYGDGLGPYGG, respectively. Partial molecular cloning of the Smsp-1-C-end region suggested that the hydrophobic segment 3,4-repeating moieties occupy mostly a half of the entire primary sequence of Smsp-1 gene. The segments 7 and 8 contain highly phosphorylated regions, where the Ser residues are exclusively modified in the cluster-like sequences as –(Xaa S) n – (Xaa = G, A, V, or I; S = O-phospho-L-serine; n = 3 or 4). The O-phosphorylation of Smsp-1 may switch the protein function as the fiber-forming components to the underwater cements for building the pupal case in the late 5th instar stage of the larvae.


Caddisfly Stenopsyche marmorata Biochemical characterization Underwater silk Cement protein 



This work was supported by the Global COE Program from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT), and also by Grants-in-Aid No. 22350103, No. 23651083 for KO, No. 22510028 for KH, and No. 22580060 for MT from MEXT. Part of this study was performed through Program for Dissemination of Tenure-Track System funded by MEXT. Part of this study was supported by Japanese Association for Marine Biology (JAMBIO) No 23–73.


  1. Asakura T, Ohgo K, Komatsu K, Kanenari M, Okuyama K (2005a) Refinement of repeated β-turn structure for silk I conformation of Bombyx mori silk fibroin using 13C solid-state NMR and X-ray diffraction methods. Macromolecules 38(17):7397–7403CrossRefGoogle Scholar
  2. Asakura T, Ohgo K, Ishida T, Taddei P, Monti P, Kishore R (2005b) Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides: high-resolution 13C cross-polarization/magic-angle spinning NMR study. Biomacromolecules 6(1):468–474PubMedCrossRefGoogle Scholar
  3. Asakura T, Yao J, Yang M, Zhu Z, Hirose H (2007) Structure of the spinning apparatus of a wild silkworm Samia cynthia ricini and molecular dynamics calculation on the structural change of the silk fibroin. Polymer 48(7):2064–2070CrossRefGoogle Scholar
  4. Ashton NN, Taggart DS, Stewart RJ (2012) Silk tape nanostructure and silk gland anatomy of trichoptera. Biopolymers 97(6):432–445PubMedCrossRefGoogle Scholar
  5. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(6):e514PubMedCrossRefGoogle Scholar
  6. Beams HW, Sekhon SS (1966) Morphological studies on secretion in the silk glands of the caddisfly larvae, Platyphylax designatus walker. Z Zellforsch Mikrosk Anat (Vienna, Austria : 1948) 72(3):408–414CrossRefGoogle Scholar
  7. Capony J-P, Demaille JG (1983) A rapid microdetermination of phosphoserine, phosphothreonine, and phosphotyrosine in proteins by automatic cation exchange on a conventional amino acid analyzer. Anal Biochem 128(1):206–212PubMedCrossRefGoogle Scholar
  8. Case ST, Smith SV (1994) Synthetic and recombinant domains from a midge’s giant silk protein. Role for disulfide bonds. Silk Polym ACS Symp Ser 544:91–97CrossRefGoogle Scholar
  9. Case ST, Powers J, Hamilton R, Burton MJ (1994) Silk and silk proteins from two aquatic insects. Silk Polym ACS Symp Ser 544:80–90CrossRefGoogle Scholar
  10. Engster MS (1976) Studies on silk secretion in the trichoptera (F. Limnephilidae). II. Structure and amino acid composition of the silk. Cell Tissue Res 169(1):77–92PubMedCrossRefGoogle Scholar
  11. Ha SW, Gracz HS, Tonelli AE, Hudson SM (2005) Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules 6(5):2563–2569PubMedCrossRefGoogle Scholar
  12. Hirabayashi K, Kimura G, Fukunaga Y (2004) Distribution pattern of aquatic insects in the upper and middle reaches of the Chikuma River in Central Japan. Korean J Limnol 37(4):394–399Google Scholar
  13. Hiro M (1957) Study on the net-spinning caddis-fly larvae in the water-tunnel of Minakata water power plant, Tenriu-Gawa (in Japanese). J Nagoya Jogakuin Jr Coll 4:65–77Google Scholar
  14. Iizuka E (1971) Conformation of Stenopsyche griseipennis silk protein in solution. Nippon Sanshigaku Zasshi 40(4):300–306Google Scholar
  15. Kimura G, Inoue E, Hirabayashi K (2008) Seasonal abundance of adult caddisfly (Trichoptera) in the middle reaches of the Shinano River in central Japan. In: Robinson WH, Bajomi D (eds) Proceedings of the sixth international conference on urban pests, OOK-Press Kft, Budapest, pp 259–266, 3–16 July 2008Google Scholar
  16. Kraut A, Sloan J, Silviu-Dan F, Peng Z, Gagnon D, Warrington R (1994) Occupational allergy after exposure to caddisflies at a hydroelectric power plant. Occup Environ Med 51(6):408–413PubMedCrossRefGoogle Scholar
  17. Kriska G, Malik P, Szivák I, Horváth G (2008) Glass buildings on river banks as “polarized light traps” for mass-swarming polarotactic caddisflies. Naturwissenschaften 95(5):461–467PubMedCrossRefGoogle Scholar
  18. Lawrence BA, Vierra CA, Moore AM (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5(3):689–695PubMedCrossRefGoogle Scholar
  19. Michal CA, Simmons AH, Chew BG, Zax DB, Jelinski LW (1996) Presence of phosphorus in Nephila clavipes dragline silk. Biophys J 70(1):489–493PubMedCrossRefGoogle Scholar
  20. Mita K, Ichimura S, James TC (1994) Highly repetitive structure and its organization of the silk fibroin gene. J Mol Evol 38(6):583–592PubMedCrossRefGoogle Scholar
  21. Ohkawa K, Saitoh A, Yamamoto H (1999) Synthesis of poly(O-phospho-L-serine) and its structure in aqueous solution. Macromol Rapid Commun 20(12):619–621CrossRefGoogle Scholar
  22. Ohkawa K, Hayashi S, Kameyama N, Yamamoto H, Yamaguchi M, Kimoto S, Kurata S, Shinji H (2009) Synthesis of collagen-like sequential polypeptides containing O-phospho-L-hydroxyproline and preparation of electrospun composite fibers for possible dental application. Macromol Biosci 9(1):79–92PubMedCrossRefGoogle Scholar
  23. Ohkawa K, Miura Y, Nomura T, Arai R, Abe K, Tsukada M, Hirabayashi K (2012) Isolation of silk proteins from a caddisfly larva, Stenopsyche marmorata. J Fiber Eng Inform 5(2):125–137Google Scholar
  24. Ohkawa K, Miura Y, Nomura T, Arai R, Abe K, Tsukada M, Hirabayashi K (2013) Long-range periodic sequence of Stenopsyche marmorata cement/silk protein: purification and biochemical characterization. Biofouling 29(4):357--369. doi: 10.1080/08927014.2013.774376 Google Scholar
  25. Sezutsu H, Yukuhiro K (2000) Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol 51(4):329–338PubMedGoogle Scholar
  26. Stewart RJ, Wang CS (2010) Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of H-fibroin serines. Biomacromolecules 11(4):969–974PubMedCrossRefGoogle Scholar
  27. Stewart RJ, Wang CS, Shao H (2011a) Complex coacervates as a foundation for synthetic underwater adhesives. Adv Colloid Interface Sci 167(1–2):85–93PubMedCrossRefGoogle Scholar
  28. Stewart RJ, Ransom TC, Hlady V (2011b) Natural underwater adhesives. J Polym Sci, Part B: Polym Phys 49(11):757–771CrossRefGoogle Scholar
  29. Strzelecki JW, Strzelecka J, Mikulska K, Tszydel M, Balter A, Nowak W (2011) Nanomechanics of new materials – AFM and computer modelling studies of trichoptera silk. Cent Eur J Phys 9(2):482–491CrossRefGoogle Scholar
  30. Tsukada M, Khan MMR, Inoue E, Kimura G, Hun JY, Mishima M, Hirabayashi K (2010) Physical properties and structure of aquatic silk fiber from Stenopsyche marmorata. Int J Biol Macromol 46(1):54–58PubMedCrossRefGoogle Scholar
  31. Tszydel M, Sztajnowski S, Michalak M, Wrzosek H, Kowalska S, Krucinska I, Lipp-Symonowicz B (2009) Structure and physical and chemical properties of fibres from the fifth larval instar of caddisflies of the species Hydropsyche angustipennis. Fibres Text East Eur 17(6):7–12Google Scholar
  32. Tuda M, Hiro M (1955) On the net-spinning caddis-fly larvae in the water-tunnel of Kinbara water power plant, Neo-Gawa, Gifu Prefecture. Jpn J Ecol 5(2):77–81Google Scholar
  33. Uéno M (1952) Caddisfly larvae interfering with the flow in the water way tunnels of a hydraulic power plant. Kontyû 19(3–4):73–80Google Scholar
  34. Waite JH, Jensen RA, Morse DE (1992) Cement precursor proteins of the reef-building polychaete Phragmatopoma californica (Fewkes). Biochemistry 31(25):5733–5738PubMedCrossRefGoogle Scholar
  35. Wang YJ, Sanai K, Wen HX, Zhao TF, Nakagaki M (2010) Characterization of unique heavy chain fibroin filaments spun underwater by the caddisfly Stenopsyche marmorata (Trichoptera; Stenopsychidae). Mol Biol Rep 37(6):2885–2892PubMedCrossRefGoogle Scholar
  36. Warrington RJ, Whitman C, McPhillips WS (2003) Cytokine synthesis in occupational allergy to caddisflies in hydroelectric plant workers. Int Arch Allergy Immunol 132(2):141–147PubMedCrossRefGoogle Scholar
  37. Yamamoto H, Nagai A, Okada T, Nishida A, Yamamoto Y, Yamamoto T (1990) On the adhesive proteins of trichoptera caddis worm in fresh water. Trends Polym Sci (Trivandrum, India) 1(1):1–7Google Scholar
  38. Yazawa K, Yamaguchi E, Knight D, Asakura T (2012) 13C Solid-state NMR study of the 13C-labeled peptide, (E)8GGLGGQGAG(A)6GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning. Biopolymers 97(6):347–354PubMedCrossRefGoogle Scholar
  39. Yonemura N, Sehnal F, Mita K, Tamura T (2006) Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules 7(12):3370–3378PubMedCrossRefGoogle Scholar
  40. Yonemura N, Mita K, Tamura T, Sehnal F (2009) Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol 68(6):641–653PubMedCrossRefGoogle Scholar
  41. Zhao H, Sun C, Stewart RJ, Waite JH (2005) Cement proteins of the tube-building polychaete Phragmatopoma californica. J Biol Chem 280(52):42938–42944PubMedCrossRefGoogle Scholar
  42. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28(12):2413–2419PubMedCrossRefGoogle Scholar
  43. aThe species name has been corrected as Hesperophylax consimilis in ref (Ashton et al. 2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kousaku Ohkawa
    • 1
    Email author
  • Takaomi Nomura
    • 2
  • Ryoichi Arai
    • 3
  • Koji Abe
    • 4
  • Masuhiro Tsukada
    • 3
  • Kimio Hirabayashi
    • 3
  1. 1.Institute of High Polymer Research, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  2. 2.Bioscience and Biotechnology Course, Division of Applied Biology, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  3. 3.Bioresources and Environmental Science Course, Division of Applied Biology, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan
  4. 4.Functional Polymer Science Course, Division of Chemistry and Materials, Faculty of Textile Science and TechnologyShinshu UniversityUedaJapan

Personalised recommendations