Skip to main content

Evolution and Application of Coiled Coil Silks from Insects

  • Chapter
  • First Online:
Biotechnology of Silk

Abstract

The coiled coil motif is common in globular and fibrous proteins, including extracorporeal materials such as silks. The use of the coiled coil structure in silks is an engineering solution that has convergently evolved in at least five groups—the stinging hymenopterans, sawflies, fleas, lacewings, and praying mantises—and retained throughout large radiations of insect families. In this chapter we describe the current state of knowledge regarding the molecular structure of these materials, collected from techniques such as X-ray scattering, nuclear magnetic resonance and Raman spectroscopy. A recent development is the availability of amino acid sequences for coiled coil silk proteins, enabling secondary and tertiary protein structural predictions to be compared to data from direct biophysical measurements. Finally, we review progress in the production of biomimetic coiled coil materials made using either reconstituted or recombinant proteins of this type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen SO, Hojrup P, Roepstorff P (1995) Insect cuticular proteins. Insect Biochem Mol Biol 25:153–176

    Article  PubMed  CAS  Google Scholar 

  • Aneshansley DJ, Eisner T, Widom JM, Widom B (1969) Biochemistry at 100 °C: explosive secretory discharge of bombardier beetles (Brachinus). Science 165:61–63

    Article  PubMed  CAS  Google Scholar 

  • Asakura T, Watanabe Y, Uchida A, Minagawa H (1984) NMR of silk fibroin. 2. 13C NMR study of the chain dynamics and solution structure of Bombyx mori silk fibroin. Macromolecules 17:1075–1081

    Article  CAS  Google Scholar 

  • Atkins EDT (1967) A four-strand coiled coil model for some insect fibrous proteins. J Mol Biol 24:139–140

    Article  CAS  Google Scholar 

  • Brunet PCJ, Kent PW (1955) Observations on the mechanism of a tanning reaction in Periplaneta and Blatta. Proc R Soc Lond B 144:259–274

    Article  CAS  Google Scholar 

  • Bullough PA, Tulloch PA (1990) High-resolution spot-scan electron microscopy of microcrystals of an alpha-helical coiled-coil protein. J Mol Biol 215:161–173

    Article  PubMed  CAS  Google Scholar 

  • Cao JN (2002) Is the alpha-beta transition of keratin a transition of alpha-helices to beta-pleated sheets? II. Synchrotron investigation for stretched single specimens. J Mol Struct 607:69–75

    Article  CAS  Google Scholar 

  • Crewe RM, Thompson PR (1979) Oecophylla silk – functional adaptation in a biopolymer. Naturwissenschaften 66:57–58

    Article  CAS  Google Scholar 

  • Delorenzi M, Speed T (2002) An HMM model for coiled-coil domains and a comparison with PSSM-based predictions. Bioinformatics 18:617–625

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Liu J, Zheng Q, Eliezer D, Kallenbach NR, Lu M (2006) Antiparallel four-stranded coiled coil specified by a 3-3-1 hydrophobic heptad repeat. Structure 14:247–255

    Article  PubMed  CAS  Google Scholar 

  • Espelie KE, Himmelsbach DS (1990) Characterization of pedicel, paper, and larval silk from nest of Polistes-annularis (L). J Chem Ecol 16:3467–3477

    Article  CAS  Google Scholar 

  • Flower NE, Kenchington W (1967) Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). J R Microsc Soc 86:297–310

    Article  PubMed  CAS  Google Scholar 

  • Fraser RDB, Macrae TP, Dobb MG, Miller A (1964) Coiled-coil model of alpha-keratin structure. J Mol Biol 10:147

    Article  PubMed  CAS  Google Scholar 

  • Hattori S, Terada D, Bintang AB, Honda T, Yoshikawa C, Teramoto H, Kameda T, Tamada Y, Kobayashi H (2011) Influence of sterilisations on silk protein-based materials. Bioinsp Biomim Nanobiomater 1:195–199

    Article  Google Scholar 

  • Hepburn HR, Chandler HD, Davidoff MR (1979) Extensometric properties of insect fibroins – green lacewing cross-beta, honeybee alpha-helical and greater waxmoth parallel-beta conformations. Insect Biochem 9:69–77

    Article  CAS  Google Scholar 

  • Huson MG, Church JS, Poole JM, Weisman S, Sriskantha S, Warden AC, Ramshaw JAM, Sutherland TD (2012) Structural and physical changes of honeybee silk materials induced by heating or by immersion in aqueous methanol solutions. PLoS ONE 7:e52308. doi:10.1371/journal.pone.0052308

  • Jin HJ, Park J, Karageorgiou V, Kim UJ, Valluzzi R, Kaplan DL (2005) Water-stable silk films with reduced beta-sheet content. Adv Funct Mater 15:1241–1247

    Article  CAS  Google Scholar 

  • Kameda T (2012) Quantifying the fraction of alanine residues in an α-helical conformation in hornet silk using solid-state NMR. Polymer J 44:876–881

    Article  CAS  Google Scholar 

  • Kameda T, Aratani E (2011) Production and characterizations of tubes from hornet (Vespa) silk. J Insect Biotechnol Sericol 80:109–116

    Google Scholar 

  • Kameda T, Tamada Y (2009) Variable-temperature 13C solid-state NMR study of the molecular structure of honeybee wax and silk. Int J Biol Macromol 44:64–69

    Article  PubMed  CAS  Google Scholar 

  • Kameda T, Kojima K, Miyazawa M, Fujiwara S (2005) Film formation and structural characterization of silk of the hornet Vespa simillima xanthoptera Cameron. Z Naturforsch C J Biosci 60:906–914

    CAS  Google Scholar 

  • Kameda T, Kojima K, Togawa E, Sezutsu H, Zhang Q, Teramoto H, Tamada Y (2010a) Drawing-induced changes in morphology and mechanical properties of hornet silk gel films. Biomacromolecules 11:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Kameda T, Kojima K, Sezutsu H, Zhang Q, Teramoto H, Tamada Y (2010b) Hornet (Vespa) silk composed of coiled-coil proteins. Kobunshi Ronbunshu 67:641–653

    Article  CAS  Google Scholar 

  • Kameda T, Kojima K, Zhang Q, Sezutsu H (2012a) Identification of hornet silk gene with a characteristic repetitive sequence in Vespa simillima xanthoptera. Comp Biochem Physiol Biochem Mol Biol 161:17–24

    Article  CAS  Google Scholar 

  • Kameda T (2012b) Quantifying the fraction of alanine residues in an α-helical conformation in hornet silk using solid-state NMR. Polym J 44:876–881

    Article  CAS  Google Scholar 

  • Kenchington W, Flower NE (1969) Studies on insect fibrous proteins: the structural protein of the ootheca in the praying mantis, Sphodromantis centralis Rehn. J Microsc 89:263–281

    Article  PubMed  CAS  Google Scholar 

  • Kirshboim S, Ishay JS (2000) Silk produced by hornets: thermophotovoltaic properties – a review. Comp Biochem Physiol 127:1–20

    CAS  Google Scholar 

  • Kocabas DS, Bakir U, Phillips S, McPherson M, Ogel Z (2008) Purification, characterization, and identification of a novel bifunctional catalase-phenol oxidase from Scytalidium thermophilum. Appl Microbiol Biotechnol 79:407–415

    Article  Google Scholar 

  • Kwok SC, Hodges RS (2004) Stabilising and destabilizing clusters in the hydrophobic core of long two-stranded alpha helical coiled coils. J Biol Chem 279:576–588

    Article  Google Scholar 

  • Lawrence W, Foil LD (2002) The effects of diet upon pupal development and cocoon formation by the cat flea (Siphonaptera: Pulicidae). J Vector Ecol 27:39–43

    PubMed  CAS  Google Scholar 

  • Liu J, Lu M (2002) An alanine-zipper structure determined by long-range intermolecular interactions. J Biol Chem 277:48708–48713

    Article  PubMed  CAS  Google Scholar 

  • Lucas F, Rudall KM (1968) Extracellular fibrous proteins: the silks. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 26. Elsevier, Amsterdam, pp 475–558

    Google Scholar 

  • Montserret R, McLeish MJ, Brockmann A, Geourjon C, Penin F (2000) Involvement of electrostatic interactions in the mechanism of peptide folding induced by sodium dodecyl sulfate binding. Biochemistry 39:8262–8373

    Article  Google Scholar 

  • Rattew CJ (1974) D. Phil. thesis, Structural studies of fibrous biopolymers, University of Oxford

    Google Scholar 

  • Rousseau ME, Lefevre T, Beaulieu L, Asakura T, Pezolet M (2004) Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy. Biomacromolecules 5:2247–2257

    Article  PubMed  CAS  Google Scholar 

  • Rudall KM (1956) Protein ribbons and sheets. Lect Sci Basis Med 5:217–230

    CAS  Google Scholar 

  • Rudall KM (1962) Silk and other cocoon proteins. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol IV. Academic, New York, pp 397–433

    Google Scholar 

  • Rudall KM, Kenchington W (1971) Arthropod silks: the problem of fibrous proteins in animal tissues. In: Florkin M, Mason HS (eds) Annual review of entomology, vol 16. Academic, New York, pp 73–96

    Google Scholar 

  • Sehnal F, Sutherland TD (2008) Silks produced by insect labial glands. Prion 2:1–9

    Article  Google Scholar 

  • Sezutzu H, Kajiwara H, Kojima K, Mita K, Tamura T, Tamada Y, Kameda T (2007) Identification of four major hornet silk genes with a complex of alanine-rich and serine-rich sequences in Vespa simillima xanthoptera Cameron. Biosci Biotechnol Biochem 71:2725–2734

    Article  Google Scholar 

  • Shen Y, Johnson MA, Martin DC (1998) Microstructural characterization of Bombyx mori silk fibers. Macromolecules 31:8857–8864

    Article  CAS  Google Scholar 

  • Shi J, Lua S, Du N, Liu X, Song J (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29:2820–2828

    Article  PubMed  CAS  Google Scholar 

  • Silva-Zacarin ECM, Silva De Moraes RLM, Taboga SR (2003) Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera : Apidae). J Biosci 28:753–764

    Article  PubMed  Google Scholar 

  • Silverman J, Rust MK, Reierson DA (1981) Influence of temperature and humidity on survival and development of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). J Med Entomol 1:78–83

    Google Scholar 

  • Sutherland TD, Campbell PM, Weisman S, Trueman HE, Sriskantha A, Wanjura WJ, Haritos VS (2006) A highly divergent gene cluster in honey bees encodes a novel silk family. Genome Res 16:1414–1421

    Article  PubMed  CAS  Google Scholar 

  • Sutherland TD, Weisman S, Trueman HE, Sriskantha A, Trueman JWH, Haritos VS (2007) Conservation of essential design features in coiled coil silks. Mol Biol Evol 24:2424–2432

    Article  PubMed  CAS  Google Scholar 

  • Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188

    Article  PubMed  CAS  Google Scholar 

  • Sutherland TD, Weisman S, Walker AA, Mudie ST (2011a) The coiled coil silk of bees, ants and hornets. Biopolymers 97:446–454

    Article  PubMed  Google Scholar 

  • Sutherland TD, Jeffrey S, Church JS, Hu X, Huson MG, Kaplan DL, Weisman S (2011b) Single honeybee silk protein mimics properties of multi-protein silk. PLoS One 6:e16489. doi:10.1371/journal.pone.0016489

    Article  PubMed  CAS  Google Scholar 

  • Tuzi S, Sakamaki S, Ando I (1990) The structure and mobility of L-alanine residues of tropomyosin in the solid-state as studied by high-resolution solid-state C-13 NMR-spectroscopy. J Mol Struct 221:289–297

    Article  CAS  Google Scholar 

  • Walker AA (in press). Doctoral thesis, Australian National University

    Google Scholar 

  • Walker AA, Weisman S, Kameda T, Sutherland TD (submitted) New biomimetic protein materials: from praying mantises to laboratory production

    Google Scholar 

  • Walker AA, Warden AC, Trueman HE, Weisman S, Sutherland TD (2013) Micellar refolding of coiled coil honeybee silk proteins. J Mater Chem B 1:3644--3651

    Google Scholar 

  • Walker AA, Weisman S, Kameda T, Sutherland TD (2012) Natural templates for coiled coil biomaterials from praying mantis egg-cases. Biomacromolecules 13:4264--4272

    Google Scholar 

  • Weisman S, Trueman HE, Mudie ST, Church JS, Sutherland TD, Haritos VS (2008) An unlikely silk: the composite material of green lacewing cocoons. Biomacromolecules 9:3065–3069

    Article  PubMed  CAS  Google Scholar 

  • Weisman S, Haritos VS, Church JS, Huson MG, Mudie ST, Rodgers AJW, Dumsday GJ, Sutherland TD (2010) Honeybee silk: recombinant protein production, assembly and fiber spinning. Biomaterials 31:2695–2700

    Article  PubMed  CAS  Google Scholar 

  • Wittmer CR, Hu H, Gauthier P-C, Weisman S, Kaplan DL, Sutherland TD (2011) Production, structure and in vitro degradation of electrospun honeybee silk nanofibres. Acta Biomater 7:3789–3795

    Article  PubMed  CAS  Google Scholar 

  • Woolfson DN (2005) The design of coiled coil structures and assemblies. In: Parry DAD, Squire JM (eds) Fibrous proteins: coiled-coils, collagen and elastomers. Elsevier, San Diego, pp 79–112

    Chapter  Google Scholar 

  • Yago M, Hitoshi S, Kawasaki H (1984) The identification of N-acyldopamine glucosides in the left colleterial gland of the praying mantids Mantis religiosa L., Statilia maculata Thunberg, and Tenodera augustipennis Saussure. Insect Biochem 14:7–9

    Article  CAS  Google Scholar 

  • Yago M, Hitoshi S, Oshima S, Hiroya K (1990) Enzymatic activities involved in the oothecal sclerotization of the praying mantid, Tenodera arififolia sinensis Saussure. Insect Biochem 20:745–750

    Article  CAS  Google Scholar 

  • Yonemura N, Sehnal F (2006) The design of silk fiber composition in moths has been conserved for more than 150 million years. J Mol Evol 63:42–53

    Article  PubMed  CAS  Google Scholar 

  • Yoshimuzu H, Ando I (1990) Conformational characterization of wool keratin and S-(carboxymethyl)keratiene in the solid state by 13C CP/MAS NMR spectroscopy. Macromolecules 23:2908–2912

    Article  Google Scholar 

  • Yoshimuzu H, Mimura H, Ando I (1991) Carbon-13 CP/MAS NMR study of the conformation of stretched or heated low-sulfur keratin protein films. Macromolecules 24:862–866

    Article  Google Scholar 

  • Zhang K, Si FW, Duan HL, Wang J (2009) Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomater 6:2165–2171

    Article  PubMed  Google Scholar 

  • Zhong L, Johnson WC (1992) Environment affects amino acid preference for secondary structure. Proc Natl Acad Sci USA 89:4462–4465

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunenori Kameda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kameda, T., Walker, A.A., Sutherland, T.D. (2014). Evolution and Application of Coiled Coil Silks from Insects. In: Asakura, T., Miller, T. (eds) Biotechnology of Silk. Biologically-Inspired Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7119-2_5

Download citation

Publish with us

Policies and ethics