Skip to main content

The Power of Recombinant Spider Silk Proteins

  • Chapter
  • First Online:
Biotechnology of Silk

Part of the book series: Biologically-Inspired Systems ((BISY,volume 5))

Abstract

Due to their outstanding mechanical properties, their biocompatibility and biodegradability spider silk fibers are of high interest for researchers. Silk fibers mainly comprise proteins, and in the past decades biotechnological methods have been developed to produce spider silk proteins recombinantly in varying hosts, which will be summarized in this review. Further, several processing techniques like biomimetic spinning, wet-spinning or electro-spinning applied to produce fibers and non-woven meshes will be highlighted. Finally, an overview on recent developments concerning genetic engineering and chemical modification of recombinant silk proteins will be given, outlining the potential provided by recombinant spider silk-chimeric proteins and spider silk-inspired polymers (combining synthetic polymers and spider silk peptides).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An B, Hinman MB, Holland GP, Yarger JL, Lewis RV (2011) Inducing beta-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules 12(6):2375–2381. doi:10.1021/bm200463e

    PubMed  CAS  Google Scholar 

  • Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49(1):31–38. doi:10.1007/s002530051133

    PubMed  CAS  Google Scholar 

  • Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A, Ziegler D, Laue T, Chase S (2002) Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules 35(4):1262–1266. doi:10.1021/ma011471o

    CAS  Google Scholar 

  • Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465(7295):236–238. doi:10.1038/nature08962

    PubMed  CAS  Google Scholar 

  • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(6):e514. doi:10.1371/journal.pone.0000514

    PubMed  Google Scholar 

  • Bauer F, Wohlrab S, Scheibel T (2013) Controllable cell adhesion, growth and orientation on layered silk protein films. Biomater Sci. doi:10.1039/C3BM60114E

    Google Scholar 

  • Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36(1):71–79. doi:10.1016/0021-9797(71)90241-4

    CAS  Google Scholar 

  • Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC (2012) Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 28(9):4373–4381. doi:10.1021/La205084z

    PubMed  CAS  Google Scholar 

  • Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7(11):3139–3145. doi:10.1021/bm0607877

    PubMed  CAS  Google Scholar 

  • Bogush VG, Sokolova OS, Davydova LI, Klinov DV, Sidoruk KV, Esipova NG, Neretina TV, Orchanskyi IA, Makeev VY, Tumanyan VG, Shaitan KV, Debabov VG, Kirpichnikov MP (2009) A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J Neuroimmune Pharmacol 4(1):17–27. doi:10.1007/s11481-008-9129-z

    PubMed  Google Scholar 

  • Breslauer DN, Lee LP, Muller SJ (2009) Simulation of flow in the silk gland. Biomacromolecules 10(1):49–57. doi:10.1021/Bm800752x

    PubMed  CAS  Google Scholar 

  • Brooks AE, Nelson SR, Jones JA, Koenig C, Hinman M, Stricker S, Lewis RV (2008a) Distinct contributions of model MaSp1 and MaSp2 like peptides to the mechanical properties of synthetic major ampullate silk fibers as revealed in silico. Nanotechnol Sci Appl 1:9–16. doi:10.2147/NSA.S3961

    PubMed  CAS  Google Scholar 

  • Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008b) Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9(6):1506–1510. doi:10.1021/bm701124p

    PubMed  CAS  Google Scholar 

  • Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407. doi:10.1016/S0032-3861(98)00866-0

    CAS  Google Scholar 

  • Carrico IS (2008) Chemoselective modification of proteins: hitting the target. Chem Soc Rev 37(7):1423–1431. doi:10.1039/B703364h

    PubMed  CAS  Google Scholar 

  • Chengjie F, Zhengzhong S, Vollrath F (2009) Animal silks: their structures, properties and artificial production. Chem Commun 43:6515–6529. doi:10.1039/B911049F

    Google Scholar 

  • Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “spacer regions”. Protein Sci 7(3):667–672. doi:10.1002/pro.5560070315

    PubMed  CAS  Google Scholar 

  • Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL (2011) Genetically engineered chimeric silk-silver binding proteins. Adv Funct Mater 21(15):2889–2895. doi:10.1002/adfm.201100249

    PubMed  CAS  Google Scholar 

  • Eisoldt L, Hardy JG, Heim M, Scheibel TR (2010) The role of salt and shear on the storage and assembly of spider silk proteins. J Struct Biol 170(2):413–419. doi:10.1016/j.jsb.2009.12.027

    PubMed  CAS  Google Scholar 

  • Eisoldt L, Scheibel T, Smith A (2011) Decoding the secrets of spider silk. Mater Today 14(3):80–86. doi:10.1016/S1369-7021(11)70057-8

    CAS  Google Scholar 

  • Elices M, Guinea GV, Plaza GR, Karatzas C, Riekel C, Agulló-Rueda F, Daza R, Pérez-Rigueiro J (2011) Bioinspired fibers follow the track of natural spider silk. Macromolecules 44(5):1166–1176. doi:10.1021/ma102291m

    CAS  Google Scholar 

  • Escuder B, Miravet JF (2006) Silk-inspired low-molecular-weight organogelator. Langmuir 22(18):7793–7797. doi:10.1021/La060499w

    PubMed  CAS  Google Scholar 

  • Exler JH, Hummerich D, Scheibel T (2007) The amphiphilic properties of spider silks are important for spinning. Angew Chem Int Ed 46(19):3559–3562. doi:10.1002/anie.200604718

    CAS  Google Scholar 

  • Fahnestock S (1994) Novel, recombinantly produced spider silk analogs. USA Patent WO 94/29450, 22 Dec 1994

    Google Scholar 

  • Fahnestock SR, Irwin SL (1997) Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 47(1):23–32. doi:10.1007/s002530050883

    PubMed  CAS  Google Scholar 

  • Foo CWP, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103(25):9428–9433. doi:10.1073/pnas.0601096103

    CAS  Google Scholar 

  • Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75. doi:10.1016/S1359-0294(03)00004-9

    CAS  Google Scholar 

  • Fukushima Y (1998) Genetically engineered syntheses of tandem repetitive polypeptides consisting of glycine-rich sequence of spider dragline silk. Biopolymers 45(4):269–279. doi:10.1002/(SICI)1097-0282(19980405)4

    PubMed  CAS  Google Scholar 

  • Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. doi:10.1186/1471-2148-10-243

    PubMed  Google Scholar 

  • Geurts P, Zhao L, Hsia Y, Gnesa E, Tang S, Jeffery F, Mattina CL, Franz A, Vierra C (2010) Synthetic spider silk fibers spun from pyriform spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules 11(12):3495–3503. doi:10.1021/bm101002w

    PubMed  CAS  Google Scholar 

  • Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, Tang S, Agari K, Vierra C (2012) Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13(2):304–312. doi:10.1021/bm201262n

    PubMed  CAS  Google Scholar 

  • Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32(18):4255–4266. doi:10.1016/j.biomaterials.2011.02.040

    PubMed  CAS  Google Scholar 

  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303

    PubMed  CAS  Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46(30):5670–5703. doi:10.1002/anie.200604646

    CAS  Google Scholar 

  • Grip S, Rising A, Nimmervoll H, Storckenfeldt E, McQueen-Mason SJ, Pouchkina-Stantcheva N, Vollrath F, Engström W, Fernandez-Arias A (2006) Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genomics Proteomics 3(2):83–87

    CAS  Google Scholar 

  • Guerette PA, Ginzinger DG, Weber BHF, Gosline JM (1996) Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272(5258):112–115. doi:10.1126/science.272.5258.112

    PubMed  CAS  Google Scholar 

  • Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A highly conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465(7295):239–242. doi:10.1038/nature08936

    PubMed  CAS  Google Scholar 

  • Hagn F, Thamm C, Scheibel T, Kessler H (2011) pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk–implications for fiber formation. Angew Chem Int Ed 50(1):310–313. doi:10.1002/anie.201003795

    CAS  Google Scholar 

  • Hardy JG, Romer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49(20):4309–4327. doi:10.1016/j.polymer.2008.08.006

    CAS  Google Scholar 

  • Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21(10):1950–1959. doi:10.1093/molbev/msh204

    PubMed  CAS  Google Scholar 

  • Hedhammar M, Rising A, Grip S, Martinez AS, Nordling K, Casals C, Stark M, Johansson J (2008) Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47(11):3407–3417. doi:10.1021/bi702432y

    PubMed  CAS  Google Scholar 

  • Heikkila P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44(10):3067–3079. doi:10.1016/j.eurpolymj.2008.06.032

    CAS  Google Scholar 

  • Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584–3596. doi:10.1002/anie.200803341

    CAS  Google Scholar 

  • Heim M, Ackerschott CB, Scheibel T (2010) Characterization of recombinantly produced spider flagelliform silk domains. J Struct Biol 170(2):420–425. doi:10.1016/j.jsb.2009.12.025

    PubMed  CAS  Google Scholar 

  • Heitz JR, Anderson CD, Anderson BM (1968) Inactivation of yeast alcohol dehydrogenase by N-alkylmaleimides. Arch Biochem Biophys 127(1–3):627–636. doi:10.1016/0003-9861(68)90271-3

    PubMed  CAS  Google Scholar 

  • Hu XY, Yuan J, Wang XD, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46(11):3294–3303. doi:10.1021/bi602507e

    PubMed  CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Technol 63(15):2223–2253. doi:10.1016/S0266-3538(03)00178-7

    CAS  Google Scholar 

  • Huang J, Wong C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28(14):2358–2367. doi:10.1016/j.biomaterials.2006.11.021

    PubMed  CAS  Google Scholar 

  • Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004a) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43(42):13604–13612. doi:10.1021/Bi048983q

    PubMed  CAS  Google Scholar 

  • Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004b) Novel assembly properties of recombinant spider dragline silk proteins. Curr Biol 14(22):2070–2074. doi:10.1016/j.cub.2004.11.005

    PubMed  CAS  Google Scholar 

  • Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A: Mater Sci Process 82(2):219–222. doi:10.1007/s00339-005-3428-5

    CAS  Google Scholar 

  • Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks—biopolymers with potential for future applications. Polymers 3(1):640–661. doi:10.3390/polym3010640

    CAS  Google Scholar 

  • Iqbal S, Miravet JF, Escuder B (2008) Biomimetic self-assembly of tetrapeptides into fibrillar networks and organogels. Eur J Org Chem 27:4580–4590. doi:10.1002/ejoc.200800547

    Google Scholar 

  • Ittah S, Cohen S, Garty S, Cohn D, Gat U (2006) An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7(6):1790–1795. doi:10.1021/bm060120k

    PubMed  CAS  Google Scholar 

  • Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6):1233–1239. doi:10.1021/Bm025581u

    PubMed  CAS  Google Scholar 

  • Karatzas CN, Turner JD, Karatzas A-L (1999) Production of biofilaments in transgenic animals. Canada Patent WO 99/47661

    Google Scholar 

  • Keerl D, Scheibel T (2012) Characterization of natural and biomimetic spider silk fibers. Bioinspired Biomim Nanobiomaterials 1(2):83–94. doi:10.1680/bbn.11.00016

    CAS  Google Scholar 

  • Kinahan ME, Filippidi E, Koster S, Hu X, Evans HM, Pfohl T, Kaplan DL, Wong J (2011) Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12(5):1504–1511. doi:10.1021/bm1014624

    PubMed  CAS  Google Scholar 

  • Klok HA, Rosler A, Gotz G, Mena-Osteritz E, Bauerle P (2004) Synthesis of a silk-inspired peptide oligothiophene conjugate. Org Biomol Chem 2(24):3541–3544. doi:10.1039/B415454a

    PubMed  CAS  Google Scholar 

  • Knight DP, Vollrath F (1999) Liquid crystals and flow elongation in a spider’s silk production line. Proc Biol Sci 266(1418):519–523. doi:10.1098/rspb.1999.0667

    Google Scholar 

  • Lang G, Jokisch S, Scheibel T (2013) Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J Vis Exp 75:e50492. doi:10.3791/50492

    PubMed  Google Scholar 

  • Lawrence BA, Vierra CA, Mooref AMF (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5(3):689–695. doi:10.1021/Bm0342640

    PubMed  CAS  Google Scholar 

  • Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295(5554):472–476. doi:10.1126/science.1065780

    PubMed  CAS  Google Scholar 

  • Leal-Egana A, Scheibel T (2012) Interactions of cells with silk surfaces. J Mater Chem 22(29):14330–14336. doi:10.1039/C2jm31174g

    CAS  Google Scholar 

  • Leal-Egana A, Lang G, Mauerer C, Wickinghoff J, Weber M, Geimer S, Scheibel T (2012) Interactions of fibroblasts with different morphologies made of an engineered spider silk protein. Adv Eng Mater 14(3):B67–B75. doi:10.1002/adem.201180072

    Google Scholar 

  • Lee KS, Kim BY, Je YH, Woo SD, Sohn HD, Jin BR (2007) Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. J Biosci 32(4):705–712. doi:10.1007/s12038-007-0070-8

    PubMed  CAS  Google Scholar 

  • Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expres Purif 7(4):400–406. doi:10.1006/prep.1996.0060

    CAS  Google Scholar 

  • Lin Z, Huang W, Zhang J, Fan JS, Yang D (2009) Solution structure of eggcase silk protein and its implications for silk fiber formation. Proc Natl Acad Sci USA 106(22):8906–8911. doi:10.1073/pnas.0813255106

    PubMed  CAS  Google Scholar 

  • Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:10 p. doi:10.1155/2011/414729

  • Mello CM, Soares JW, Arcidiacono S, Butlers MM (2004) Acid extraction and purification of recombinant spider silk proteins. Biomacromolecules 5(5):1849–1852. doi:10.1021/Bm049815g

    PubMed  CAS  Google Scholar 

  • Menassa R, Hong Z, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2(5):431–438. doi:10.1111/j.1467-7652.2004.00087.x

    PubMed  CAS  Google Scholar 

  • Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL (2010) Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater 22(20):5780–5785. doi:10.1021/Cm101940u

    PubMed  CAS  Google Scholar 

  • Morgan AW, Roskov KE, Lin-Gibson S, Kaplan DL, Becker ML, Simon CG Jr (2008) Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials 29(16):2556–2563. doi:10.1016/j.biomaterials.2008.02.007

    PubMed  CAS  Google Scholar 

  • Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6(6):3152–3159. doi:10.1021/bm050472b

    PubMed  CAS  Google Scholar 

  • Numata K, Kaplan DL (2010) Silk-based gene carriers with cell membrane destabilizing peptides. Biomacromolecules 11(11):3189–3195. doi:10.1021/Bm101055m

    CAS  Google Scholar 

  • Numata K, Subramanian B, Currie HA, Kaplan DL (2009) Bioengineered silk protein-based gene delivery systems. Biomaterials 30(29):5775–5784. doi:10.1016/j.biomaterials.2009.06.028

    PubMed  CAS  Google Scholar 

  • Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610. doi:10.1021/bc200170u

    PubMed  CAS  Google Scholar 

  • Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12(1):75–82. doi:10.1002/mabi.201100274

    PubMed  CAS  Google Scholar 

  • Partis MD, Griffiths DG, Roberts GC, Beechey RB (1983) Cross-linking of protein by omega-maleimido alkanoyl N-hydroxysuccinimido esters. J Protein Chem 2(3):263–277. doi:10.1007/BF01025358

    CAS  Google Scholar 

  • Prince JT, Mcgrath KP, Digirolamo CM, Kaplan DL (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34(34):10879–10885. doi:10.1021/bi00034a022

    PubMed  CAS  Google Scholar 

  • Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci USA 105(18):6590–6595. doi:10.1073/pnas.0709246105

    PubMed  CAS  Google Scholar 

  • Rathore O, Sogah DY (2001) Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk. J Am Chem Soc 123(22):5231–5239. doi:10.1021/Ja004030d

    PubMed  CAS  Google Scholar 

  • Rising A, Hjalm G, Engstrom W, Johansson J (2006) N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7(11):3120–3124. doi:10.1021/bm060693x

    PubMed  CAS  Google Scholar 

  • Schacht K, Scheibel T (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12(7):2488–2495. doi:10.1021/Bm200154k

    PubMed  CAS  Google Scholar 

  • Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 3(1):14. doi:10.1186/1475-2859-3-14

    PubMed  Google Scholar 

  • Schmidt M, Romer L, Strehle M, Scheibel T (2007) Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media. Biotechnol Lett 29(11):1741–1744. doi:10.1007/s10529-007-9461-z

    PubMed  CAS  Google Scholar 

  • Seidel A, Liivak O, Jelinski LW (1998) Artificial spinning of spider silk. Macromolecules 31(19):6733–6736. doi:10.1021/ma9808880

    CAS  Google Scholar 

  • Seidel A, Liivak O, Calve S, Adaska J, Ji GD, Yang ZT, Grubb D, Zax DB, Jelinski LW (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33(3):775–780. doi:10.1021/ma990893j

    CAS  Google Scholar 

  • Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998. doi:10.1002/anie.200900942

    CAS  Google Scholar 

  • Spiess K, Wohlrab S, Scheibel T (2010) Structural characterization and functionalization of engineered spider silk films. Soft Matter 6(17):4168–4174. doi:10.1039/B927267d

    CAS  Google Scholar 

  • Sponner A, Unger E, Grosse F, Weisshart K (2004) Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 5(3):840–845. doi:10.1021/bm034378b

    PubMed  CAS  Google Scholar 

  • Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, Weisshart K (2005) The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun 338(2):897–902. doi:10.1016/j.bbrc.2005.10.048

    PubMed  CAS  Google Scholar 

  • Stark M, Grip S, Rising A, Hedhammar M, Engstrom W, Hjalm G, Johansson J (2007) Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8(5):1695–1701. doi:10.1021/Bm070049y

    PubMed  CAS  Google Scholar 

  • Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D, Kaplan DL (2000) Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 1(4):534–542. doi:10.1021/Bm0055697

    PubMed  CAS  Google Scholar 

  • Teulé F, Aubé C, Ellison M, Abbott A (2003) Biomimetic manufacturing of customised novel fibre proteins for specialised applications. AUTEX Res J 3(4):160–165

    Google Scholar 

  • Teulé F, Furin WA, Cooper AR, Duncan JR, Lewis RV (2007) Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 42(21):8974–8985. doi:10.1007/s10853-007-1642-6

    Google Scholar 

  • Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4(3):341–355. doi:10.1038/nprot.2008.250

    PubMed  Google Scholar 

  • Teulé F, Addison B, Cooper AR, Ayon J, Henning RW, Benmore CJ, Holland GP, Yarger JL, Lewis RV (2011) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers 97(6):418–431. doi:10.1002/bip.21724

    PubMed  Google Scholar 

  • Thordarson P, Le Droumaguet B, Velonia K (2006) Well-defined protein-polymer conjugates-synthesis and potential applications. Appl Microbiol Biotechnol 73(2):243–254. doi:10.1007/s00253-006-0574-4

    PubMed  CAS  Google Scholar 

  • Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D (1999) Methionine redox controlled crystallization of biosynthetic silk spidroin. J Phys Chem B 103(51):11382–11392. doi:10.1021/jp991363s

    CAS  Google Scholar 

  • Vendrely C, Scheibel T (2007) Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 7(4):401–409. doi:10.1002/mabi.200600255

    PubMed  CAS  Google Scholar 

  • Vendrely C, Ackerschott C, Roemer L, Scheibel T (2008) Molecular design of performance proteins with repetitive sequences: recombinant flagelliform spider silk as basis for biomaterials. Methods Mol Biol 474:3–14. doi:10.1007/978-1-59745-480-3_1

    PubMed  CAS  Google Scholar 

  • Vollrath F, Madsen B, Shao ZZ (2001) The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proc R Soc Lond B 268(1483):2339–2346. doi:10.1098/rspb.2001.1590

    CAS  Google Scholar 

  • Wang M, Yu JH, Kaplan DL, Rutledge GC (2006) Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning. Macromolecules 39(3):1102–1107. doi:10.1021/Ma0517749

    CAS  Google Scholar 

  • Wen HX, Lan XQ, Zhang YS, Zhao TF, Wang YJ, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37(4):1815–1821. doi:10.1007/s11033-009-9615-2

    PubMed  CAS  Google Scholar 

  • Widmaier DM, Voigt CA (2010) Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb Cell Fact 9:78. doi:10.1186/1475-2859-9-78

    PubMed  Google Scholar 

  • Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA (2009) Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 5:309. doi:10.1038/msb.2009.62

    PubMed  Google Scholar 

  • Winkler S, Szela S, Avtges P, Valluzzi R, Kirschner DA, Kaplan D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24(2–3):265–270. doi:10.1016/S0141-8130(98)00088-9

    PubMed  CAS  Google Scholar 

  • Winkler S, Wilson D, Kaplan DL (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39(41):12739–12746. doi:10.1021/Bi001335w

    PubMed  CAS  Google Scholar 

  • Winningham MJ, Sogah DY (1997) A modular approach to polymer architecture control via catenation of prefabricated biomolecular segments: polymers containing parallel beta-sheets templated by a phenoxathiin-based reverse turn mimic. Macromolecules 30(4):862–876. doi:10.1021/ma960804s

    CAS  Google Scholar 

  • Wohlrab S, Mueller S, Schmidt A, Neubauer S, Kessler H, Leal-Egana A, Scheibel T (2012) Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials 33(28):6650–6659. doi:10.1016/j.biomaterials.2012.05.069

    PubMed  CAS  Google Scholar 

  • Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103(25):9428–9433. doi:10.1073/pnas.0601096103

    PubMed  Google Scholar 

  • Xia XX, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107(32):14059–14063. doi:10.1073/pnas.1003366107

    PubMed  CAS  Google Scholar 

  • Xu M, Lewis RV (1990) Structure of a protein superfiber – spider dragline silk. Proc Natl Acad Sci USA 87(18):7120–7124. doi:10.1073/pnas.87.18.7120

    PubMed  CAS  Google Scholar 

  • Xu HT, Fan BL, Yu SY, Huang YH, Zhao ZH, Lian ZX, Dai YP, Wang LL, Liu ZL, Fei J, Li N (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim Biotechnol 18(1):1–12. doi:10.1080/10495390601091024

    PubMed  Google Scholar 

  • Yang JJ, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14(3):313–324. doi:10.1007/s11248-005-0272-5

    PubMed  CAS  Google Scholar 

  • Zarkoob S, Eby RK, Reneker DH, Hudson SD, Ertley D, Adams WW (2004) Structure and morphology of electrospun silk nanofibers. Polymer 45(11):3973–3977. doi:10.1016/j.polymer.2003.10.102

    CAS  Google Scholar 

  • Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins: Struct Funct Genet 44(2):119–122. doi:10.1002/prot.1078

    CAS  Google Scholar 

  • Zhou CC, Leng BX, Yao JR, Qian J, Chen X, Zhou P, Knight DP, Shao ZZ (2006) Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins. Biomacromolecules 7(8):2415–2419. doi:10.1021/Bm060199t

    PubMed  CAS  Google Scholar 

  • Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57(4):529–545. doi:10.1016/j.addr.2004.10.010

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG SCHE 603/4-4. The authors would like to thank Gregor Lang, Claudia Blüm and Aniela Heidebrecht for providing images and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Scheibel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wohlrab, S., Thamm, C., Scheibel, T. (2014). The Power of Recombinant Spider Silk Proteins. In: Asakura, T., Miller, T. (eds) Biotechnology of Silk. Biologically-Inspired Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7119-2_10

Download citation

Publish with us

Policies and ethics