Advertisement

The Power of Recombinant Spider Silk Proteins

  • Stefanie Wohlrab
  • Christopher Thamm
  • Thomas ScheibelEmail author
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 5)

Abstract

Due to their outstanding mechanical properties, their biocompatibility and biodegradability spider silk fibers are of high interest for researchers. Silk fibers mainly comprise proteins, and in the past decades biotechnological methods have been developed to produce spider silk proteins recombinantly in varying hosts, which will be summarized in this review. Further, several processing techniques like biomimetic spinning, wet-spinning or electro-spinning applied to produce fibers and non-woven meshes will be highlighted. Finally, an overview on recent developments concerning genetic engineering and chemical modification of recombinant silk proteins will be given, outlining the potential provided by recombinant spider silk-chimeric proteins and spider silk-inspired polymers (combining synthetic polymers and spider silk peptides).

Keywords

Recombinant spider silk proteins Fibers Genetic engineering Chemical modification Biopolymer 

Notes

Acknowledgements

This work was supported by DFG SCHE 603/4-4. The authors would like to thank Gregor Lang, Claudia Blüm and Aniela Heidebrecht for providing images and data.

References

  1. An B, Hinman MB, Holland GP, Yarger JL, Lewis RV (2011) Inducing beta-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules 12(6):2375–2381. doi: 10.1021/bm200463e PubMedGoogle Scholar
  2. Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49(1):31–38. doi: 10.1007/s002530051133 PubMedGoogle Scholar
  3. Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A, Ziegler D, Laue T, Chase S (2002) Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules 35(4):1262–1266. doi: 10.1021/ma011471o Google Scholar
  4. Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465(7295):236–238. doi: 10.1038/nature08962 PubMedGoogle Scholar
  5. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(6):e514. doi: 10.1371/journal.pone.0000514 PubMedGoogle Scholar
  6. Bauer F, Wohlrab S, Scheibel T (2013) Controllable cell adhesion, growth and orientation on layered silk protein films. Biomater Sci. doi: 10.1039/C3BM60114E Google Scholar
  7. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36(1):71–79. doi: 10.1016/0021-9797(71)90241-4 Google Scholar
  8. Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC (2012) Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 28(9):4373–4381. doi: 10.1021/La205084z PubMedGoogle Scholar
  9. Bini E, Foo CW, Huang J, Karageorgiou V, Kitchel B, Kaplan DL (2006) RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7(11):3139–3145. doi: 10.1021/bm0607877 PubMedGoogle Scholar
  10. Bogush VG, Sokolova OS, Davydova LI, Klinov DV, Sidoruk KV, Esipova NG, Neretina TV, Orchanskyi IA, Makeev VY, Tumanyan VG, Shaitan KV, Debabov VG, Kirpichnikov MP (2009) A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J Neuroimmune Pharmacol 4(1):17–27. doi: 10.1007/s11481-008-9129-z PubMedGoogle Scholar
  11. Breslauer DN, Lee LP, Muller SJ (2009) Simulation of flow in the silk gland. Biomacromolecules 10(1):49–57. doi: 10.1021/Bm800752x PubMedGoogle Scholar
  12. Brooks AE, Nelson SR, Jones JA, Koenig C, Hinman M, Stricker S, Lewis RV (2008a) Distinct contributions of model MaSp1 and MaSp2 like peptides to the mechanical properties of synthetic major ampullate silk fibers as revealed in silico. Nanotechnol Sci Appl 1:9–16. doi: 10.2147/NSA.S3961 PubMedGoogle Scholar
  13. Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008b) Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9(6):1506–1510. doi: 10.1021/bm701124p PubMedGoogle Scholar
  14. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407. doi: 10.1016/S0032-3861(98)00866-0 Google Scholar
  15. Carrico IS (2008) Chemoselective modification of proteins: hitting the target. Chem Soc Rev 37(7):1423–1431. doi: 10.1039/B703364h PubMedGoogle Scholar
  16. Chengjie F, Zhengzhong S, Vollrath F (2009) Animal silks: their structures, properties and artificial production. Chem Commun 43:6515–6529. doi: 10.1039/B911049F Google Scholar
  17. Colgin MA, Lewis RV (1998) Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like “spacer regions”. Protein Sci 7(3):667–672. doi: 10.1002/pro.5560070315 PubMedGoogle Scholar
  18. Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL (2011) Genetically engineered chimeric silk-silver binding proteins. Adv Funct Mater 21(15):2889–2895. doi: 10.1002/adfm.201100249 PubMedGoogle Scholar
  19. Eisoldt L, Hardy JG, Heim M, Scheibel TR (2010) The role of salt and shear on the storage and assembly of spider silk proteins. J Struct Biol 170(2):413–419. doi: 10.1016/j.jsb.2009.12.027 PubMedGoogle Scholar
  20. Eisoldt L, Scheibel T, Smith A (2011) Decoding the secrets of spider silk. Mater Today 14(3):80–86. doi: 10.1016/S1369-7021(11)70057-8 Google Scholar
  21. Elices M, Guinea GV, Plaza GR, Karatzas C, Riekel C, Agulló-Rueda F, Daza R, Pérez-Rigueiro J (2011) Bioinspired fibers follow the track of natural spider silk. Macromolecules 44(5):1166–1176. doi: 10.1021/ma102291m Google Scholar
  22. Escuder B, Miravet JF (2006) Silk-inspired low-molecular-weight organogelator. Langmuir 22(18):7793–7797. doi: 10.1021/La060499w PubMedGoogle Scholar
  23. Exler JH, Hummerich D, Scheibel T (2007) The amphiphilic properties of spider silks are important for spinning. Angew Chem Int Ed 46(19):3559–3562. doi: 10.1002/anie.200604718 Google Scholar
  24. Fahnestock S (1994) Novel, recombinantly produced spider silk analogs. USA Patent WO 94/29450, 22 Dec 1994Google Scholar
  25. Fahnestock SR, Irwin SL (1997) Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 47(1):23–32. doi: 10.1007/s002530050883 PubMedGoogle Scholar
  26. Foo CWP, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103(25):9428–9433. doi: 10.1073/pnas.0601096103 Google Scholar
  27. Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8(1):64–75. doi: 10.1016/S1359-0294(03)00004-9 Google Scholar
  28. Fukushima Y (1998) Genetically engineered syntheses of tandem repetitive polypeptides consisting of glycine-rich sequence of spider dragline silk. Biopolymers 45(4):269–279. doi: 10.1002/(SICI)1097-0282(19980405)4 PubMedGoogle Scholar
  29. Garb JE, Ayoub NA, Hayashi CY (2010) Untangling spider silk evolution with spidroin terminal domains. BMC Evol Biol 10:243. doi: 10.1186/1471-2148-10-243 PubMedGoogle Scholar
  30. Geurts P, Zhao L, Hsia Y, Gnesa E, Tang S, Jeffery F, Mattina CL, Franz A, Vierra C (2010) Synthetic spider silk fibers spun from pyriform spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs. Biomacromolecules 11(12):3495–3503. doi: 10.1021/bm101002w PubMedGoogle Scholar
  31. Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, Tang S, Agari K, Vierra C (2012) Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules 13(2):304–312. doi: 10.1021/bm201262n PubMedGoogle Scholar
  32. Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32(18):4255–4266. doi: 10.1016/j.biomaterials.2011.02.040 PubMedGoogle Scholar
  33. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303PubMedGoogle Scholar
  34. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46(30):5670–5703. doi: 10.1002/anie.200604646 Google Scholar
  35. Grip S, Rising A, Nimmervoll H, Storckenfeldt E, McQueen-Mason SJ, Pouchkina-Stantcheva N, Vollrath F, Engström W, Fernandez-Arias A (2006) Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genomics Proteomics 3(2):83–87Google Scholar
  36. Guerette PA, Ginzinger DG, Weber BHF, Gosline JM (1996) Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 272(5258):112–115. doi: 10.1126/science.272.5258.112 PubMedGoogle Scholar
  37. Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A highly conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465(7295):239–242. doi: 10.1038/nature08936 PubMedGoogle Scholar
  38. Hagn F, Thamm C, Scheibel T, Kessler H (2011) pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk–implications for fiber formation. Angew Chem Int Ed 50(1):310–313. doi: 10.1002/anie.201003795 Google Scholar
  39. Hardy JG, Romer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49(20):4309–4327. doi: 10.1016/j.polymer.2008.08.006 Google Scholar
  40. Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21(10):1950–1959. doi: 10.1093/molbev/msh204 PubMedGoogle Scholar
  41. Hedhammar M, Rising A, Grip S, Martinez AS, Nordling K, Casals C, Stark M, Johansson J (2008) Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry 47(11):3407–3417. doi: 10.1021/bi702432y PubMedGoogle Scholar
  42. Heikkila P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44(10):3067–3079. doi: 10.1016/j.eurpolymj.2008.06.032 Google Scholar
  43. Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584–3596. doi: 10.1002/anie.200803341 Google Scholar
  44. Heim M, Ackerschott CB, Scheibel T (2010) Characterization of recombinantly produced spider flagelliform silk domains. J Struct Biol 170(2):420–425. doi: 10.1016/j.jsb.2009.12.025 PubMedGoogle Scholar
  45. Heitz JR, Anderson CD, Anderson BM (1968) Inactivation of yeast alcohol dehydrogenase by N-alkylmaleimides. Arch Biochem Biophys 127(1–3):627–636. doi: 10.1016/0003-9861(68)90271-3 PubMedGoogle Scholar
  46. Hu XY, Yuan J, Wang XD, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46(11):3294–3303. doi: 10.1021/bi602507e PubMedGoogle Scholar
  47. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Sci Technol 63(15):2223–2253. doi: 10.1016/S0266-3538(03)00178-7 Google Scholar
  48. Huang J, Wong C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28(14):2358–2367. doi: 10.1016/j.biomaterials.2006.11.021 PubMedGoogle Scholar
  49. Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004a) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43(42):13604–13612. doi: 10.1021/Bi048983q PubMedGoogle Scholar
  50. Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S (2004b) Novel assembly properties of recombinant spider dragline silk proteins. Curr Biol 14(22):2070–2074. doi: 10.1016/j.cub.2004.11.005 PubMedGoogle Scholar
  51. Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A: Mater Sci Process 82(2):219–222. doi: 10.1007/s00339-005-3428-5 Google Scholar
  52. Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks—biopolymers with potential for future applications. Polymers 3(1):640–661. doi: 10.3390/polym3010640 Google Scholar
  53. Iqbal S, Miravet JF, Escuder B (2008) Biomimetic self-assembly of tetrapeptides into fibrillar networks and organogels. Eur J Org Chem 27:4580–4590. doi: 10.1002/ejoc.200800547 Google Scholar
  54. Ittah S, Cohen S, Garty S, Cohn D, Gat U (2006) An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules 7(6):1790–1795. doi: 10.1021/bm060120k PubMedGoogle Scholar
  55. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6):1233–1239. doi: 10.1021/Bm025581u PubMedGoogle Scholar
  56. Karatzas CN, Turner JD, Karatzas A-L (1999) Production of biofilaments in transgenic animals. Canada Patent WO 99/47661Google Scholar
  57. Keerl D, Scheibel T (2012) Characterization of natural and biomimetic spider silk fibers. Bioinspired Biomim Nanobiomaterials 1(2):83–94. doi: 10.1680/bbn.11.00016 Google Scholar
  58. Kinahan ME, Filippidi E, Koster S, Hu X, Evans HM, Pfohl T, Kaplan DL, Wong J (2011) Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12(5):1504–1511. doi: 10.1021/bm1014624 PubMedGoogle Scholar
  59. Klok HA, Rosler A, Gotz G, Mena-Osteritz E, Bauerle P (2004) Synthesis of a silk-inspired peptide oligothiophene conjugate. Org Biomol Chem 2(24):3541–3544. doi: 10.1039/B415454a PubMedGoogle Scholar
  60. Knight DP, Vollrath F (1999) Liquid crystals and flow elongation in a spider’s silk production line. Proc Biol Sci 266(1418):519–523. doi: 10.1098/rspb.1999.0667 Google Scholar
  61. Lang G, Jokisch S, Scheibel T (2013) Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J Vis Exp 75:e50492. doi: 10.3791/50492 PubMedGoogle Scholar
  62. Lawrence BA, Vierra CA, Mooref AMF (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5(3):689–695. doi: 10.1021/Bm0342640 PubMedGoogle Scholar
  63. Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295(5554):472–476. doi: 10.1126/science.1065780 PubMedGoogle Scholar
  64. Leal-Egana A, Scheibel T (2012) Interactions of cells with silk surfaces. J Mater Chem 22(29):14330–14336. doi: 10.1039/C2jm31174g Google Scholar
  65. Leal-Egana A, Lang G, Mauerer C, Wickinghoff J, Weber M, Geimer S, Scheibel T (2012) Interactions of fibroblasts with different morphologies made of an engineered spider silk protein. Adv Eng Mater 14(3):B67–B75. doi: 10.1002/adem.201180072 Google Scholar
  66. Lee KS, Kim BY, Je YH, Woo SD, Sohn HD, Jin BR (2007) Molecular cloning and expression of the C-terminus of spider flagelliform silk protein from Araneus ventricosus. J Biosci 32(4):705–712. doi: 10.1007/s12038-007-0070-8 PubMedGoogle Scholar
  67. Lewis RV, Hinman M, Kothakota S, Fournier MJ (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expres Purif 7(4):400–406. doi: 10.1006/prep.1996.0060 Google Scholar
  68. Lin Z, Huang W, Zhang J, Fan JS, Yang D (2009) Solution structure of eggcase silk protein and its implications for silk fiber formation. Proc Natl Acad Sci USA 106(22):8906–8911. doi: 10.1073/pnas.0813255106 PubMedGoogle Scholar
  69. Madani F, Lindberg S, Langel U, Futaki S, Graslund A (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:10 p. doi: 10.1155/2011/414729
  70. Mello CM, Soares JW, Arcidiacono S, Butlers MM (2004) Acid extraction and purification of recombinant spider silk proteins. Biomacromolecules 5(5):1849–1852. doi: 10.1021/Bm049815g PubMedGoogle Scholar
  71. Menassa R, Hong Z, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2(5):431–438. doi: 10.1111/j.1467-7652.2004.00087.x PubMedGoogle Scholar
  72. Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL (2010) Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater 22(20):5780–5785. doi: 10.1021/Cm101940u PubMedGoogle Scholar
  73. Morgan AW, Roskov KE, Lin-Gibson S, Kaplan DL, Becker ML, Simon CG Jr (2008) Characterization and optimization of RGD-containing silk blends to support osteoblastic differentiation. Biomaterials 29(16):2556–2563. doi: 10.1016/j.biomaterials.2008.02.007 PubMedGoogle Scholar
  74. Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV (2005) Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 6(6):3152–3159. doi: 10.1021/bm050472b PubMedGoogle Scholar
  75. Numata K, Kaplan DL (2010) Silk-based gene carriers with cell membrane destabilizing peptides. Biomacromolecules 11(11):3189–3195. doi: 10.1021/Bm101055m Google Scholar
  76. Numata K, Subramanian B, Currie HA, Kaplan DL (2009) Bioengineered silk protein-based gene delivery systems. Biomaterials 30(29):5775–5784. doi: 10.1016/j.biomaterials.2009.06.028 PubMedGoogle Scholar
  77. Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610. doi: 10.1021/bc200170u PubMedGoogle Scholar
  78. Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12(1):75–82. doi: 10.1002/mabi.201100274 PubMedGoogle Scholar
  79. Partis MD, Griffiths DG, Roberts GC, Beechey RB (1983) Cross-linking of protein by omega-maleimido alkanoyl N-hydroxysuccinimido esters. J Protein Chem 2(3):263–277. doi: 10.1007/BF01025358 Google Scholar
  80. Prince JT, Mcgrath KP, Digirolamo CM, Kaplan DL (1995) Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34(34):10879–10885. doi: 10.1021/bi00034a022 PubMedGoogle Scholar
  81. Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci USA 105(18):6590–6595. doi: 10.1073/pnas.0709246105 PubMedGoogle Scholar
  82. Rathore O, Sogah DY (2001) Self-assembly of beta-sheets into nanostructures by poly(alanine) segments incorporated in multiblock copolymers inspired by spider silk. J Am Chem Soc 123(22):5231–5239. doi: 10.1021/Ja004030d PubMedGoogle Scholar
  83. Rising A, Hjalm G, Engstrom W, Johansson J (2006) N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7(11):3120–3124. doi: 10.1021/bm060693x PubMedGoogle Scholar
  84. Schacht K, Scheibel T (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12(7):2488–2495. doi: 10.1021/Bm200154k PubMedGoogle Scholar
  85. Scheibel T (2004) Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb Cell Fact 3(1):14. doi: 10.1186/1475-2859-3-14 PubMedGoogle Scholar
  86. Schmidt M, Romer L, Strehle M, Scheibel T (2007) Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media. Biotechnol Lett 29(11):1741–1744. doi: 10.1007/s10529-007-9461-z PubMedGoogle Scholar
  87. Seidel A, Liivak O, Jelinski LW (1998) Artificial spinning of spider silk. Macromolecules 31(19):6733–6736. doi: 10.1021/ma9808880 Google Scholar
  88. Seidel A, Liivak O, Calve S, Adaska J, Ji GD, Yang ZT, Grubb D, Zax DB, Jelinski LW (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33(3):775–780. doi: 10.1021/ma990893j Google Scholar
  89. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38):6974–6998. doi: 10.1002/anie.200900942 Google Scholar
  90. Spiess K, Wohlrab S, Scheibel T (2010) Structural characterization and functionalization of engineered spider silk films. Soft Matter 6(17):4168–4174. doi: 10.1039/B927267d Google Scholar
  91. Sponner A, Unger E, Grosse F, Weisshart K (2004) Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 5(3):840–845. doi: 10.1021/bm034378b PubMedGoogle Scholar
  92. Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, Weisshart K (2005) The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun 338(2):897–902. doi: 10.1016/j.bbrc.2005.10.048 PubMedGoogle Scholar
  93. Stark M, Grip S, Rising A, Hedhammar M, Engstrom W, Hjalm G, Johansson J (2007) Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8(5):1695–1701. doi: 10.1021/Bm070049y PubMedGoogle Scholar
  94. Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D, Kaplan DL (2000) Reduction-oxidation control of beta-sheet assembly in genetically engineered silk. Biomacromolecules 1(4):534–542. doi: 10.1021/Bm0055697 PubMedGoogle Scholar
  95. Teulé F, Aubé C, Ellison M, Abbott A (2003) Biomimetic manufacturing of customised novel fibre proteins for specialised applications. AUTEX Res J 3(4):160–165Google Scholar
  96. Teulé F, Furin WA, Cooper AR, Duncan JR, Lewis RV (2007) Modifications of spider silk sequences in an attempt to control the mechanical properties of the synthetic fibers. J Mater Sci 42(21):8974–8985. doi: 10.1007/s10853-007-1642-6 Google Scholar
  97. Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4(3):341–355. doi: 10.1038/nprot.2008.250 PubMedGoogle Scholar
  98. Teulé F, Addison B, Cooper AR, Ayon J, Henning RW, Benmore CJ, Holland GP, Yarger JL, Lewis RV (2011) Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers. Biopolymers 97(6):418–431. doi: 10.1002/bip.21724 PubMedGoogle Scholar
  99. Thordarson P, Le Droumaguet B, Velonia K (2006) Well-defined protein-polymer conjugates-synthesis and potential applications. Appl Microbiol Biotechnol 73(2):243–254. doi: 10.1007/s00253-006-0574-4 PubMedGoogle Scholar
  100. Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D (1999) Methionine redox controlled crystallization of biosynthetic silk spidroin. J Phys Chem B 103(51):11382–11392. doi: 10.1021/jp991363s Google Scholar
  101. Vendrely C, Scheibel T (2007) Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 7(4):401–409. doi: 10.1002/mabi.200600255 PubMedGoogle Scholar
  102. Vendrely C, Ackerschott C, Roemer L, Scheibel T (2008) Molecular design of performance proteins with repetitive sequences: recombinant flagelliform spider silk as basis for biomaterials. Methods Mol Biol 474:3–14. doi: 10.1007/978-1-59745-480-3_1 PubMedGoogle Scholar
  103. Vollrath F, Madsen B, Shao ZZ (2001) The effect of spinning conditions on the mechanics of a spider’s dragline silk. Proc R Soc Lond B 268(1483):2339–2346. doi: 10.1098/rspb.2001.1590 Google Scholar
  104. Wang M, Yu JH, Kaplan DL, Rutledge GC (2006) Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning. Macromolecules 39(3):1102–1107. doi: 10.1021/Ma0517749 Google Scholar
  105. Wen HX, Lan XQ, Zhang YS, Zhao TF, Wang YJ, Kajiura Z, Nakagaki M (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37(4):1815–1821. doi: 10.1007/s11033-009-9615-2 PubMedGoogle Scholar
  106. Widmaier DM, Voigt CA (2010) Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb Cell Fact 9:78. doi: 10.1186/1475-2859-9-78 PubMedGoogle Scholar
  107. Widmaier DM, Tullman-Ercek D, Mirsky EA, Hill R, Govindarajan S, Minshull J, Voigt CA (2009) Engineering the Salmonella type III secretion system to export spider silk monomers. Mol Syst Biol 5:309. doi: 10.1038/msb.2009.62 PubMedGoogle Scholar
  108. Winkler S, Szela S, Avtges P, Valluzzi R, Kirschner DA, Kaplan D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24(2–3):265–270. doi: 10.1016/S0141-8130(98)00088-9 PubMedGoogle Scholar
  109. Winkler S, Wilson D, Kaplan DL (2000) Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39(41):12739–12746. doi: 10.1021/Bi001335w PubMedGoogle Scholar
  110. Winningham MJ, Sogah DY (1997) A modular approach to polymer architecture control via catenation of prefabricated biomolecular segments: polymers containing parallel beta-sheets templated by a phenoxathiin-based reverse turn mimic. Macromolecules 30(4):862–876. doi: 10.1021/ma960804s Google Scholar
  111. Wohlrab S, Mueller S, Schmidt A, Neubauer S, Kessler H, Leal-Egana A, Scheibel T (2012) Cell adhesion and proliferation on RGD-modified recombinant spider silk proteins. Biomaterials 33(28):6650–6659. doi: 10.1016/j.biomaterials.2012.05.069 PubMedGoogle Scholar
  112. Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci USA 103(25):9428–9433. doi: 10.1073/pnas.0601096103 PubMedGoogle Scholar
  113. Xia XX, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA 107(32):14059–14063. doi: 10.1073/pnas.1003366107 PubMedGoogle Scholar
  114. Xu M, Lewis RV (1990) Structure of a protein superfiber – spider dragline silk. Proc Natl Acad Sci USA 87(18):7120–7124. doi: 10.1073/pnas.87.18.7120 PubMedGoogle Scholar
  115. Xu HT, Fan BL, Yu SY, Huang YH, Zhao ZH, Lian ZX, Dai YP, Wang LL, Liu ZL, Fei J, Li N (2007) Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Anim Biotechnol 18(1):1–12. doi: 10.1080/10495390601091024 PubMedGoogle Scholar
  116. Yang JJ, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14(3):313–324. doi: 10.1007/s11248-005-0272-5 PubMedGoogle Scholar
  117. Zarkoob S, Eby RK, Reneker DH, Hudson SD, Ertley D, Adams WW (2004) Structure and morphology of electrospun silk nanofibers. Polymer 45(11):3973–3977. doi: 10.1016/j.polymer.2003.10.102 Google Scholar
  118. Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins: Struct Funct Genet 44(2):119–122. doi: 10.1002/prot.1078 Google Scholar
  119. Zhou CC, Leng BX, Yao JR, Qian J, Chen X, Zhou P, Knight DP, Shao ZZ (2006) Synthesis and characterization of multiblock copolymers based on spider dragline silk proteins. Biomacromolecules 7(8):2415–2419. doi: 10.1021/Bm060199t PubMedGoogle Scholar
  120. Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57(4):529–545. doi: 10.1016/j.addr.2004.10.010 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Stefanie Wohlrab
    • 1
  • Christopher Thamm
    • 1
  • Thomas Scheibel
    • 1
    Email author
  1. 1.Department of BiomaterialsUniversity of BayreuthBayreuthGermany

Personalised recommendations