Major Anatomical Structures

  • L. Andrew Coward
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 8)


There are many different types of neuron organized into many different anatomical structures in the mammal brain. Many of these structures are connected together, sometimes by multiple routes, and often indirectly via other structures. Neuron physiology involves large numbers of different chemicals interacting by many complex pathways.


  1. 16.
    Canli T, Zhao Z, Brewer J, Gabrieli JDE, Cahill L (2000) Event-related activation in the human amygdala associates with later memory for individual emotional experience. J Neurosci 20(RC99):1–5Google Scholar
  2. 21.
    Addis DA, Wong AT, Schacter DL (2007) Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45:1363–1377PubMedCrossRefGoogle Scholar
  3. 27.
    Sagar JH, Cohen NJ, Corkin S, Growden JH (1985) Dissociations among processes in remote memory. Ann N Y Acad Sci 444:533–535PubMedCrossRefGoogle Scholar
  4. 28.
    Kensinger EA, Ullman MT, Corkin S (2001) Bilateral medial temporal lobe damage does not affect lexical or grammatical processing: evidence from amnesic patient H.M. Hippocampus 11:347–360PubMedCrossRefGoogle Scholar
  5. 30.
    Milner B, Corkin S, Teuber H-L (1968) Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6:215–234CrossRefGoogle Scholar
  6. 31.
    Graham KS, Simons JS, Pratt KH, Patterson K, Hodges JR (2000) Insights from semantic dementia on the relationship between episodic and semantic memory. Neuropsychologia 38(3):313–324PubMedCrossRefGoogle Scholar
  7. 62.
    Bukach CM, Gauthier I, Tarr ML (2006) Beyond faces and modularity: the power of an expertise framework. Trends Cogn Sci 10:159–166PubMedCrossRefGoogle Scholar
  8. 64.
    Adolphs R, Tranel D, Hamann S, Young AW, Calder AJ, Phelps EA, Anderson A, Lee GP, Damasio AR (1999) Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37:1111–1117; Heberlein AS, Padon AA, Gillihan SJ, Farah MJ, Fellows LK (2008) Ventromedial frontal lobe plays a critical role in facial emotion recognition. J Cogn Neurosci 20(4):721–733Google Scholar
  9. 68.
    Tracy JL, Robins RW (2008) The nonverbal expression of pride: evidence for cross-cultural recognition. J Pers Soc Psychol 94:516–530PubMedCrossRefGoogle Scholar
  10. 146.
    Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219PubMedCrossRefGoogle Scholar
  11. 181.
    Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235PubMedCrossRefGoogle Scholar
  12. 187.
    Caille I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31PubMedGoogle Scholar
  13. 188.
    Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973PubMedCrossRefGoogle Scholar
  14. 189.
    Meiergerd SM, Patterson TA, Schenk JO (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J Neurochem 61:764–767PubMedCrossRefGoogle Scholar
  15. 190.
    Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRefGoogle Scholar
  16. 198.
    Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol 6:235–253PubMedCrossRefGoogle Scholar
  17. 408.
    Markram H, Toleo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807PubMedCrossRefGoogle Scholar
  18. 419.
    Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470PubMedCrossRefGoogle Scholar
  19. 509.
    Holmgren CD, Zilberter Y (2001) Coincident spiking activity induced long-term changes in inhibition of neocortical pyramidal cells. J Neurosci 21:8270–8277PubMedGoogle Scholar
  20. 521.
    Barta P, Dazzan P (2003) Hemispheric surface area: sex, laterality and age effects. Cereb Cortex 13(4):364–370PubMedCrossRefGoogle Scholar
  21. 522.
    Peters A, Morrison JH, Rosene DL, Hyman BT (1998) Are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 8:295–300PubMedCrossRefGoogle Scholar
  22. 523.
    Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the macaque. J Neurophysiol 35(96–111):1972Google Scholar
  23. 524.
    Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73:218–226PubMedGoogle Scholar
  24. 525.
    Hubel DH (1995) Eye, brain and vision. Scientific American Library/Scientific American Books, New YorkGoogle Scholar
  25. 526.
    Tanaka K (2003) Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex 13:90–99PubMedCrossRefGoogle Scholar
  26. 527.
    Zhou F-M, Hablitz JJ (1996) Morphological properties of intracellularly labeled layer I neurons in rat neocortex. J Comp Neurol 376:198–213PubMedCrossRefGoogle Scholar
  27. 528.
    Glickfeld LL, Roberts JD, Somogyi P, Scanziani M (2009) Interneurons hyperpolarise pyramidal cells along their entire somatodendritic axis. Nat Neurosci 12:21–23PubMedCrossRefGoogle Scholar
  28. 529.
    Woodruff A, Xu Q, Anderson SA, Yuste R (2009) Depolarising effect of neocortical chandelier neurons. Front Neural Circuits 3:15PubMedCrossRefGoogle Scholar
  29. 530.
    Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K (2008) GABAergic depolarisation of the axon initial segment in cortical principal neurons is caused by the Na–K–2Cl cotransporter NKCC1. J Neurosci 28:4635–4639PubMedCrossRefGoogle Scholar
  30. 531.
    Tamas G, Buhl EH, Lorinz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3:366–371PubMedCrossRefGoogle Scholar
  31. 532.
    Komatsu Y (1996) GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J Neurosci 16:6342–6352PubMedGoogle Scholar
  32. 533.
    Hilgetag C-C, Burns GAPC, O’Neill MA, Scannell JW, Malcolm P, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos Trans R Soc Lond B 355:91–110CrossRefGoogle Scholar
  33. 534.
    Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254PubMedCrossRefGoogle Scholar
  34. 535.
    Sah P, Faber ESL, De Armentia ML, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83:803–834PubMedGoogle Scholar
  35. 536.
    Bacon SJ, Headlam AJN, Gabbott PLA, Smith AD (1996) Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Brain Res 720:211–219PubMedCrossRefGoogle Scholar
  36. 537.
    Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27:79–82PubMedCrossRefGoogle Scholar
  37. 538.
    Wilson MA, Molliver ME (1991) The organization of serotonergic projections to cerebral cortex in primates: regional distribution of axon terminals. Neuroscience 44:537–553PubMedCrossRefGoogle Scholar
  38. 539.
    De Almeida J, Palacios JM, Mengod G (2008) Distribution of 5-HT and DA receptors in primate prefrontal cortex: implications for pathophysiology and treatment. Prog Brain Res 172:101–115PubMedCrossRefGoogle Scholar
  39. 540.
    Houser CR, Crawford GD, Salvaterra PM, Vaugn JE (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34PubMedCrossRefGoogle Scholar
  40. 541.
    Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14PubMedCrossRefGoogle Scholar
  41. 542.
    Huang ZJ, Di Cristo G, Ango F (2007) Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 8:673–686PubMedCrossRefGoogle Scholar
  42. 543.
    Dantzker JL, Callaway EM (2000) Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 3:701–707PubMedCrossRefGoogle Scholar
  43. 544.
    Beaulieu C, Colonnier M (1989) Number of neurons in individual laminae of areas 3B, 4γ, and 6aα of the cat cerebral cortex: a comparison with major visual areas. J Comp Neurol 279:228–234PubMedCrossRefGoogle Scholar
  44. 545.
    Lubke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212:3–17PubMedCrossRefGoogle Scholar
  45. 546.
    Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticuar nucleus. Trends Neurosci 21:28–32PubMedCrossRefGoogle Scholar
  46. 547.
    Amunts K, Schleicher A, Ditterich A, Zilles K (2003) Broca’s region: cytoarchitectonic asymmetry and developmental changes. J Comp Neurol 465:72–89PubMedCrossRefGoogle Scholar
  47. 548.
    Knecht S, Drager B, Deppe M, Bobe L, Lohmann H, Floel A, Ringelstein E-B, Henningsen H (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123:2512–2518PubMedCrossRefGoogle Scholar
  48. 549.
    Joseph R (1988) The right cerebral hemisphere: emotion, music, visual-spatial skills, body-image, dreams, and awareness. J Clin Psychol 44:630–673PubMedCrossRefGoogle Scholar
  49. 550.
    Scheperjans F, Palomero-Gallagher N, Grefkes C, Schleicher A, Zilles K (2005) Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions. Neuroimage 28:362–379PubMedCrossRefGoogle Scholar
  50. 551.
    Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carsons RE, Herscovitch P, Schapiro MB, Rapoport SI (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA 88:1621–1625PubMedCrossRefGoogle Scholar
  51. 552.
    Milner AD, Perrett DI, Johnston RS, Benson PJ, Jordan TR, Heeley DW, Bettucci D, Mortara F, Mutani R, Terazzi E, Davidson DLW (1991) Perception and action in “Visual Form Agnosia”. Brain 114:405–428; James TW, Culham JG, Keith Humphrey GK, Milner AD, Goodale MA (2003) Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126:2463–2475Google Scholar
  52. 553.
    Jakobson LS, Archibald YM, Carey DP, Goodale MA (1991) A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29(8):803–809PubMedCrossRefGoogle Scholar
  53. 554.
    Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in Macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1. J Neurophysiol 55:1328–1339PubMedGoogle Scholar
  54. 555.
    Richer F, Martinez M, Robert M, Bouvier G, Saint-Hilaire J-M (1993) Stimulation of human somatosensory cortex: tactile and body displacement perceptions in medial region. J Exp Brain Res 93(1):173–176Google Scholar
  55. 556.
    Nudo RJ (1999) Recovery after damage to motor cortical areas. Curr Opin Neurobiol 9:740–747PubMedCrossRefGoogle Scholar
  56. 557.
    Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95:15061–15065PubMedCrossRefGoogle Scholar
  57. 558.
    Dijkerman HC, de Haan EHF (2007) Somatosensory processes subserving perception and action. Behav Brain Sci 30:189–239PubMedCrossRefGoogle Scholar
  58. 559.
    Berndt RS, Caramazza A (1980) A redefinition of the syndrome of Broca’s aphasia: implications for a neuropsychological model of language. Appl Psycholinguist 1:225–278CrossRefGoogle Scholar
  59. 560.
    Dronkers NF, Wilkins DP, Van Valin RD Jr, Redfern BB, Jaeger JJ (2004) Lesion analysis of the brain areas involved in language comprehension. Cognition 92:145–177PubMedCrossRefGoogle Scholar
  60. 561.
    Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362PubMedGoogle Scholar
  61. 562.
    Thompson-Schill SL (2003) Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia 41:280–292PubMedCrossRefGoogle Scholar
  62. 563.
    Grossman M, Koenig P, Kounios J, McMillan C, Work M, Peachie Moore P (2006) Category-specific effects in semantic memory: category–task interactions suggested by fMRI. Neuroimage 30:1003–1009PubMedCrossRefGoogle Scholar
  63. 564.
    Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256PubMedCrossRefGoogle Scholar
  64. 565.
    Lebreton K, Desgranges B, Landeau B, Baron J-C, Eustache F (2001) Visual priming within and across symbolic format using a tachistoscopic picture identification task: a PET study. J Cogn Neurosci 13:670–686PubMedCrossRefGoogle Scholar
  65. 566.
    Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202PubMedCrossRefGoogle Scholar
  66. 567.
    Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal lobe hierarchical? Nat Rev Neurosci 10:659–669PubMedCrossRefGoogle Scholar
  67. 568.
    Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483PubMedCrossRefGoogle Scholar
  68. 569.
    Kanwisher N, Stanley D, Harris A (1999) The fusiform face area is selective for faces not animals. Neuroreport 10:183–187PubMedCrossRefGoogle Scholar
  69. 570.
    De Renzi E (1997) Prosopagnosia. In: Feinberg TE, Farah MJ (eds) Behavioral neurology and neuropsychology. McGraw-Hill, New York, pp 245–255Google Scholar
  70. 571.
    Whiteley AM, Warrington EK (1977) Prosopagnia: a clinical, psychological, and anatomical study of three patients. J Neurol Neurosurg Psychiatry 40:395–403PubMedCrossRefGoogle Scholar
  71. 572.
    Gloning I, Gloning K, Jellinger K, Quatember R (1970) A case of “prosopagnosia” with necropsy findings. Neuropsychologia 8:199–204PubMedCrossRefGoogle Scholar
  72. 573.
    Schultz TS, Grelotti DJ, Klin A, Kleinman J, Van der Gaag C, Marois R, Skudlarski P (2003) The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philos Trans R Soc Lond B 358:415–427CrossRefGoogle Scholar
  73. 574.
    Critchley HD, Daly EM, Bullmore ET, Williams SCR, Van Amelsvoort T, Robertson DM, Rowe A, Phillips M, McAlonan G, Howlin P, Murphy DGM (2000) The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain 123:2203–2212PubMedCrossRefGoogle Scholar
  74. 575.
    Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47PubMedCrossRefGoogle Scholar
  75. 576.
    Mistry RB, Isaac JTR, Crabtree JW (2008) Two differential frequency-dependent mechanisms regulating tonic firing of thalamic reticular neurons. Eur J Neurosci 27:2643–2656PubMedCrossRefGoogle Scholar
  76. 577.
    MacDonald KD, Fifkova E, Jones MS, Barth DS (1998) Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in cortex. J Physiol 79:474–477Google Scholar
  77. 578.
    Vertes RP, Albo Z, Viana Di Prisco G (2001) Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez’s circuit. Neuroscience 104:619–625PubMedCrossRefGoogle Scholar
  78. 579.
    Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628PubMedCrossRefGoogle Scholar
  79. 580.
    Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026PubMedGoogle Scholar
  80. 581.
    Timofeev I, Bazhenov M (2005) Mechanisms and biological role of thalamocortical oscillations. In: Columbus F (ed) Trends in chronobiology research. Nova Science Publishers, New YorkGoogle Scholar
  81. 582.
    Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 42:27–37PubMedCrossRefGoogle Scholar
  82. 583.
    Barroso-Chinea P, Castle M, Aymerich MS, Lanciego JL (2008) Expression of vesicular glutamate transporters 1 and 2 in the cells of origin of the rat thalamostriatal pathway. J Chem Neuroanat 35:101–107PubMedCrossRefGoogle Scholar
  83. 584.
    Castro-Alamancos MA, Calcagnotto ME (1999) Presynaptic long-term potentiation in corticothalamic synapses. J Neurosci 19:9090–9097PubMedGoogle Scholar
  84. 585.
    Vogt BA, Rosene DL, Peters A (1981) Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283PubMedCrossRefGoogle Scholar
  85. 586.
    Viaene AN, Petrof I, Sherman SM (2011) Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. J Neurophysiol 105:279–292PubMedCrossRefGoogle Scholar
  86. 587.
    Sherman SM (2012) Thalamocortical interactions. Curr Opin Neurobiol 22:575–579PubMedCrossRefGoogle Scholar
  87. 588.
    Petrof I, Sherman SM (2009) Synaptic properties of the mammillary and cortical afferents to the anterodorsal thalamic nucleus in the mouse. J Neurosci 29:7815–7819PubMedCrossRefGoogle Scholar
  88. 589.
    Sherman SM (2005) Thalamic relays and cortical functioning. Prog Brain Res 149:107–126PubMedCrossRefGoogle Scholar
  89. 590.
    McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388PubMedCrossRefGoogle Scholar
  90. 591.
    Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21(2):700–712PubMedGoogle Scholar
  91. 592.
    Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395PubMedGoogle Scholar
  92. 593.
    Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083PubMedCrossRefGoogle Scholar
  93. 594.
    Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39:107–140PubMedCrossRefGoogle Scholar
  94. 595.
    Parton A, Husain M (2004) Spatial neglect. Adv Clin Neurosci Rehabil 4:17–18Google Scholar
  95. 596.
    Karnath H-O, Himmelbach M, Rorden C (2002) The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125:350–360PubMedCrossRefGoogle Scholar
  96. 597.
    Van Der Werf YD, Jolles J, Witter MP, Uylings HBM (2003) Contributions of thalamic nuclei to declarative memory functioning. Cortex 39:1047–1062PubMedCrossRefGoogle Scholar
  97. 598.
    Rees G (2009) Visual attention: the thalamus at the centre? Curr Biol 19:R213–R214PubMedCrossRefGoogle Scholar
  98. 599.
    O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nat Neurosci 5:1203–1209PubMedCrossRefGoogle Scholar
  99. 600.
    McAlonan K, Cavanaugh J, Wurtz RH (2006) Attentional modulation of thalamic reticular neurons. J Neurosci 26:4444–4450PubMedCrossRefGoogle Scholar
  100. 601.
    Mayo JP (2009) Intrathalamic mechanisms of visual attention. J Neurophysiol 101:1123–1125PubMedCrossRefGoogle Scholar
  101. 602.
    Jensen O, Kaiser J, Lachaux J-P (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324PubMedCrossRefGoogle Scholar
  102. 603.
    Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601PubMedCrossRefGoogle Scholar
  103. 604.
    Llinas RR, Leznik E, Urbano FJ (2002) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci USA 99:449–454PubMedCrossRefGoogle Scholar
  104. 605.
    Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRefGoogle Scholar
  105. 606.
    Nambu A (2007) Globus pallidus internal segment. Prog Brain Res 160:135–150PubMedCrossRefGoogle Scholar
  106. 607.
    Battaglini PP, Squatrito S, Galletti C, Maioli MG, Riva Sanseverino E (1982) Bilateral projections from the visual cortex to the striatum in the cat. Exp Brain Res 47:28–32PubMedCrossRefGoogle Scholar
  107. 608.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301PubMedCrossRefGoogle Scholar
  108. 609.
    Walker FO (2007) Huntingdon’s disease. Lancet 369:218–228PubMedCrossRefGoogle Scholar
  109. 610.
    Temel Y, Blokland A, Steinbusch HWM (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76(6):393–413PubMedCrossRefGoogle Scholar
  110. 611.
    Singer HS, Reiss AL, Brown JE et al (1993) Volumetric MRI changes in basal ganglia of children with Tourette’s syndrome. Neurology 43:950–956PubMedCrossRefGoogle Scholar
  111. 612.
    Singer HS, Minzer K (2003) Neurobiology of Tourette’s syndrome: concepts of neuroanatomic localization and neurochemical abnormalities. Brain Dev 25(S1):S70–S84PubMedCrossRefGoogle Scholar
  112. 613.
    Brown LL, Schneider JS, Lidsky TI (1997) Sensory and cognitive functions of the basal ganglia. Curr Opin Neurobiol 7:157–163PubMedCrossRefGoogle Scholar
  113. 614.
    Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25:563–593PubMedCrossRefGoogle Scholar
  114. 615.
    Dubois D, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8PubMedCrossRefGoogle Scholar
  115. 616.
    Matison R, Mayeux R, Rosen J, Fahn S (1982) ‘Tip-of-the-tongue’ phenomenon in Parkinson’s disease. Neurology 32:567–570PubMedCrossRefGoogle Scholar
  116. 617.
    Ikemoto S, Glazier BS, Murphy JM, McBride WJ (1997) Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17(21):8580–8587; Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral palladium roles in reward and motivation. Behav Brain Res 196:155–167; Geisler S, Wise RA (2008) Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 19:227–244Google Scholar
  117. 618.
    Boraud T, Brown P, Goldberg JA, Graybiel AM, Magill PJ, Bolam JP, Ingham CA (2005) Oscillations in the basal ganglia: the good, the bad and the unexpected. In: Magill PJ (ed) The basal ganglia VIII. Springer, New York, pp 3–24Google Scholar
  118. 619.
    Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21:32–38PubMedCrossRefGoogle Scholar
  119. 620.
    Sharott A, Moll CKE, Engler G, Denker M, Grün S, Engel AK (2009) Different subtypes of striatal neurons are selectively modulated by cortical oscillations. J Neurosci 29:4571–4585PubMedCrossRefGoogle Scholar
  120. 621.
    Kubota Y, Kawaguchi Y (2000) Dependence of GABAergic synaptic areas on the interneuron type and target size. J Neurosci 20:375–386PubMedGoogle Scholar
  121. 622.
    Ibanez-Sandoval O, Tecuapetla F, Unal B, Shah F, Koos T, Tepper JM (2010) Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum. J Neurosci 30:6999–7016PubMedCrossRefGoogle Scholar
  122. 623.
    English DF, Ibanez-Sandoval O, Stark E, Tecuapetla F, Buzsaki G, Diesseroth K, Tepper JM, Koos T (2011) GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat Neurosci 15:123–130PubMedCrossRefGoogle Scholar
  123. 624.
    Yan Z, Flores-Hernandez J, Surmeier DJ (2001) Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 103:1017–1024PubMedCrossRefGoogle Scholar
  124. 625.
    Kincaid AE, Zheng T, Wilson CJ (1998) Connectivity and convergence of single corticostriatal axons. J Neurosci 18:4722–4731PubMedGoogle Scholar
  125. 626.
    Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344:1–19PubMedCrossRefGoogle Scholar
  126. 627.
    Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189–1215PubMedCrossRefGoogle Scholar
  127. 628.
    Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 28(44):11221–11230PubMedCrossRefGoogle Scholar
  128. 629.
    Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726PubMedCrossRefGoogle Scholar
  129. 630.
    Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA 90:8861–8865PubMedCrossRefGoogle Scholar
  130. 631.
    Langer LF, Graybiel AM (1989) Distinct nigrostriatal projection systems innervate striosomes and matrix in the primate striatum. Brain Res 498:344–350PubMedCrossRefGoogle Scholar
  131. 632.
    Alexander GE, DeLong MR (1985) Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J Neurophysiol 53:1401–1416PubMedGoogle Scholar
  132. 633.
    West MO, Carelli RM, Cohen SM, Gardner JP, Pomerantz M, Chapin JK, Woodward DJ (1990) A region in the dorsolateral striatum of the rat exhibiting single unit correlations with specific locomotor limb movements. J Neurophysiol 64:1233–1246PubMedGoogle Scholar
  133. 634.
    Tippett LJ, Waldvogel HJ, Thomas SJ, Hogg VM, van Roon-Mom W, Synek BJ, Graybiel AM, Faull RLM (2007) Striosomes and mood dysfunction in Huntington’s disease. Brain 130:206–221PubMedCrossRefGoogle Scholar
  134. 635.
    Reiner A, Jiao Y, Del Mar N, Laverghetta AV, Lei WL (2003) Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J Comp Neurol 457:420–440PubMedCrossRefGoogle Scholar
  135. 636.
    Reiner A, Hart NM, Lei W, Deng Y (2010) Corticostriatal projection neurons – dichotomous types and dichotomous functions. Front Neuroanat 4:142PubMedCrossRefGoogle Scholar
  136. 637.
    Gerfen CR (1989) The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 246:385–388PubMedCrossRefGoogle Scholar
  137. 638.
    Ragsdale CW, Graybiel AM (1990) A simple ordering of neocortical areas established by the compartmental organization of their striatal projections. Proc Natl Acad Sci USA 87:6196–6199PubMedCrossRefGoogle Scholar
  138. 639.
    Parthasarathy HB, Schall JD, Graybiell AM (1992) Distributed but convergent ordering of corticostriatal projections: analysis of the frontal eye field and the supplementary eye field in the macaque monkey. J Neurosci 12(11):4468–4488PubMedGoogle Scholar
  139. 640.
    Ballion B, Mallet N, Bezard E, Lanciego JL, Gonon F (2008) Intratelencephalic corticostriatal neurons equally excite striatonigral and striatopallidal neurons and their discharge activity is selectively reduced in experimental parkinsonism. Eur J Neurosci 27:2313–2321PubMedCrossRefGoogle Scholar
  140. 641.
    Zheng T, Wilson CJ (2002) Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol 87:1007–1017PubMedGoogle Scholar
  141. 642.
    Wilson CJ (1992) Dendritic morphology, inward rectification and the functional properties of neostriatal neurons. In: McKenna T, Davis J, Zornetzer SF (eds) Single neuron computation. Academic, San DiegoGoogle Scholar
  142. 643.
    Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120PubMedCrossRefGoogle Scholar
  143. 644.
    Ragsdale CW, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J Comp Neurol 269:506–522PubMedCrossRefGoogle Scholar
  144. 645.
    Kita H, Kwai ST (1990) Amygdaloid projections to the frontal cortex and the striatum in the rat. J Comp Neurol 298:40–49PubMedCrossRefGoogle Scholar
  145. 646.
    Sershen H, Hashim A, Lajtha A (2000) Serotonin-mediated striatal dopamine release involves the dopamine uptake site and the serotonin receptor. Brain Res Bull 53(3):353–357PubMedCrossRefGoogle Scholar
  146. 647.
    Stoof JC, Drukarch B, De Boer P, Westerink BHC, Groenewegen HJ (1992) Regulation of the activity of striatal cholinergic neurons by dopamine. Neuroscience 47:755–770; Aosaki T, Kiuchi K, Kawaguchi Y (1998) Dopamine D1-like receptor activation excites rat striatal large aspiny neurons in vitro. J Neurosci 18(14):5180–5190Google Scholar
  147. 648.
    Blomeley C, Bracci E (2005) Excitatory effects of serotonin on rat striatal cholinergic interneurones. J Physiol 569:715–721PubMedCrossRefGoogle Scholar
  148. 649.
    Pisani A, Bonsi P, Centonze D, Martorana A, Fusco F, Sancesario G, De Persis C, Bernardi G, Calabresi P (2003) Activation of β1-adrenoceptors excites striatal cholinergic interneurons through a cAMP-dependent, protein kinase-independent pathway. J Neurosci 15:5272–5282Google Scholar
  149. 650.
    Mavridis M, Degryse A-D, Lategan AJ, Marien MR, Colpaert FC (1991) Effects of locus coeruleus lesions on Parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 41:507–523PubMedCrossRefGoogle Scholar
  150. 651.
    Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692PubMedCrossRefGoogle Scholar
  151. 652.
    Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127PubMedCrossRefGoogle Scholar
  152. 653.
    Tepper JM, Koós T, Wilson CJ (2004) GABAergic microcircuits in the neostriatum. Trends Neurosci 27:662–669PubMedCrossRefGoogle Scholar
  153. 654.
    Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31:1183–1192PubMedCrossRefGoogle Scholar
  154. 655.
    Parent A, Hazrati L-N (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154PubMedCrossRefGoogle Scholar
  155. 656.
    Sato F, Parent M, Levesque M, Parent A (2000) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152PubMedCrossRefGoogle Scholar
  156. 657.
    Nakano K, Hasegawa Y, Tokushige A, Nakagawa S, Kayahara T, Mizuno N (1990) Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res 537:54–68PubMedCrossRefGoogle Scholar
  157. 658.
    Levesque J-C, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Mov Disord 20(5):574–584PubMedCrossRefGoogle Scholar
  158. 659.
    Hazrati L-N, Parent A (1993) Striatal and subthalamic afferents to the primate pallidum: interactions between two opposite chemospecific neuronal systems. Prog Brain Res 99:89–104PubMedCrossRefGoogle Scholar
  159. 660.
    Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133PubMedCrossRefGoogle Scholar
  160. 661.
    Cooper AJ, Stanford IM (2002) Calbindin D-28k positive projection neurones and calretinin positive interneurones of the rat globus pallidus. Brain Res 929:243–251PubMedCrossRefGoogle Scholar
  161. 662.
    Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–542PubMedCrossRefGoogle Scholar
  162. 663.
    Mitchell SJ, Richardson RT, Baker FH, DeLong MR (1987) The primate globus pallidus: neuronal activity related to direction of movement. Exp Brain Res 68:491–505PubMedGoogle Scholar
  163. 664.
    Gardiner TW, Kitai ST (1992) Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head movement. Exp Brain Res 88:517–530PubMedCrossRefGoogle Scholar
  164. 665.
    Hajos M, Greenfield SA (1994) Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra. Brain Res 660:216–224PubMedCrossRefGoogle Scholar
  165. 666.
    Tepper JM, Abercrombie ED, Bolam JP (2007) Basal ganglia macrocircuits. Prog Brain Res 160:3–7PubMedCrossRefGoogle Scholar
  166. 667.
    Tritsch NX, Ding JB, Sabatini BL (2012) Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 490:262–266PubMedCrossRefGoogle Scholar
  167. 668.
    Yung WH, Hausser MA, Jack JJB (1991) Electrophysiology of dopaminergic and non-dopaminergic neurones of the guinea-pig substantia nigra pars compacta in vitro. J Physiol 436:643–667PubMedGoogle Scholar
  168. 669.
    Hebb MO, Robertson HA (2000) Identification of a subpopulation of substantia nigra pars compacta γ-aminobutyric acid neurons that is regulated by basal ganglia activity. J Comp Neurol 416:30–44PubMedCrossRefGoogle Scholar
  169. 670.
    Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63PubMedCrossRefGoogle Scholar
  170. 671.
    Zahm DS (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann N Y Acad Sci 877:113–128PubMedCrossRefGoogle Scholar
  171. 672.
    Sadikot AF, Sasseville R (1997) Neurogenesis in the mammalian neostriatum and nucleus accumbens: parvalbumin-immunoreactive GABAergic interneurons. J Comp Neurol 389:193–211PubMedCrossRefGoogle Scholar
  172. 673.
    Wright CI, Beijer AVJ, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 15(5):1877–1893Google Scholar
  173. 674.
    Pennartz CMA, Groenewegen HJ, Lopes Da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol 47:719–761CrossRefGoogle Scholar
  174. 675.
    Haber SN, Groenewegen HJ, Grove EA, Nauta WJH (1985) Efferent connections of the ventral pallidum: evidence of a dual striato pallidofugal pathway. J Comp Neurol 235:322–335PubMedCrossRefGoogle Scholar
  175. 676.
    Kretschmer BD (2000) NMDA receptor antagonist-induced dopamine release in the ventral pallidum does not correlate with motor activation. Brain Res 859:147–156; Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27(21):5730–5743Google Scholar
  176. 677.
    Kretschmer BD (2000) NMDA receptor antagonist-induced dopamine release in the ventral pallidum does not correlate with motor activation. Brain Res 859:147–156PubMedCrossRefGoogle Scholar
  177. 678.
    Smith KS, Tindell AJ, Aldridge JW, Berridge KC (2009) Ventral pallidum roles in reward and motivation. Behav Brain Res 196:155–167PubMedCrossRefGoogle Scholar
  178. 679.
    Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 450:455–468PubMedGoogle Scholar
  179. 680.
    Geisler S, Wise RA (2008) Functional implications of glutamatergic projections to the ventral tegmental area. Rev Neurosci 19(4–5):227–244PubMedGoogle Scholar
  180. 681.
    Ullsperger M, von Cramon DY (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–4314PubMedGoogle Scholar
  181. 682.
    Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:2040–2042PubMedCrossRefGoogle Scholar
  182. 683.
    Beckstead RM, DoMesick VB, Nauta WJH (1979) Efferent connections of the substantia nigra and ventral tegmental areas in the rat. Brain Res 175:191–217PubMedCrossRefGoogle Scholar
  183. 684.
    Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873PubMedGoogle Scholar
  184. 685.
    Lovinger DM (2010) Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58:951–961PubMedCrossRefGoogle Scholar
  185. 686.
    Martinez-Gonzalez C, Bolam JP, Mena-Segovia J (2011) Topographical organization of the pedunculopontine nucleus. Front Neuroanat 5:22PubMedCrossRefGoogle Scholar
  186. 687.
    Good CH, Lupica CR (2010) Afferent-specific AMPA receptor subunit composition and regulation of synaptic plasticity in midbrain dopamine neurons by abused drugs. J Neurosci 30:7900–7909PubMedCrossRefGoogle Scholar
  187. 688.
    Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMedCrossRefGoogle Scholar
  188. 689.
    Bolam JP, Brown MTC, Moss J, Magill PJ (2007) Basal ganglia: internal organization. Encycl Neurosci 2:97–104Google Scholar
  189. 690.
    Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466PubMedCrossRefGoogle Scholar
  190. 691.
    Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21:4915–4922PubMedGoogle Scholar
  191. 692.
    Hyland BI, Reynolds JNJ, Hay J, Perk CG, Miller R (2002) Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114:475–492PubMedCrossRefGoogle Scholar
  192. 693.
    Overton PG, Clark D (1997) Burst firing in midbrain dopaminergic neurons. Brain Res Rev 25:312–334PubMedCrossRefGoogle Scholar
  193. 694.
    Grace AA, Bunney BS (1979) Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur J Pharmacol 59:211–218PubMedCrossRefGoogle Scholar
  194. 695.
    Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587PubMedCrossRefGoogle Scholar
  195. 696.
    Otake K, Nakamura Y (2000) Possible pathways through which neurons of the shell of the nucleus accumbens influence the outflow of the core of the nucleus accumbens. Brain Dev 22:S17–S26PubMedCrossRefGoogle Scholar
  196. 697.
    Alexander GE, Mahlon R, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRefGoogle Scholar
  197. 698.
    Tekin S, Jeffrey L, Cummings JL (2002) Frontal–subcortical neuronal circuits and clinical neuropsychiatry: an update. J Psychosom Res 53:647–654PubMedCrossRefGoogle Scholar
  198. 699.
    Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp Brain Res 53:244–258PubMedCrossRefGoogle Scholar
  199. 700.
    Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271PubMedCrossRefGoogle Scholar
  200. 701.
    Jaeger D, Gilman S, Wayne Aldridge JW (1995) Neuronal activity in the striatum and pallidum of primates related to the execution of externally cued reaching movements. Brain Res 694:111–127PubMedCrossRefGoogle Scholar
  201. 702.
    Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382PubMedGoogle Scholar
  202. 703.
    McDonald AJ (2003) Is there an amygdala and how far does it extend? An anatomical perspective. Ann N Y Acad Sci 985:1–21PubMedCrossRefGoogle Scholar
  203. 704.
    Kemppainen S, Jolkkonen E, Pitkanen A (2002) Projections from the posterior cortical nucleus of the amygdala to the hippocampal formation and parahippocampal region in rat. Hippocampus 12:735–755PubMedCrossRefGoogle Scholar
  204. 705.
    Swanson LW (2003) The amygdala and its place in the cerebral hemisphere. Ann N Y Acad Sci 985:174–184PubMedCrossRefGoogle Scholar
  205. 706.
    Meunier M, Bachevalier J, Murray EA, Malkova L, Mishkin M (1999) Effects of aspiration vs. neurotoxic lesions of the amygdala on emotional responses in monkeys. Eur J Neurosci 11:4403–4418PubMedCrossRefGoogle Scholar
  206. 707.
    Fanselow MS, Gale GD (1994) The amygdala, fear, and memory. Proc Natl Acad Sci USA 91:11771–11776CrossRefGoogle Scholar
  207. 708.
    Ohman A (2005) The role of the amygdala in human fear: automatic detection of threat. Psychoneuroendocrinology 30(10):953–958PubMedCrossRefGoogle Scholar
  208. 709.
    Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118PubMedCrossRefGoogle Scholar
  209. 710.
    Gallagher M, Holland PC (1994) The amygdala complex: multiple roles in associative learning and attention. Proc Natl Acad Sci USA 91:11771–11776PubMedCrossRefGoogle Scholar
  210. 711.
    Ekman P, Friesen WV (1971) Constants across cultures in the face and emotion. J Pers Soc Psychol 17(2):124–129PubMedCrossRefGoogle Scholar
  211. 712.
    Lanteaume L, Khalfa S, Regis J, Marquis P, Chauvel P, Bartolomei F (2007) Emotion induction after direct intracerebral stimulations of human amygdala. Cereb Cortex 17:1307–1313PubMedCrossRefGoogle Scholar
  212. 713.
    Fanselow MS, Joseph E, LeDoux JE (1999) Why we think plasticity underlying viewpoint Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23:229–232PubMedCrossRefGoogle Scholar
  213. 714.
    Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–573PubMedCrossRefGoogle Scholar
  214. 715.
    Málková L, Gaffan D, Murray EA (1997) Excitotoxic lesions of the amygdala fail to produce impairments in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J Neurosci 17:6011–6020PubMedGoogle Scholar
  215. 716.
    LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10:1062–1069PubMedGoogle Scholar
  216. 717.
    Adolphs R, Tranel D, Buchanan AW (2005) Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nat Neurosci 8:512–518PubMedCrossRefGoogle Scholar
  217. 718.
    Buchanan AW, Tranel D, Adolphs R (2003) A specific role for the human amygdala in olfactory memory. Learn Mem 10:319–325PubMedCrossRefGoogle Scholar
  218. 719.
    Likhtik E, Pelletier JG, Popescu AT, Pare D (2006) Identification of basolateral amygdala projection cells and interneurons using extracellular recordings. J Neurophysiol 96:3257–3265PubMedCrossRefGoogle Scholar
  219. 720.
    Nishijo H, Ono T, Nishino H (1988) Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J Neurosci 8:3570–3583PubMedGoogle Scholar
  220. 721.
    Duguid I, Sjostrom PJ (2006) Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 16:312–322PubMedCrossRefGoogle Scholar
  221. 722.
    Humeau Y, Shaban H, Bissiere S, Luthi A (2003) Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426:841–845PubMedCrossRefGoogle Scholar
  222. 723.
    Humeau Y, Herry C, Kemp N, Shaban H, Fourcaudot E, Bissiere S, Luthi A (2005) Dendritic spine heterogeneity determines afferent-specific Hebbian plasticity in the amygdala. Neuron 45:119–131PubMedCrossRefGoogle Scholar
  223. 724.
    Samson RD, Pare D (2005) Activity-dependent synaptic plasticity in the central nucleus of the amygdala. J Neurosci 25:1847–1855PubMedCrossRefGoogle Scholar
  224. 725.
    Walker DL, Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71:379–392PubMedCrossRefGoogle Scholar
  225. 726.
    Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Rev 38(2001):247–289PubMedCrossRefGoogle Scholar
  226. 727.
    Finch DM (1996) Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus 6(5):495–512PubMedCrossRefGoogle Scholar
  227. 728.
    McDonald AJ (1991) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens and related striatal-like areas of the rat brain. Neuroscience 44:15–33PubMedCrossRefGoogle Scholar
  228. 729.
    Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22:717–723PubMedCrossRefGoogle Scholar
  229. 730.
    Viviani D, Charlet A, van den Burg E, Robinet C, Hurni N, Abatis M, Magara F, Stoop R (2011) Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 333:104–107PubMedCrossRefGoogle Scholar
  230. 731.
    Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Muller C, Luthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282PubMedCrossRefGoogle Scholar
  231. 732.
    Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S, Cetin AH, Osten P, Schwarz MK, Seeburg PH, Stoop R, Grinevich V (2012) Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–566PubMedCrossRefGoogle Scholar
  232. 733.
    Gozzi A, Jain A, Giovanelli A, Bertollini C, Crestan V, Schwarz AJ, Tsetsenis T, Ragozzino D, Gross CT, Bifone A (2010) A neural switch for active and passive fear. Neuron 67:656–666PubMedCrossRefGoogle Scholar
  233. 734.
    Saper CB (2004) Hypothalamus. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, San Diego, pp 513–550CrossRefGoogle Scholar
  234. 735.
    Simerly RB (2004) Anatomical substrates of hypothalamic integration. In: Paxinos G (ed) The rat nervous system. Elsevier, San Diego, pp 335–368Google Scholar
  235. 736.
    Berger B, Esclapez M, Alvarez C, Meyer G, Catala M (2001) Human and monkey fetal brain development of the supramammillary-hippocampal projections: a system involved in the regulation of theta activity. J Comp Neurol 429:515–529PubMedCrossRefGoogle Scholar
  236. 737.
    Swaab DF (2006) The human hypothalamus in metabolic and episodic disorders. Prog Brain Res 153:3–45PubMedCrossRefGoogle Scholar
  237. 738.
    Palmini A, Chandler C, Andermann F, Costa da Costa J, Paglioli-Neto E, Polkey C, Rosenblatt B, Montes J, Martínez JV, Farmer JP, Sinclair B, Aronyk K, Paglioli E, Coutinho L, Raupp S, Portuguez M (2002) Resection of the lesion in patients with hypothalamic hamartomas and catastrophic epilepsy. Neurology 58:1338–1347PubMedCrossRefGoogle Scholar
  238. 739.
    Tanaka Y, Miyazawa Y, Akaoka F, Yamada T (1997) Amnesia following damage to the mammillary bodies. Neurology 48:160–165PubMedCrossRefGoogle Scholar
  239. 740.
    Rolls ET, Burton MJ, Mora R (1976) Hypothalamic neuronal responses associated with the sight of food. Brain Res 111:53–66PubMedCrossRefGoogle Scholar
  240. 741.
    Panatier A, Gentles SJ, Bourque CW, Oliet SHR (2006) Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J Physiol 573:711–721PubMedCrossRefGoogle Scholar
  241. 742.
    Rao Y, Liu Z-W, Borok E, Rabenstein RL, Shanabrough M, Lu M, Picciotto MR, Horvath TL, Gao X-B (2007) Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Invest 117:4022–4033PubMedCrossRefGoogle Scholar
  242. 743.
    Rempel-Clower NL, Barbas H (1998) Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 398:393–419PubMedCrossRefGoogle Scholar
  243. 744.
    Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197PubMedCrossRefGoogle Scholar
  244. 745.
    Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641PubMedCrossRefGoogle Scholar
  245. 746.
    Smeltzer MD, Curtis JT, Aragona BJ, Wang Z (2006) Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett 394:146–151PubMedCrossRefGoogle Scholar
  246. 747.
    Johnson AK, Gross PM (1993) Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7:678–686PubMedGoogle Scholar
  247. 748.
    Qin C, Luo M (2009) Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience 161:827–837PubMedCrossRefGoogle Scholar
  248. 749.
    Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M (2010) Habenula “Cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69:445–452CrossRefGoogle Scholar
  249. 750.
    Kiss J, Csaki A, Bokor H, Kocsis K, Kocsis B (2002) Possible glutamatergic/aspartatergic projections to the supramammillary nucleus and their origins in the rat studied by selective [3H]D-aspartate labelling and immunocytochemistry. Neuroscience 111:671–691PubMedCrossRefGoogle Scholar
  250. 751.
    Lecourtiera L, Kelly PH (2007) A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci Biobehav Rev 31:658–672CrossRefGoogle Scholar
  251. 752.
    Sperlágh B, Maglóczky Z, Vizi ES, Freund TF (1996) The triangular septal nucleus as the major source of ATP release in the rat habenula: a combined neurochemical and morphological study. Neuroscience 86:1195–1207CrossRefGoogle Scholar
  252. 753.
    Araki M, McGeer PL, McGeer EG (1984) Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula. Brain Res 304:271–277PubMedCrossRefGoogle Scholar
  253. 754.
    Kalen P, Pritzel M, Nieoullon A, Wiklund L (1986) Further evidence for excitatory amino acid transmission in the lateral habenular projection to the rostral raphe nuclei: lesion-induced decrease of high affinity glutamate uptake. Neurosci Lett 68:35–40PubMedCrossRefGoogle Scholar
  254. 755.
    Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 6:613–619PubMedGoogle Scholar
  255. 756.
    Park MR (1987) Monosynaptic inhibitory postsynaptic potentials from lateral habenula recorded in dorsal raphe neurons. Brain Res Bull 19:581–586PubMedCrossRefGoogle Scholar
  256. 757.
    Kalen P, Strecker RE, Rosengren E, Bjorklund A (1989) Regulation of striatal serotonin release by the lateral habenula-dorsal raphe pathway in the rat as demonstrated by in vivo microdialysis: role of excitatory amino acids and GABA. Brain Res 492:187–202PubMedCrossRefGoogle Scholar
  257. 758.
    Hikosaka O (2010) The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 11:503–513PubMedCrossRefGoogle Scholar
  258. 759.
    Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1999) Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage 10:163–172PubMedCrossRefGoogle Scholar
  259. 760.
    Glickstein M, Doron K (2008) Cerebellum: connections and functions. Cerebellum 7:589–594PubMedCrossRefGoogle Scholar
  260. 761.
    Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326:549–560PubMedCrossRefGoogle Scholar
  261. 762.
    Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, San DiegoGoogle Scholar
  262. 763.
    Soteropoulos DS, Baker SN (2006) Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol 95:1194–1206PubMedCrossRefGoogle Scholar
  263. 764.
    Holmes G (1939) The cerebellum of man. Brain 62:1–30CrossRefGoogle Scholar
  264. 765.
    Ravizza SM, McCormick CA, Schlerf JE, Justus T, Richard B, Ivry RB, Julie A, Fiez JA (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320PubMedCrossRefGoogle Scholar
  265. 766.
    Chen SH, Desmond JE (2005) Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage 24:332–338PubMedCrossRefGoogle Scholar
  266. 767.
    Ackermann H, Mathiak K, Reicker A (2007) The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum 6:202–213; Mathiak K, Hertrich I, Grodd W, Ackermann H (2002) Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci 14:902–912Google Scholar
  267. 768.
    Bracke-Tolkmitt R, Linden A, Canavan AGM, Rockstroh B, Scholz E, Wessel K, Diener H-C (1989) The cerebellum contributes to mental skills. Behav Neurosci 103(2):442–446CrossRefGoogle Scholar
  268. 769.
    Ekerot C-F, Jörntell H (2001) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur J Neurosci 13:1303–1310PubMedCrossRefGoogle Scholar
  269. 770.
    Palay SL, Chan-Palay V (1974) Cerebellar cortex. Springer, BerlinCrossRefGoogle Scholar
  270. 771.
    Nunzi MG, Russo M, Mugnaini E (2003) Vesicular glutamate transporters VGLUT1 and VGLUT2 define two subsets of unipolar brush cells in organotypic cultures of mouse vestibulocerebellum. Neuroscience 122:359–371PubMedCrossRefGoogle Scholar
  271. 772.
    Munoz DG (1990) Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity. Brain Res 528:335–338PubMedCrossRefGoogle Scholar
  272. 773.
    Kinney GA, Overstreet LS, Slater NT (1997) Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J Neurophysiol 78:1320–1333PubMedGoogle Scholar
  273. 774.
    Mugnaini E, Sekerkova G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 66:220–245PubMedCrossRefGoogle Scholar
  274. 775.
    Uusisaari M, De Schutter E (2011) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589:3441–3457PubMedCrossRefGoogle Scholar
  275. 776.
    Pijpers A, Apps R, Pardoe J, Voogd J, Rugrok TJH (2006) Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. J Neurosci 24:12067–12080CrossRefGoogle Scholar
  276. 777.
    D’Angelo E, De Philippi G, Rossi P, Taglietti V (1995) Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol 484:397–413PubMedGoogle Scholar
  277. 778.
    Dino MR, Schuerger RJ, Liu Y-B, Slater NT, Mugnaini E (2000) Unipolar brush cell: a potential feed forward excitatory interneuron of the cerebellum. Neuroscience 98(4):625–636; Uusisaari M, De Schutter E (2011) The mysterious microcircuitry of the cerebellar nuclei. J Physiol 589:3441–3457Google Scholar
  278. 779.
    Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J Neurosci 21:7715–7723PubMedGoogle Scholar
  279. 780.
    Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJH (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392:164–178PubMedCrossRefGoogle Scholar
  280. 781.
    Zheng N, Raman IM (2010) Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum 9:56–66PubMedCrossRefGoogle Scholar
  281. 782.
    Brodal P, Bjaalie JG (1992) Organization of the pontine nuclei. Neurosci Res 13:83–118PubMedCrossRefGoogle Scholar
  282. 783.
    Albus K, Donate-Oliver F, Sanides D, Fries W (1981) The distribution of pontine projection cells in visual and association cortex of the cat: an experimental study with horseradish peroxidase. J Comp Neurol 201:175–189PubMedCrossRefGoogle Scholar
  283. 784.
    Knowlton BJ, Thompson JK, Thompson RF (1993) Projections from the auditory cortex to the pontine nuclei in the rabbit. Behav Brain Res 56:23–30PubMedCrossRefGoogle Scholar
  284. 785.
    Ramnani N, Behrens TEJ, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JLR, Rudebeck P, Ciccarelli O, Richter W, Thompson AJ, Gross CG, Robson MD, Kastner S, Matthews PM (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and humans. Cereb Cortex 16:811–818PubMedCrossRefGoogle Scholar
  285. 786.
    Mihailoff GA, Kosinski RJ, Azizi SA, Border BG (1989) Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 282:617–643PubMedCrossRefGoogle Scholar
  286. 787.
    Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201PubMedCrossRefGoogle Scholar
  287. 788.
    Boesten AJP, Voogd J (1975) Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol 161(2):215–237PubMedCrossRefGoogle Scholar
  288. 789.
    Saint-Cyr JA (1983) The projection from the motor cortex to the inferior olive in the cat. An experimental study using axonal transport techniques. Neuroscience 10(3):667–684PubMedCrossRefGoogle Scholar
  289. 790.
    Watson TC, Jones MW, Apps R (2009) Electrophysiological mapping of novel prefrontal – cerebellar pathways. Front Integr Neurosci 3:18PubMedCrossRefGoogle Scholar
  290. 791.
    Sedgwick EM, Williams TD (1966) Afferent connexions to single units in the inferior olive of the cat. Nature 212:1370–1371PubMedCrossRefGoogle Scholar
  291. 792.
    Hoge GJ, Davidson KGV, Yasumura T, Castillo PE, Rash JE, Pereda AE (2011) The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. J Neurophysiol 105:1089–1101PubMedCrossRefGoogle Scholar
  292. 793.
    De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SKE, Ruigrok TJH (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400PubMedCrossRefGoogle Scholar
  293. 794.
    Llinás R, Muhlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol 404:241–258PubMedGoogle Scholar
  294. 795.
    Aizenman CD, Linden DJ (1999) Regulation of the rebound depolarisation and spontaneous firing patterns of deep nuclear neurons in slices of ret cerebellum. J Neurophysiol 82:1697–1709; De Schutter E, Steuber V (2009) Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162:816–826Google Scholar
  295. 796.
    Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463PubMedGoogle Scholar
  296. 797.
    Morishima M, Kawaguchi Y (2006) Recurrent connection patterns of corticostriatal pyramidal cells in frontal cortex. J Neurosci 26:4394–4405PubMedCrossRefGoogle Scholar
  297. 798.
    See reference 797Google Scholar
  298. 799.
    Nambu A, Yoshida S, Jinnai K (1988) Projection on the motor cortex of thalamic neurons with pallidal input in the monkey. Exp Brain Res 71:658–662PubMedCrossRefGoogle Scholar
  299. 800.
    Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270PubMedCrossRefGoogle Scholar
  300. 801.
    Oscarsson O (1979) Functional units of the cerebellum – sagittal zones and microzones. Trends Neurosci 2:143–145CrossRefGoogle Scholar
  301. 802.
    Apps R (1990) Columnar organisation of the inferior olive projection to the posterior lobe of the rat cerebellum. J Comp Neurol 302:236–254PubMedCrossRefGoogle Scholar
  302. 803.
    Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195PubMedGoogle Scholar
  303. 804.
    Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311PubMedCrossRefGoogle Scholar
  304. 805.
    Ekerot C-F, Jörntell H, Garwicz M (1995) Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat. Exp Brain Res 106:365–376PubMedCrossRefGoogle Scholar
  305. 806.
    Vogt KE, Canepari M (2010) On the induction of postsynaptic granule cell-Purkinje neuron LTP and LTD. Cerebellum 9:284–290PubMedCrossRefGoogle Scholar
  306. 807.
    Hartell NA (1996) Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron 16:601–610PubMedCrossRefGoogle Scholar
  307. 808.
    Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nat Neurosci 4:467–475PubMedGoogle Scholar
  308. 809.
    Morishita W, Sastry BR (1996) Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol 76:59–68PubMedGoogle Scholar
  309. 810.
    Ouardouz M, Sastry BR (2000) Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J Neurophysiol 84:1414–1421PubMedGoogle Scholar
  310. 811.
    D’Errico A, Prestori F, D’Angelo E (2009) Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. J Physiol 587:5843–5857PubMedCrossRefGoogle Scholar
  311. 812.
    D’Angelo E, Rossi P, Gall D, Prestori F, Nieus T, Maffei A, Sola E (2005) Long-term potentiation of synaptic transmission at the mossy fiber-granule cell relay of cerebellum. Prog Brain Res 148:69–80PubMedCrossRefGoogle Scholar
  312. 813.
    McCormick DA, Lavond DG, Clark GA, Kettner RE, Rising CE, Thompson RF (1981) The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bull Psychon Soc 18:103–105Google Scholar
  313. 814.
    Lincoln JS, McCormick DA, Thompson RF (1982) Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res 242:190–193PubMedCrossRefGoogle Scholar
  314. 815.
    Medina JF, Nores WL, Ohyama T, Mauk MD (2000) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10:717–724PubMedCrossRefGoogle Scholar
  315. 816.
    Steinmetz JE (2000) Brain substrates of classical eyeblink conditioning: a highly localized but also distributed system. Behav Brain Res 110:13–24PubMedCrossRefGoogle Scholar
  316. 817.
    Moyer JR, Deyo RA, Disterhoft JF (1990) Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behav Neurosci 104:243–252PubMedCrossRefGoogle Scholar
  317. 818.
    Gerwig M, Haerter K, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Thilmann AF, Gizewski ER, Timmann D (2006) Trace eyeblink conditioning in human subjects with cerebellar lesions. Exp Brain Res 170:7–21PubMedCrossRefGoogle Scholar
  318. 819.
    Niewiadomska G, Baksalerska-Pazera M, Riedel G (2009) The septo-hippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry 33(2009):791–805PubMedCrossRefGoogle Scholar
  319. 820.
    Lyness SA, Zarow C, Chui HC (2003) Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a meta-analysis. Neurobiol Aging 24:1–23PubMedCrossRefGoogle Scholar
  320. 821.
    Hepler DJ, Olton DS, Wenk GL, Coyle JT (1985) Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. J Neurosci 5:866–873PubMedGoogle Scholar
  321. 822.
    Winkler J, Suhr ST, Gage FH, Thal LJ, Fisher LJ (1995) Essential role of neocortical acetylcholine in spatial memory. Nature 375:484–487PubMedCrossRefGoogle Scholar
  322. 823.
    Bartus RT, Flicker C, Dean RL, Pontecorvo M, Figueiredo JC, Fisher SK (1985) Selective memory loss following nucleus basalis lesions: long term behavioral recovery despite persistent cholinergic deficiencies. Pharmacol Biochem Behav 23:125–135PubMedCrossRefGoogle Scholar
  323. 824.
    Baxter MG, Bucci DJ, Gorman LK, Wiley RG, Gallagher M (1995) Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats. Behav Neurosci 109:714–722PubMedCrossRefGoogle Scholar
  324. 825.
    McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22:1905–1913PubMedGoogle Scholar
  325. 826.
    Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW (2004) Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex 14:922–932PubMedCrossRefGoogle Scholar
  326. 827.
    Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GRI, Aggleton JP, Bashir ZA, Malcolm W, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38:987–996PubMedCrossRefGoogle Scholar
  327. 828.
    Ramanathan D, Tuszynski MH, Conner JM (2009) The basal forebrain cholinergic system is required specifically for behaviorally mediated cortical map plasticity. J Neurosci 29:5992–6000PubMedCrossRefGoogle Scholar
  328. 829.
    Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12:1444–1449PubMedCrossRefGoogle Scholar
  329. 830.
    Buchanan KA, Petrovic MM, Chamberlain SEL, Marrion NV, Mellor JR (2010) Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron 68:948–963PubMedCrossRefGoogle Scholar
  330. 831.
    Brocher S, Artola A, Wolf Singer W (1992) Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res 573:27–36PubMedCrossRefGoogle Scholar
  331. 832.
    Detari L, Rasmusson DD, Semba K (1999) The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Prog Neurobiol 58:249–277PubMedCrossRefGoogle Scholar
  332. 833.
    Walker LC, Koliatsos VE, Kitt CA, Richardson RT, Rokaeus A, Price DL (1989) Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J Comp Neurol 280:272–282PubMedCrossRefGoogle Scholar
  333. 834.
    Manns ID (2001) The role of basal forebrain neurons in the modulation of cortical activity: a physiological and anatomical examination. Ph.D. thesis, Department of Neurology and Neurosurgery, McGill University, Montreal. http://digitool.Library.McGill.CA:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&forebear_coll=&user=GUEST&pds_handle=&pid=37653&con_lng=ENG&search_terms=&adjacency=N&rd_session=http://digitool.Library.McGill.CA:80/R/29SIHEV2V547EVBVCH9FNP2HDAPNXLQMVALHEQHLF3GT1YJJBS-03192
  334. 835.
    Colom LV (2006) Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. J Neurochem 96:609–623PubMedCrossRefGoogle Scholar
  335. 836.
    Penley SC, Hinman JR, Sabolek HR, Escabi MA, Markus EJ, Chrobak JJ (2011) Theta and gamma coherence across the septotemporal axis during distinct behavioral states. Hippocampus 22:1164–1175PubMedCrossRefGoogle Scholar
  336. 837.
    Manns ID, Alonso A, Jones BE (2000) Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:1505–1518PubMedGoogle Scholar
  337. 838.
    Manns ID, Alonso A, Jones BE (2000) Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:9252–9263PubMedGoogle Scholar
  338. 839.
    Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E (2005) Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 58:151–164PubMedCrossRefGoogle Scholar
  339. 840.
    Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8:727–749PubMedCrossRefGoogle Scholar
  340. 841.
    Bickford ME, Gunluk AE, Van Horn SC, Sherman SM (1994) GABAergic projection from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat. J Comp Neurol 348:481–510PubMedCrossRefGoogle Scholar
  341. 842.
    Haring JH, Wang RY (1986) The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Res 366:152–158PubMedCrossRefGoogle Scholar
  342. 843.
    Risold PY (2004) The septal region. In: Paxinos G (ed) The rat nervous system. Elsevier, San DiegoGoogle Scholar
  343. 844.
    Lee S-H, Yang Dan Y (2012) Neuromodulation of brain states. Neuron 76:209–222PubMedCrossRefGoogle Scholar
  344. 845.
    Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, de Lecea L (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533PubMedCrossRefGoogle Scholar
  345. 846.
    Monti JM (1993) Involvement of histamine in the control of the waking state. Life Sci 53:1331–1338PubMedCrossRefGoogle Scholar
  346. 847.
    Monti JM, Jantos H (2008) The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res 172:625–646PubMedCrossRefGoogle Scholar
  347. 848.
    McCormick DA, Wang Z, Huguenard J (1993) Neurotransmitter control of neocortical neuronal activity and excitability. Cereb Cortex 3:387–398PubMedCrossRefGoogle Scholar
  348. 849.
    Tully K, Li Y, Tsvetkov E, Bolshakov VY (2007) Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc N Y Acad Sci 104:14146–14150CrossRefGoogle Scholar
  349. 850.
    Tully K, Bolshakov VY (2010) Emotional enhancement of memory: how norepinephrine enables synaptic plasticity. Mol Brain 3:15PubMedCrossRefGoogle Scholar
  350. 851.
    Staubli U, Otaky N (1994) Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptor-mediated responses. Brain Res 643:10–16PubMedCrossRefGoogle Scholar
  351. 852.
    Zhong P, Liu W, Gu Z, Yan Z (2008) Serotonin facilitates long-term depression induction in prefrontal cortex via p38 MAPK/Rab5-mediated enhancement of AMPA receptor internalization. J Physiol 586:4465–4479PubMedCrossRefGoogle Scholar
  352. 853.
    Kojic L, Gu Q, Douglas RM, Cynader MS (1997) Serotonin facilitates synaptic plasticity in kitten visual cortex: an in vitro study. Dev Brain Res 101:299–304CrossRefGoogle Scholar
  353. 854.
    Brown RE, Fedorov NB, Haas HL, Reymann KG (1995) Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology 34:181–190PubMedCrossRefGoogle Scholar
  354. 855.
    Kuo M-C, Dringenberg HC (2008) Histamine facilitates in vivo thalamocortical long-term potentiation in the mature visual cortex of anesthetized rats. Eur J Neurosci 27:1731–1738PubMedCrossRefGoogle Scholar
  355. 856.
    Kolomiets B, Marzo A, Caboche J, Vanhoutte P, Otani S (2009) Background dopamine concentration dependently facilitates long-term potentiation in rat prefrontal cortex through postsynaptic activation of extracellular signal-regulated kinases. Cereb Cortex 19:2708–2718PubMedCrossRefGoogle Scholar
  356. 857.
    Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531PubMedGoogle Scholar
  357. 858.
    Pasquier DA, Kemper TL, Forbes WB, Morgane PJ (1977) Dorsal raphe, substantia nigra and locus coeruleus: interconnections with each other and the neostriatum. Brain Res Bull 2:323–339PubMedCrossRefGoogle Scholar
  358. 859.
    Ericson H, Blomqvist A, Köhler C (1989) Brainstem afferents to the tuberomammillary nucleus in the rat brain with special reference to monoaminergic innervation. J Comp Neurol 281:169–192PubMedCrossRefGoogle Scholar
  359. 860.
    Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22:8850–8859PubMedGoogle Scholar
  360. 861.
    Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241PubMedCrossRefGoogle Scholar
  361. 862.
    Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168PubMedCrossRefGoogle Scholar
  362. 863.
    Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223PubMedCrossRefGoogle Scholar
  363. 864.
    Foote SL, Morrison JH (1987) Extrathalamic modulation of cortical function. Annu Rev Neurosci 10:67–95PubMedCrossRefGoogle Scholar
  364. 865.
    Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to cortex: topography, morphology and collateralization. Brain Res Bull 9:287–294PubMedCrossRefGoogle Scholar
  365. 866.
    Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7(1):279–290PubMedGoogle Scholar
  366. 867.
    Simpson KL, Altman DW, Wang L, Kirifides ML, Lin RC, Waterhouse BD (1997) Lateralization and functional organization of the locus coeruleus projection to the trigeminal somatosensory pathway in rat. J Comp Neurol 385:135–147PubMedCrossRefGoogle Scholar
  367. 868.
    Wang Z, David A, McCormick DA (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R-ACPD. J Neurosci 13:2199–2216PubMedGoogle Scholar
  368. 869.
    Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol 6:254–285PubMedCrossRefGoogle Scholar
  369. 870.
    Aston-Jones G, Rajkowski J, Jonathan Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320PubMedCrossRefGoogle Scholar
  370. 871.
    Ordway GA (1997) Pathophysiology of the locus coeruleus in suicide. Ann N Y Acad Sci 836:233–252PubMedCrossRefGoogle Scholar
  371. 872.
    German DC, Manaye KF, White CL, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DMA (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32(5):667–676PubMedCrossRefGoogle Scholar
  372. 873.
    Hornung J-P (2004) Raphe nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, AmsterdamGoogle Scholar
  373. 874.
    Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486PubMedCrossRefGoogle Scholar
  374. 875.
    Andrade R, Nicoll RA (1987) Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol 394:99–124PubMedGoogle Scholar
  375. 876.
    Qing-Ping W, Nakai Y (1994) The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull 34:575–585CrossRefGoogle Scholar
  376. 877.
    Monti JM (2011) Serotonin control of sleep-wake behavior. Sleep Med Rev 15:269–281PubMedCrossRefGoogle Scholar
  377. 878.
    Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21:106S–115SPubMedGoogle Scholar
  378. 879.
    Köhler C, Swanson LW, Haglund L, J-Yen W (1985) The cytoarchitecture, histochemistry and projections of the tuberomammillary nucleus in the rat. Neuroscience 16:85–110PubMedCrossRefGoogle Scholar
  379. 880.
    Ericson H, Blomqvist A, Köhler C (1991) Origin of neuronal inputs to the region of the tuberomammillary nucleus of the rat brain. J Comp Neurol 311:45–64PubMedCrossRefGoogle Scholar
  380. 881.
    Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130PubMedCrossRefGoogle Scholar
  381. 882.
    Martinez-Mir MI, Pollard H, Morea J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM (1990) Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res 526:322–327PubMedCrossRefGoogle Scholar
  382. 883.
    Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63:637–672PubMedCrossRefGoogle Scholar
  383. 884.
    Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202PubMedCrossRefGoogle Scholar
  384. 885.
    Dobi A, Margolis EB, Wang H-L, Harvey BK, Morales M (2010) Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J Neurosci 30:218–229PubMedCrossRefGoogle Scholar
  385. 886.
    Gasbarri A, Sulli A, Packard MG (1997) The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuropsychopharmacol Biol Psychiatry 21:1–22PubMedCrossRefGoogle Scholar
  386. 887.
    Cho YT, Fudge JL (2010) Heterogeneous dopamine populations project to specific subregions of the primate amygdala. Neuroscience 165:1501–1518PubMedCrossRefGoogle Scholar
  387. 888.
    Berger B, Trottier S, Verney C, Gaspar P, Alvarez C (1988) Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 273:99–119PubMedCrossRefGoogle Scholar
  388. 889.
    Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G (2005) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J Neurophysiol 93:1598–1610PubMedCrossRefGoogle Scholar
  389. 890.
    Choi WS, Machida CA, Ronnekleiv OK (1995) Distribution of dopamine D1, D2, and D5 receptor mRNAs in the monkey brain: ribonuclease protection assay analysis. Mol Brain Res 31:86–94PubMedCrossRefGoogle Scholar
  390. 891.
    Wang GJ, Volkow ND, Fowler JS, Ding YS, Logan J, Gatley SJ, MacGregor RR, Wolf AP (1995) Comparison of two PET radioligands for imaging extrastriatal dopamine transporters in human brain. Life Sci 57:PL187–PL191PubMedCrossRefGoogle Scholar
  391. 892.
    Lodge DJ, Buffalari DM, Grace AA (2009) Dopamine: CNS pathways and neurophysiology. In: Squire LR (ed) Encyclopedia of neuroscience, pp 549–555Google Scholar
  392. 893.
    Abi-Dargham A, Mawlawi O, Lombardo I, Gil R, Martinez D, Huang Y, Hwang DR, Keilp J, Kochan L, Van Heertum R, Gorman JM, Laruelle M (2002) Prefrontal dopamine D1 receptors and working memory in schizophrenia. J Neurosci 22:3708–3719PubMedGoogle Scholar
  393. 894.
    Schott BH, Seidenbecher CI, Fenker DB, Lauer CJ, Bunzeck N, Bernstein H-J, Tischmeyer W, Gundelfinger ED, Heinze H-J, Duzel E (2006) The dopaminergic midbrain participates in human episodic memory formation: evidence from genetic imaging. J Neurosci 26:1407–1417PubMedCrossRefGoogle Scholar
  394. 895.
    Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47PubMedCrossRefGoogle Scholar
  395. 896.
    Tritsch NX, Sabatini BL (2012) Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76:33–50PubMedCrossRefGoogle Scholar
  396. 897.
    Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:381243PubMedCrossRefGoogle Scholar
  397. 898.
    Blaizot X, Martinez-Marcos A, Arroyo-Jimenez M, Marcos P, Artacho-Pérula E, Muñoz M, Chavoix C, Ricardo Insausti R (2004) Parahippocampal gyrus in the baboon: anatomical, cytoarchitectonic and magnetic resonance imaging (MRI) studies. Cereb Cortex 14:231–246PubMedCrossRefGoogle Scholar
  398. 899.
    O’Mara SM, Commins S, Anderson M, Gigg J (2001) The subiculum: a review of form, physiology and function. Prog Neurobiol 64:129–155PubMedCrossRefGoogle Scholar
  399. 900.
    Insausti R, Amaral DG (2004) Hippocampal formation. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, AmsterdamGoogle Scholar
  400. 901.
    Amaral D, Lavenex P (2006) Hippocampal neuroanatomy. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, OxfordGoogle Scholar
  401. 902.
    Kullmann DM (2011) Interneuron networks in the hippocampus. Curr Opin Neurobiol 21:709–716PubMedCrossRefGoogle Scholar
  402. 903.
    Fischer Y, Wittner L, Freund TF, Gähwiler BH (2002) Simultaneous activation of gamma and theta network oscillations in rat hippocampal slice cultures. J Physiol 539:857–868PubMedCrossRefGoogle Scholar
  403. 904.
    Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46:141–151PubMedCrossRefGoogle Scholar
  404. 905.
    Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedGoogle Scholar
  405. 906.
    Kaibara T, Leung LS (1993) Basal versus apical dendritic long-term potentiation of commissural afferents to hippocampal CA1: a current-source density study. J Neurosci 13:2391–2404PubMedGoogle Scholar
  406. 907.
    Maccaferri G, Tóth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279:1368–1371PubMedCrossRefGoogle Scholar
  407. 908.
    Acsady L, Kamondi A, Sik A, Freund T, Buzsaki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18:3386–3403PubMedGoogle Scholar
  408. 909.
    Suzuki WA (1996) Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: organization of cortical inputs and interconnections with amygdala and striatum. Semin Neurosci 8:3–12CrossRefGoogle Scholar
  409. 910.
    Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11PubMedCrossRefGoogle Scholar
  410. 911.
    Ribak CE, Seress L, Amaral DG (1985) The development, ultrastructure and synaptic connections of the mossy cells of the dentate gyrus. J Neurocytol 14:835–857PubMedCrossRefGoogle Scholar
  411. 912.
    Buckmaster PS, Strowbridge BW, Kunkel DD, Schmiege DL, Schwartzkroin PA (1992) Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice. Hippocampus 2:349–362PubMedCrossRefGoogle Scholar
  412. 913.
    Mody I (2002) The GAD-given right of dentate gyrus granule cells to become GABAergic. Epilepsy Curr 2:143–145PubMedCrossRefGoogle Scholar
  413. 914.
    Vertes RP, McKenna JT (2000) Collateral projections from the supramammillary nucleus to the medial septum and hippocampus. Synapse 38:281–293PubMedCrossRefGoogle Scholar
  414. 915.
    Sloviter RS (1983) “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies. Brain Res Bull 10:675–697PubMedCrossRefGoogle Scholar
  415. 916.
    Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591PubMedCrossRefGoogle Scholar
  416. 917.
    Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476PubMedCrossRefGoogle Scholar
  417. 918.
    Bayat M, Hasandeh GR, Barzroodipour M, Javadi M (2005) The effect of low protein diet on thalamic projections of hippocampus in rat. Neuroanatomy 4:43–48Google Scholar
  418. 919.
    Shibata H (1993) Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat. J Comp Neurol 337:431–445PubMedCrossRefGoogle Scholar
  419. 920.
    Allen GV, Hopkins DA (1989) Mamillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. J Comp Neurol 286:311–336PubMedCrossRefGoogle Scholar
  420. 921.
    Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). 11. Efferent connections. J Comp Neurol 207:135–156PubMedCrossRefGoogle Scholar
  421. 922.
    Siegel A, Edinger H, Ohgami S (1974) The topographical organization of the hippocampal projection to the septal area: a comparative neuroanatomical analysis in the gerbil, rat, rabbit, and cat. J Comp Neurol 157:359–378PubMedCrossRefGoogle Scholar
  422. 923.
    Lindsey BW, Tropepe V (2006) A comparative framework for understanding the biological principles of adult neurogenesis. Prog Neurobiol 80:281–307PubMedCrossRefGoogle Scholar
  423. 924.
    Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187PubMedCrossRefGoogle Scholar
  424. 925.
    Corkin S (2002) What’s new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160PubMedCrossRefGoogle Scholar
  425. 926.
    Wickelgren WA (1968) Sparing of short-term memory in an amnesic patient: implications for strength theory of memory. Neuropsychologia 6:235–244CrossRefGoogle Scholar
  426. 927.
    Gabrieli JDE, Corkin S, Mickel SF, Growden JH (1993) Intact acquisition and long-term retention of mirror tracing skill in Alzheimer’s disease and in global amnesia. Behav Neurosci 107:899–910PubMedCrossRefGoogle Scholar
  427. 928.
    Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57:27–53PubMedCrossRefGoogle Scholar
  428. 929.
    Caulo M, Van Hecke J, Toma L, Ferretti A, Tartaro A, Colosimo C, Romani GL, Uncini A (2005) Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome. Brain 128:1584–1594PubMedCrossRefGoogle Scholar
  429. 930.
    Dolcos F, LaBar KS, Cabeza R (2004) Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron 42:855–863PubMedCrossRefGoogle Scholar
  430. 931.
    Berti A, Arienta C, Papagno C (1990) A case of amnesia after excision of the septum pellucidum. J Neurol Neurosurg Psychiatry 53:922–924PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Andrew Coward
    • 1
  1. 1.Research School of Computer ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations