Neuron Physiology

  • L. Andrew Coward
Chapter
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 8)

Abstract

In this chapter we will describe the morphology and physiology of neurons in much more detail, with particular emphasis on the ways in which molecules spanning the neuron membrane result in detection and integration of signals received from other neurons. At each point in time a neuron receives large numbers of external signals, most derived from other neurons. The internal chemistry of neurons results in the detection and integration of all the external signals and determines their current outputs and any changes to their integration algorithms. Hence understanding of how signals are received by neurons and integrated by chemical processes to influence current and future outputs is the detailed basis for understanding neural information processing.

Keywords

Pyramidal Neuron Long Term Potentiation AMPA Receptor Dendritic Tree Long Term Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 92.
    Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E (2002) Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 25:400–404PubMedCrossRefGoogle Scholar
  2. 93.
    Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104PubMedCrossRefGoogle Scholar
  3. 94.
    Calvin WH, Sypert GW (1976) Fast and slow pyramidal tract neurons: an intracellular analysis of their contrasting repetitive firing properties in the cat. J Neurophysiol 39:420–434PubMedGoogle Scholar
  4. 95.
    Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664PubMedCrossRefGoogle Scholar
  5. 96.
    Bannister NJ, Larkman AU (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns. J Comp Neurol 360:150–160PubMedCrossRefGoogle Scholar
  6. 97.
    Elston GN, Benavides-Piccione R, DeFelipe J (2001) The pyramidal cell in cognition: a comparative study in human and monkey. J Neurosci 21(RC163):1–5Google Scholar
  7. 98.
    Kim HG, Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J Neurosci 13(12):5301–5311PubMedGoogle Scholar
  8. 99.
    Sabatini BL, Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384:170–172PubMedCrossRefGoogle Scholar
  9. 100.
    Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418PubMedCrossRefGoogle Scholar
  10. 101.
    Bannister NJ, Larkman AU (1995) Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. J Comp Neurol 360:161–171PubMedCrossRefGoogle Scholar
  11. 102.
    Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422PubMedGoogle Scholar
  12. 103.
    Bhatt DH, Zhang S, Gan W-B (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282PubMedCrossRefGoogle Scholar
  13. 104.
    Burnstock G (2004) Cotransmission. Curr Opin Pharmacol 4:47–52PubMedCrossRefGoogle Scholar
  14. 105.
    Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959PubMedCrossRefGoogle Scholar
  15. 106.
    Wong W, John D, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–969PubMedCrossRefGoogle Scholar
  16. 107.
    Kempermann G (2012) New neurons for ‘survival of the fittest’. Nat Rev Neurosci 13:727–736PubMedCrossRefGoogle Scholar
  17. 108.
    Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153PubMedGoogle Scholar
  18. 109.
    Raley-Susman KM, Sapolsky RM, Kopito RR (1993) Cl/HCO3 exchange function differs in adult and fetal rat hippocampal neurons. Brain Res 614:308–314PubMedCrossRefGoogle Scholar
  19. 110.
    Staley K, Smith R, Schaack J, Wilcox C, Jentsch J (1996) Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron 17:543–551PubMedCrossRefGoogle Scholar
  20. 111.
    Staley KJ, Mody I (1992) Shunting of excitatory input to dentate gyrus granule cells by a depolarising GABAA receptor–mediated postsynaptic conductance. J Neurophysiol 68:197–212PubMedGoogle Scholar
  21. 112.
    Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177(2):119–147PubMedCrossRefGoogle Scholar
  22. 113.
    Magee JC (1999) Voltage-gated ion channels in dendrites. In: Stuart G, Spruston N, Hausser M (eds) Dendrites. Oxford University Press, Oxford, pp 139–160Google Scholar
  23. 114.
    Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290:739–744PubMedCrossRefGoogle Scholar
  24. 115.
    Williams SR, Stuart GJ (2000) Action potential backpropagation and somato-dendritic distribution of ion channels in thalamocortical neurons. J Neurosci 20:1307–1317PubMedGoogle Scholar
  25. 116.
    Tank DW, Sugimori M, Connor JA, Llinas RR (1988) Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. Science 242:773–777PubMedCrossRefGoogle Scholar
  26. 117.
    Reuveni I, Friedman A, Amitai Y, Gutnick MJ (1993) Stepwise repolarisation from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. J Neurosci 13:4609–4621PubMedGoogle Scholar
  27. 118.
    Yamada M, Inanobe A, Kurachi Y (1998) G protein regulation of potassium ion channels. Pharmacol Rev 50:723–757PubMedGoogle Scholar
  28. 119.
    Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS (1995) Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 15:7821–7836PubMedGoogle Scholar
  29. 120.
    Purcell AL, Sharma SK, Bagnall MW, Sutton MA, Carew TJ (2003) Activation of a tyrosine kinase-MAPK cascade enhances the induction of long-term synaptic facilitation and long-term memory in aplysia. Neuron 37:473–484PubMedCrossRefGoogle Scholar
  30. 121.
    Huang EJ, Reichard LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642PubMedCrossRefGoogle Scholar
  31. 122.
    Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186PubMedCrossRefGoogle Scholar
  32. 123.
    Hursh JB (1939) Conduction velocity and diameter of nerve fibers. Am J Physiol Cell Physiol 127:131–139Google Scholar
  33. 124.
    Hartline DK, Colman DR (2007) Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol 17(1):R29–R35PubMedCrossRefGoogle Scholar
  34. 125.
    Sah P (1996) Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150–154PubMedCrossRefGoogle Scholar
  35. 126.
    Faber ESL, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181–194PubMedCrossRefGoogle Scholar
  36. 127.
    Mel BW (1994) Information processing in dendritic trees. Neural Comput 6:1031–1085CrossRefGoogle Scholar
  37. 128.
    Oakley JC, Schwindt PC, Crill WE (2001) Initiation and propagation of regenerative Ca++-dependent potentials in dendrites of layer 5 pyramidal neurons. J Neurophysiol 86:503–513PubMedGoogle Scholar
  38. 129.
    Waters J, Schaefer A, Sakmann B (2005) Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol 87(1):145–170PubMedCrossRefGoogle Scholar
  39. 130.
    Larkum ME, Rioult MG, Luscher HR (1996) Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. J Neurophysiol 75:154–170. Mol Biol 87(1):145–170Google Scholar
  40. 131.
    Abraham WC, Huggett A (1997) Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices. Hippocampus 7:137–145PubMedCrossRefGoogle Scholar
  41. 132.
    Bi G-q, Poo M-m (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472PubMedGoogle Scholar
  42. 133.
    Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405PubMedCrossRefGoogle Scholar
  43. 134.
    Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 3:497–516PubMedCrossRefGoogle Scholar
  44. 135.
    Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201–227PubMedCrossRefGoogle Scholar
  45. 136.
    Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21PubMedCrossRefGoogle Scholar
  46. 137.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136PubMedCrossRefGoogle Scholar
  47. 138.
    Manahan-Vaughan D (2000) Long-term depression in freely moving rats is dependent upon strain variation, induction protocol and behavioral state. Cereb Cortex 10:482–487PubMedCrossRefGoogle Scholar
  48. 139.
    Berretta N, Nistico R, Bernardi G, Mercuri NB (2008) Synaptic plasticity in the basal ganglia: a similar code for physiological and pathological conditions. Prog Neurobiol 84:343–362PubMedCrossRefGoogle Scholar
  49. 140.
    Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102PubMedCrossRefGoogle Scholar
  50. 141.
    Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCrossRefGoogle Scholar
  51. 142.
    Patterson MA, Szatmari EM, Yasuda R (2010) AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation. Pro Natl Acad Sci USA 107:15951–15956CrossRefGoogle Scholar
  52. 143.
    Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Mark F, Bear MF (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4:1079–1085PubMedCrossRefGoogle Scholar
  53. 144.
    Raymond CR (2007) LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci 30:167–175PubMedCrossRefGoogle Scholar
  54. 145.
    Reymann KG, Frey JU (2007) Late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40PubMedCrossRefGoogle Scholar
  55. 146.
    Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30:211–219PubMedCrossRefGoogle Scholar
  56. 147.
    Stork O, Welzl H (1999) Memory formation and the regulation of gene expression. Cell Mol Life Sci 55:575–592PubMedCrossRefGoogle Scholar
  57. 148.
    Pfeiffer BE, Huber KM (2006) Current advances in local protein synthesis and synaptic plasticity. J Neurosci 26:7147–7150PubMedCrossRefGoogle Scholar
  58. 149.
    Berke JD, Steven E, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515PubMedCrossRefGoogle Scholar
  59. 150.
    Lemon N, Manahan-Vaughan D (2006) Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci 26:7723–7729PubMedCrossRefGoogle Scholar
  60. 151.
    Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144PubMedCrossRefGoogle Scholar
  61. 152.
    Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097PubMedCrossRefGoogle Scholar
  62. 153.
    Abraham WC, Williams JM (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 2003(9):463–474CrossRefGoogle Scholar
  63. 154.
    Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435PubMedCrossRefGoogle Scholar
  64. 155.
    Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Sacha B, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896PubMedCrossRefGoogle Scholar
  65. 156.
    Stephenson FA, Hawkins LM (2001) Neurotransmitter receptors in the postsynaptic neuron. In Encyclopedia of life sciences. WileyGoogle Scholar
  66. 157.
    Salio C, Lossi L, Ferrini F, Merighi A (2006) Neuropeptides as synaptic transmitters. Cell Tissue Res 326:583–598PubMedCrossRefGoogle Scholar
  67. 158.
    Gudermann T, Schoneberg T, Schultz G (1997) Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 20:399–427PubMedCrossRefGoogle Scholar
  68. 159.
    Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672PubMedCrossRefGoogle Scholar
  69. 160.
    Cossart R, Epsztein J, Tyzio R, Becq H, Hirsch J, Ben-Ari Y, Crepel V (2002) Quantal release of glutamate generates pure kainate and mixed AMP/kainate EPSCs in hippocampal neurons. Neuron 35:147–159PubMedCrossRefGoogle Scholar
  70. 161.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Ray Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496PubMedCrossRefGoogle Scholar
  71. 162.
    Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280:1596–1599PubMedCrossRefGoogle Scholar
  72. 163.
    Chung HJ, Steinberg JP, Huganir RL, Linden DJ (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755PubMedCrossRefGoogle Scholar
  73. 164.
    Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61:421–427PubMedCrossRefGoogle Scholar
  74. 165.
    Jaskolski F, Coussen F, Mulle C (2005) Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 26:20–26PubMedCrossRefGoogle Scholar
  75. 166.
    Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322PubMedCrossRefGoogle Scholar
  76. 167.
    Cavallero A, Marte A, Fedele E (2009) l-Aspartate as an amino acid neurotransmitter: mechanisms of the depolarisation-induced release from cerebrocortical synaptosomes. J Neurochem 110:924–934PubMedCrossRefGoogle Scholar
  77. 168.
    Fleck MW, Henze DA, Barrioneuvo G, Palmer AM (1993) Aspartate and glutamate mediate excitatory synaptic transmission in area CA1 of the hippocampus. J Neurosci 13:3944–3955PubMedGoogle Scholar
  78. 169.
    Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL, Snyder JP, Traynelis SF, Wyllie DJA (2005) Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-d-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol Pharmacol 67:1470–1484PubMedCrossRefGoogle Scholar
  79. 170.
    Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537PubMedCrossRefGoogle Scholar
  80. 171.
    Kaupmann K, Schuler V, Mosbacher J, Bischoff H, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B (1998) Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci USA 9:14991–14996CrossRefGoogle Scholar
  81. 172.
    Gulledge AT, Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron 37:299–309PubMedCrossRefGoogle Scholar
  82. 173.
    Staley KJ, Proctor WR (1999) Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl and HCO3 transport. J Physiol 519:693–712PubMedCrossRefGoogle Scholar
  83. 174.
    Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80:2799–2802PubMedCrossRefGoogle Scholar
  84. 175.
    Lynch JW (2004) Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 84:1051–1095PubMedCrossRefGoogle Scholar
  85. 176.
    Danysz W, Parsons CG (1998) Glycine and N-methyl-D-aspartate receptors: physiological significance and possible therapeutic applications. Pharmacol Rev 50:597–664PubMedGoogle Scholar
  86. 177.
    Martina M, Gorfinkel Y, Halman S, Lowe JA, Periyalwar P, Schmidt CJ, Bergeron R (2004) Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels. J Physiol 557:489–500PubMedCrossRefGoogle Scholar
  87. 178.
    Smith KE, Borden LA, Hartig PR, Branchek T, Weinshank RL (1992) Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron 8:927–935PubMedCrossRefGoogle Scholar
  88. 179.
    Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bösl MR, Fritschy J-M (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–216PubMedCrossRefGoogle Scholar
  89. 180.
    Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217PubMedCrossRefGoogle Scholar
  90. 181.
    Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30:228–235PubMedCrossRefGoogle Scholar
  91. 182.
    Surmeier DJ, Song W-J, Zhen Y (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591PubMedGoogle Scholar
  92. 183.
    Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390PubMedCrossRefGoogle Scholar
  93. 184.
    Swant J, Wagner JJ (2006) Dopamine transporter blockade increases LTP in the CA1 region of the rat hippocampus via activation of the D3 dopamine receptor. Learn Mem 13:161–167PubMedCrossRefGoogle Scholar
  94. 185.
    Centonze D, Picconi B, Paolo Gubellini P, Giorgio Bernardi G, Calabresi P (2001) Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 13:1071–1077PubMedCrossRefGoogle Scholar
  95. 186.
    Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260:1661–1664PubMedCrossRefGoogle Scholar
  96. 187.
    Caille I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 730:17–31PubMedGoogle Scholar
  97. 188.
    Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973PubMedCrossRefGoogle Scholar
  98. 189.
    Meiergerd SM, Patterson TA, Schenk JO (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J Neurochem 61:764–767PubMedCrossRefGoogle Scholar
  99. 190.
    Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24PubMedCrossRefGoogle Scholar
  100. 191.
    Frazer A, Hensler JG (1999) Serotonin receptors. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD (eds) Basic neurochemistry: molecular, cellular, and medical aspects, 6th edn. Lippincott-Raven, Philadelphia, pp 263–292Google Scholar
  101. 192.
    Lukyanetz EA, Sotkis AV, Kostyuk PG (2002) Mechanisms of up-regulation of single calcium channels by serotonin in Helix pomatia neurons. Biochem Biophys Res Commun 293:132–138PubMedCrossRefGoogle Scholar
  102. 193.
    Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114PubMedCrossRefGoogle Scholar
  103. 195.
    Felder CC (1995) Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9:619–625PubMedGoogle Scholar
  104. 196.
    Marrion NV (1997) Control of M-current. Annu Rev Physiol 59:483–504PubMedCrossRefGoogle Scholar
  105. 197.
    Hein L (2006) Adrenoceptors and signal transduction in neurons (2006). Cell Tissue Res 326:541–551PubMedCrossRefGoogle Scholar
  106. 198.
    Samuels ER, Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol 6:235–253PubMedCrossRefGoogle Scholar
  107. 199.
    Sah P, Isaacson JS (1995) Channels underlying the slow afterhyperpolarisation in hippocampal pyramidal neurons: neurotransmitters modulate the open probability. Neuron 15:435–441PubMedCrossRefGoogle Scholar
  108. 200.
    Nicoll RA (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551PubMedCrossRefGoogle Scholar
  109. 201.
    Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Eur J Physiol 452:589–597CrossRefGoogle Scholar
  110. 202.
    Zimmermann H (2008) ATP and acetylcholine, equal brethren. Neurochem Int 52:634–648PubMedCrossRefGoogle Scholar
  111. 203.
    Williams M (2002) Purinergic neurotransmission. In: Davis KL, Charney D, Coyle JT, Nemeroff C (eds) Neuropschopharmacology: the fifth generation of progress. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  112. 204.
    Jo Y-H, Role LW (2002) Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J Neurosci 22:4794–4804PubMedGoogle Scholar
  113. 205.
    Pankratov YV, Lalo UV, Krishtal OA (2002) Role for P2X receptors in long-term potentiation. J Neurosci 22:8363–8369PubMedGoogle Scholar
  114. 206.
    Schiffmann SN, Fisone G, Moresco R, Cunha RA, Ferre S (2007) Adenosine A2A receptors and basal ganglia physiology. Prog Neurobiol 83:277–292PubMedCrossRefGoogle Scholar
  115. 207.
    Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125PubMedCrossRefGoogle Scholar
  116. 208.
    Fredholm BB, Abbracchio MP, Burnstock G, Daly JW, Harden TK, Jacobson KA, Leff P, Williams M (1994) Nomenclature and classification of purinoceptors. Pharmacol Rev 46:143–156PubMedGoogle Scholar
  117. 209.
    Fredholm BB, Dunwiddie TV (1988) How does adenosine inhibit transmitter release? Trends Pharmacol Sci 9:130–134PubMedCrossRefGoogle Scholar
  118. 210.
    Bongsebandhu-phubhakdi S, Manabe T (2007) The neuropeptide nociceptin is a synaptically released endogenous inhibitor of hippocampal long-term potentiation. J Neurosci 27:4850–4858PubMedCrossRefGoogle Scholar
  119. 211.
    Balschun D, Reymann KG (1994) Cholecystokinin (CCK-8S) prolongs ‘unsaturated’ θ-pulse induced long-term potentiation in rat hippocampal CA1 in vitro. Neuropeptides 26:421–427PubMedCrossRefGoogle Scholar
  120. 212.
    Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682PubMedCrossRefGoogle Scholar
  121. 213.
    Hillard C, Jarrahian A (2003) Cellular accumulation of anandamide: consensus and controversy. Br J Pharmacol 140:802–808PubMedCrossRefGoogle Scholar
  122. 214.
    Ronesi J, Gerdeman GL, Lovinger DM (2004) Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J Neurosci 24:1673–1679PubMedCrossRefGoogle Scholar
  123. 215.
    Gerdeman GL, Lovinger DM (2003) Emerging roles for endocannabinoids in long-term synaptic plasticity. Br J Pharmacol 140:781–789PubMedCrossRefGoogle Scholar
  124. 216.
    Di Tomaso E, Beltramo M, Piomelli D (1996) Brain cannabinoids in chocolate. Nature 382:677–678PubMedCrossRefGoogle Scholar
  125. 217.
    Baranano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106PubMedCrossRefGoogle Scholar
  126. 218.
    Toth K (2011) Zinc in neurotransmission. Annu Rev Nutr 31:139–153PubMedCrossRefGoogle Scholar
  127. 219.
    Sindreu CB, Varoqui H, Erickson JD, Perez-Clausell J (2003) Boutons containing vesicular zinc define a subpopulation of synapses with low AMPAR content in rat hippocampus. Cereb Cortex 13:823–829PubMedCrossRefGoogle Scholar
  128. 220.
    Perez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337:91–98PubMedCrossRefGoogle Scholar
  129. 221.
    Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-d-aspartate on cortical neurons. Science 236:589–593PubMedCrossRefGoogle Scholar
  130. 222.
    Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643PubMedCrossRefGoogle Scholar
  131. 223.
    Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 96:2414–2419PubMedCrossRefGoogle Scholar
  132. 224.
    Li Y, Hough CJ, Frederickson CJ, Sarvey JM (2001) Induction of mossy fiber → CA3 long-term potentiation requires translocation of synaptically released Zn2+. J Neurosci 21:8015–8025PubMedGoogle Scholar
  133. 225.
    Hölscher C (1997) Nitric oxide, the enigmatic neuronal messenger: its role in synaptic plasticity. Trends Neurosci 20:298–303PubMedCrossRefGoogle Scholar
  134. 226.
    Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 87:1015–1023PubMedCrossRefGoogle Scholar
  135. 227.
    Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RAJ, Mistry R, Haustein MD, Griffin SJ, Tong H, Graham BP, Forsythe ID (2008) Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60:642–656PubMedCrossRefGoogle Scholar
  136. 228.
    Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde Y-A (2012) BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol. doi: 10.1083/jcb.201201038 PubMedGoogle Scholar
  137. 229.
    Arévalo JC, Wu SH (2006) Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci 63:1523–1537PubMedCrossRefGoogle Scholar
  138. 230.
    Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarisation-activated cation current. Nature 340:715–718PubMedCrossRefGoogle Scholar
  139. 231.
    McCormick DA, Williamson A (1989) Convergence and divergence of neurotransmitter action in human cerebral cortex. Proc Natl Acad Sci USA 86:8098–8102PubMedCrossRefGoogle Scholar
  140. 232.
    Angelino E, Brenner MP (2007) Excitability constraints on voltage-gated sodium channels. PLoS Comput Biol 3(9):e177. doi: 10.1371/journal.pcbi.0030177 CrossRefGoogle Scholar
  141. 233.
    Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca++ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67–90PubMedGoogle Scholar
  142. 234.
    O’Dell TJ, Alger BE (1991) Single calcium channels in rat and guinea-pig hippocampal neurons. J Physiol 436:739–767PubMedGoogle Scholar
  143. 235.
    Gutman GA, Chandy KG, Adelman JP, Lazdunski M, Mckinnon D, Pardo LA, Robertson GA, Rudy B, Sanguinetti MC, Stuhmer W, Wang X (2005) International union of pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated ion channels: potassium channels. Pharmacol Rev 57:473–508PubMedCrossRefGoogle Scholar
  144. 236.
    Storm JF (1993) Functional diversity of K+ currents in hippocampal pyramidal neurons. Semin Neurosci 5:79–92CrossRefGoogle Scholar
  145. 237.
    Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862PubMedCrossRefGoogle Scholar
  146. 238.
    Metz AE, Spruston N, Martina M (2007) Dendritic D-type potassium currents inhibit the spike afterdepolarisation in rat hippocampal CA1 pyramidal neurons. J Physiol 581:175–187PubMedCrossRefGoogle Scholar
  147. 239.
    Hoffman DA, Johnston D (1998) Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC. J Neurosci 18:3521–3528PubMedGoogle Scholar
  148. 240.
    Wilke RA, Hsu S-F, Jackson MB (1998) Dopamine D4 receptor mediated inhibition of potassium current in neurohypophysial nerve terminals. J Pharmacol Exp Ther 284(2):542–548PubMedGoogle Scholar
  149. 241.
    Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963PubMedGoogle Scholar
  150. 242.
    Dong Y, White F (2003) Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons. J Neurosci 23:2686–2695PubMedGoogle Scholar
  151. 243.
    Wu R, Barish ME (1999) Modulation of a slowly inactivating potassium current, ID, by metabotropic glutamate receptor activation in cultured hippocampal pyramidal neurons. J Neurosci 19:6825–6837PubMedGoogle Scholar
  152. 244.
    Halliwell JV, Paul R, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92PubMedCrossRefGoogle Scholar
  153. 245.
    Colino A, Halliwell JV (1987) Differential modulation of three separate K-conductances in hippocampal CA1 neurons by serotonin. Nature 328:73–77PubMedCrossRefGoogle Scholar
  154. 246.
    Charpak S, Gahwiler BH, Do KQ, Knopfel T (1990) Potassium conductances in hippocampal neurons blocked by excitatory amino-acid transmitters. Nature 347:765–767PubMedCrossRefGoogle Scholar
  155. 247.
    Moore SD, Madamba SG, Joels M, Siggins GR (1988) Somatostatin augments the M-current in hippocampal neurons. Science 239:278–280PubMedCrossRefGoogle Scholar
  156. 248.
    Vacher H, Mohapatra DP, Trimmer JS (2008) Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 88:1407–1447PubMedCrossRefGoogle Scholar
  157. 249.
    Bekkers JM (2000) Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol 525:593–609PubMedCrossRefGoogle Scholar
  158. 250.
    Solomon JS, Nerbonne JM (1993) Hyperpolarisation-activated currents in isolated superior colliculus-projecting neurons from rat visual cortex. J Physiol 462:393–420PubMedGoogle Scholar
  159. 251.
    Williams SR, Stuart GJ (2003) Role of dendritic synapse location in the control of action potential output. Trends Neurosci 26:147–154PubMedCrossRefGoogle Scholar
  160. 252.
    Berger T, Senn W, Luscher HR (2003) Hyperpolarisation activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J Neurophysiol 90:2428–2437PubMedCrossRefGoogle Scholar
  161. 253.
    Sík A, Smith RL, Freund TF (2000) Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience 101:51–65PubMedCrossRefGoogle Scholar
  162. 254.
    Jentsch TJ, Gunther W, Pusch M, Schwappach B (1995) Properties of voltage gated chloride channels of the ClC gene family. J Physiol 482:19S–25SPubMedGoogle Scholar
  163. 255.
    Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7:548–562PubMedCrossRefGoogle Scholar
  164. 256.
    Tzingounis AV, Nicoll RA (2008) Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarisation currents. Proc N Y Acad Sci 105:19974–19979CrossRefGoogle Scholar
  165. 257.
    Sah P (1996) Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci 19:150–154PubMedCrossRefGoogle Scholar
  166. 258.
    Maingret F, Coste B, Hao J, Giamarchi A, Allen D, Crest M, Litchfield DW, Adelman JP, Delmas P (2008) Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron 59(3):439–449PubMedCrossRefGoogle Scholar
  167. 259.
    Stackman RW, Hammond RS, Linardatos E, Gerlach A, Maylie J, Adelman JP, Tzounopoulos T (2002) Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 22:10163–10171PubMedGoogle Scholar
  168. 260.
    Raley-Susman KM, Cragoe EJ Jr, Sapolsky RM, Kopito RR (1991) Regulation of intracellular pH in cultured hippocampal neurons by an amiloride-insensitive Na+/H+ exchanger. J Biol Chem 266:2739–2745PubMedGoogle Scholar
  169. 261.
    Kupfermann I (1980) Role of cyclic nucleotides in excitable cells. Annu Rev Physiol 42:629–641PubMedCrossRefGoogle Scholar
  170. 262.
    Hong M, Ross WN (2007) Priming of intracellular calcium stores in rat CA1 pyramidal neurons. J Physiol 584:75–87PubMedCrossRefGoogle Scholar
  171. 263.
    Muller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354:73–76PubMedCrossRefGoogle Scholar
  172. 264.
    Higley MJ, Sabatini BL (2008) Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59:902–913PubMedCrossRefGoogle Scholar
  173. 265.
    Brorson JR, Bleakman D, Gibbons SJ, Miller RJ (1991) The properties of intracellular calcium stores in cultured rat cerebellar neurons. J Neurosci 17:4024–4043Google Scholar
  174. 266.
    Bayer KU, Schulman H (2001) Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 289:917–923PubMedCrossRefGoogle Scholar
  175. 267.
    Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328PubMedCrossRefGoogle Scholar
  176. 268.
    Wayman GA, Wei J, Wong S, Storm DR (1996) Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo. Mol Cell Biol 16:6075–6082PubMedGoogle Scholar
  177. 269.
    Wang J, Chen S, Siegelbaum SA (2001) Regulation of hyperpolarisation-activated HCN channel gating and cAMP modulation due to interactions of COOH terminus and core transmembrane regions. J Gen Physiol 118:237–250PubMedCrossRefGoogle Scholar
  178. 270.
    Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–413PubMedGoogle Scholar
  179. 271.
    Conti M (2000) Phosphodiesterases and cyclic nucleotide signaling in endocrine cells. Mol Endocrinol 14:1317–1327PubMedCrossRefGoogle Scholar
  180. 272.
    Menniti FS, Faraci WS, Schmidt CJ (2006) Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 5:660–670PubMedCrossRefGoogle Scholar
  181. 273.
    Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511PubMedCrossRefGoogle Scholar
  182. 274.
    McDermott M, Wakelam MJO, Morris AJ (2004) Phospholipase D. Biochem Cell Biol 82:225–253PubMedCrossRefGoogle Scholar
  183. 275.
    Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639PubMedCrossRefGoogle Scholar
  184. 276.
    Alexander SPH, Mathie A, Peters JA (2009) Guide to receptors and channels (GRAC), 4th edn. Br J Pharmacol 158(suppl 1):S5–S101Google Scholar
  185. 277.
    Zhang S, Coso OA, Lee C, Gutkind JS, Simonds WF (1996) Selective activation of effector pathways by brain specific G protein b5. J Biol Chem 271:33575–33579PubMedCrossRefGoogle Scholar
  186. 278.
    Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Neurosci 3:639–650CrossRefGoogle Scholar
  187. 279.
    Fimia GM, Sassone-Corsi P (2001) Cyclic AMP signalling. J Cell Sci 114:1971–1972PubMedGoogle Scholar
  188. 280.
    Ferguson SSG (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24PubMedGoogle Scholar
  189. 281.
    Tang W-J, Gilman AG (1992) Adenylyl cyclases. Cell 70:869–872PubMedCrossRefGoogle Scholar
  190. 282.
    Kaupp UB, Reinhard Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824PubMedGoogle Scholar
  191. 283.
    Cooper DMF (2003) Regulation and organization of adenylyl cyclases and cAMP. Biochem J 375:517–529PubMedCrossRefGoogle Scholar
  192. 284.
    Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822PubMedCrossRefGoogle Scholar
  193. 285.
    Thelen M, Didichenko SA (1997) G-protein coupled receptor-mediated activation of PI 3-kinase in neutrophils. Ann N Y Acad Sci 832:368–382PubMedCrossRefGoogle Scholar
  194. 286.
    Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 380:258–262PubMedCrossRefGoogle Scholar
  195. 287.
    Delmas P, Crest M, Brown DA (2004) Functional organization of PLC signaling microdomains in neurons. Trends Neurosci 27:41–47PubMedCrossRefGoogle Scholar
  196. 288.
    Simpson CS, Morris BJ (1995) Induction of c-fos and zif/268 gene expression in rat striatal neurons, following stimulation of D1-like dopamine receptors, involves protein kinase A and protein kinase C. Neuroscience 68:97–106PubMedCrossRefGoogle Scholar
  197. 289.
    Tanaka C, Nishizuka Y (1994) The protein kinase C family for neuronal signaling. Annu Rev Neurosci 17:551–567PubMedCrossRefGoogle Scholar
  198. 290.
    Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514PubMedCrossRefGoogle Scholar
  199. 291.
    Kvachnina E, Liu G, Dityatev A, Renner U, Dumuis A, Richter DW, Dityateva G, Schachner M, Voyno-Yasenetskaya TA, Ponimaskin EG (2005) 5-HT7 receptor is coupled to G subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology. J Neurosci 25:7821–7830PubMedCrossRefGoogle Scholar
  200. 292.
    Ponimaskin EG, Profirovic J, Vaiskunaite R, Richter DW, Voyno-Yasenetskaya TA (2002) 5-Hydroxytryptamine 4(a) receptor is coupled to the G alpha subunit of heterotrimeric G13 protein. J Biol Chem 277:20812–20819PubMedCrossRefGoogle Scholar
  201. 293.
    Thomas DR, Melotto S, Massagrande M, Gribble AD, Jeffrey P, Stevens AJ, Deeks NJ, Eddershaw PJ, Fenwick SH, Riley G, Stean T, Scott CM, Hill MJ, Middlemiss DN, Hagan JJ, Price GW, Forbes IT (2003) SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol 139:705–714PubMedCrossRefGoogle Scholar
  202. 294.
    Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K, Vande Woude GF, Ahn NG (1994) Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265:966–970PubMedCrossRefGoogle Scholar
  203. 295.
    Ferrell JE, Bhatt RR (1997) Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J Biol Chem 272:19008–19016PubMedCrossRefGoogle Scholar
  204. 296.
    Adams JA (2001) Kinetic and catalytic mechanisms of protein kinases. Chem Rev 101:2271–2290PubMedCrossRefGoogle Scholar
  205. 297.
    Barford D, Das AK, Egloff M-P (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct 27:133–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. Andrew Coward
    • 1
  1. 1.Research School of Computer ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations