Skip to main content

Mycotoxins Associated to Fusarium Species that Caused Fusarium Head Blight in Wheat in Latin-America

  • Chapter
  • First Online:
Fusarium Head Blight in Latin America

Abstract

Fusarium Head Blight (FHB) is an important disease affecting the production of wheat worldwide. Fusarium species are causal agents of Fusarium Head Blight (FHB) in cereals and Fusarium graminearum (Schwabe) (teleomorph Gibberella zeae (Schwein.)) is considered the main cause of the disease. FHB incidence reduces grain yields and also produces fungal toxins, primarily trichothecenes, that contaminate grains used for human and animal consumption. The most common trichothecenes produced by F. graminearum are Deoxynivalenol (DON), its acetyl derivatives 3- acetyl-deoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), nivalenol (NIV), and its acetylated derivative 4-acetyl-nivalenol (4ANIV or fusarenone X). Another point of remarkable interest is the increase in the presence of other casual agents of FHB as F. poae, a relatively weak pathogen compared with F. graminearum, but capable of produce a large number of mycotoxins, including trichothecenes of type A and B, beauvericin and enniatins. Several toxins were identified in wheat in years of epidemic FHB development. All reports showed the preponderance of DON. Surveys on Fusarium mycotoxins in small-grain cereals and their by-products are frequently conducted in the major production regions of the world such as North America and Europe, but information in South America is scarce and previous evidence has placed DON as the main Fusarium toxin detected in wheat and by-products in Argentina, Brazil and Uruguay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altomare C, Petrini O, Logrieco A, Bottalico A (1997) Taxonomic relationships among the toxigenic species Fusarium acuminatum, Fusarium sporotrichioides and Fusarium tricinctum by isozyme analysis and RAPD assay. Can J Bot 75:1674–1684

    Article  CAS  Google Scholar 

  • Alvarez C, Azcarate M, Fernández Pinto V (2009) Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. Int J Food Microbiol 135:131–135

    Article  PubMed  CAS  Google Scholar 

  • Alvarez C, Somma S, Proctor R, Stea G, Mulè G, Logrieco A, Fernández Pinto V, Moretti A (2011) Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina. Toxins 3:1294–1309

    Article  PubMed  CAS  Google Scholar 

  • Atoui A, El Khoury A, Kallassy M, Lebrihi A (2012) Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. Int J Food Microbiol 154:59–65

    Article  PubMed  CAS  Google Scholar 

  • Banchero E, Miguel M, Godoy H, Di Giulio A, Dubois M, Souto G, Gomez M, Resnik F, Torres M (1987) Evaluación de la presencia de Fusarium y de micotoxinas en muestras de trigo de la campaña 1985/86 y su relación con la calidad comercial. Publicación Gerencia Técnica, Junta Nacional de Granos

    Google Scholar 

  • Bruins M, Karsai I, Schepers J, Snijders C (1993) Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Sci 94:195–206

    Article  CAS  Google Scholar 

  • Burgess L, Summerell B (2000) Taxonomy of Fusarium: Fusarium armeniacum stat & comb. nov. Mycotaxon 75:347–348

    Google Scholar 

  • Calori-Domingues M, De Almeida R, Tomiwaka M, Gallo C, Da Gloria E, Santos Dias C (2007) Occurrence of deoxynivalenol in national and imported wheat used in Brazil. Ciência e Tecnologia de Alimentos 27:181–185

    Article  CAS  Google Scholar 

  • Carranza M, Lori G, Sisterna M (2008) Wheat Fusarium head blight 2001 epidemic in the southern Argentinian pampas. Summa Phytopathol 34(1):93–94

    Article  Google Scholar 

  • Charmley E, Trenholm H, Thompson B (1993) Influence of level of deoxynivalenol in the diet of dairy cows on feed intake, milk production and its composition. J Dairy Sci 76:3580–3587

    Article  PubMed  CAS  Google Scholar 

  • Cole R, Jarvis B, Schweikert M (2003) Handbook of secondary metabolites. Academic, New York, pp 199–560

    Book  Google Scholar 

  • Dalcero A, Torres A, Etcheverry M, Chulze S, Varsavsky E (1997) Occurrence of deoxynivalenol and Fusarium graminearum in Argentinian wheat. Food Addit Contam 14:11–14

    Article  PubMed  CAS  Google Scholar 

  • Del Ponte E, Garda-Buffon J, Badiale-Furlong E (2012) Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chem 132:1087–1091

    Article  Google Scholar 

  • Desjardins A (2006) Fusarium mycotoxins. Chemistry, genetics, and biology. American Phytopathological Society, St. Paul, 268 pp

    Google Scholar 

  • Desjardins A, Proctor R, Bai G, McCormick S, Shaner G, Beuchley G, Hohn M (1996) Reduced virulence of trichothecene-non-producing mutants of Gibberella zeae in wheat field tests. Mol Plant Microbe Interact 9:1996–1023

    Article  Google Scholar 

  • Edwards S, Imathiu S, Ray R, Back M, Hare M (2012) Molecular studies to identify the Fusarium species responsible for HT-2 and T-2 mycotoxins in UK oats. Int J Food Microbiol 156:168–175

    Article  PubMed  CAS  Google Scholar 

  • Faifer GC, De Miguel MS, Godoy HM (1990) Patterns of mycotoxin production by Fusarium graminearum isolated from Argentine wheat. Mycopathologia 109:165–170

    Article  CAS  Google Scholar 

  • Fernández Pinto V, Terminiello L, Basilico J, Ritieni A (2008) Natural occurrence of nivalenol and mycotoxigenic potential of Fusarium graminearum strains in wheat affected by Head Blight in Argentina. Braz J Microbiol 39:157–162

    Article  Google Scholar 

  • Furlong E, Soares L, Lasca C, Kohara E (1995) Mycotoxins and fungi in wheat harvested during 1990 in test plots in the state of São Paulo, Brazil. Mycopathologia 131:185–190

    Article  PubMed  CAS  Google Scholar 

  • González H, Pacin A, Resnik S, Martinez E (1996) Deoxynivalenol and contaminant mycoflora in freshly harvested Argentinian wheat in 1993. Mycopathologia 135:129–134

    Article  PubMed  Google Scholar 

  • González H, Martínez E, Pacin A, Resnik S (1999) Relationship between Fusarium graminearum and Alternaria alternata contamination and deoxynivalenol occurrence on Argentinian durum wheat. Mycopathologia 144:97–102

    Article  Google Scholar 

  • González H, Moltó G, Pacin A, Resnik S, Zelaya M, Masana M, Martínez E (2008) Trichothecenes and mycoflora in wheat harvested in nine locations in Buenos Aires province, Argentina. Mycopathologia 165:105–114

    Article  PubMed  Google Scholar 

  • Goswami R, Kistler H (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5(6):515–525

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiol Mol Plant Pathol 55:275–288

    Article  CAS  Google Scholar 

  • Kong W, Zhang S, Shen H, Ou-Yang Z, Yang M (2012) Validation of a gas chromatography-electron capture detection of T-2 and HT-2 toxins in Chinese herbal medicines and related products after immunoaffinity column clean-up and pre-column derivatization. Food Chem 132:574–581

    Article  CAS  Google Scholar 

  • Lori G, Sisterna M, Haidukowski M, Rizzo I (2003) Fusarium graminearum and deoxynivalenol contamination in the durum wheat area of Argentina. Microbiol Res 158:29–35

    Article  PubMed  CAS  Google Scholar 

  • Malmann C, Dilkin M, Mürman L, Dilkin P, Almeida C (2003) Avaliação da contaminação por desoxinivalenol em trigo utilizado na alimentação humana. In: Congresso Brasileiro de Farmácia 1. São Paulo. Abstract available online at: http://www.lamic.ufsm.br/papers/2a.pdf

  • Marasas WFO (1991) Toxigenic Fusaria. In: Smith JC, Henderson RS (eds) Mycotoxins and animal food. CRC Press, Boca Raton, pp 119–139

    Google Scholar 

  • Maresca M, Mahfoud R, Garmy N, Fantini J (2002) The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells. J Nutr 132:2723–2731

    PubMed  CAS  Google Scholar 

  • Masuda E, Takemoto T, Tatsuno T, Obara T (1982) Immunosuppressive effect of a trichothecene mycotoxin Fusarenon-X in mice. Immunology 45:743–749

    PubMed  CAS  Google Scholar 

  • McCormick S, Stanley A, Stover N, Alexander N (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–814

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin J, Bin-Umer M, Tortora A, Mendeze N, McCormick S, Tumer N (2009) A genome wide screen in Saccharomyces cerevisiae reveals a critical role for the mitochondria in the toxicity of a trichothecene mycotoxin. Proc Natl Acad Sci U S A 106:21883–21888

    Article  PubMed  CAS  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  Google Scholar 

  • Parry D, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pascale M, Haidukowski M, Visconti A (2003) Determination of T-2 toxin in cereal grains by liquid chromatography with fluorescence detection after immunoaffinity column clean-up and derivatization with 1-anthroylnitrile. J Chromatogr A 989:257–264

    Article  PubMed  CAS  Google Scholar 

  • Pestka J (2007) Deoxynivalenol: toxicity, mechanisms and animal health risks. Anim Feed Sci Technol 137:283–298

    Article  CAS  Google Scholar 

  • Piñeiro M, Dawson R, Costarrica M (1996) Monitoring program for mycotoxin contamination in Uruguayan food and feeds. Nat Toxins 4:242–245

    Article  PubMed  Google Scholar 

  • Quiroga N, Resnik S, Pacin A, Martínez E, Pagano A, Riccobene I, Neira S (1995) Natural occurrence of trichothecenes and zearalenone in Argentinean wheat. Food Control 6:201–204

    Article  Google Scholar 

  • Ramírez M, Reynoso M, Farnochi M, Torres A, Leslie J, Chulze S (2007) Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Addit Contam 24:1115–1120

    Article  PubMed  Google Scholar 

  • Reynoso M, Ramirez M, Torres A, Chulze S (2011) Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Int J Food Microbiol 4:444–448

    Article  Google Scholar 

  • Roigé M, Aranguren S, Riccio M, Pereyra S, Soraci A, Tapia M (2009) Mycobiota and mycotoxins in fermented feed, wheat grains and corn grains in Southeastern Buenos Aires Province, Argentina. Rev Iberoam Micol 26:233–237

    Article  PubMed  Google Scholar 

  • Sabino M, Ichikawa A, Inomata E, Lamardo L (1989) Determinação de deoxinivalenol em trigo e milho em grão por cromatografia em camada delgada. Rev Inst Adolfo Lutz 49:155–159

    Google Scholar 

  • Shimada T, Otani M (1990) Effects of Fusarium mycotoxins on the growth of shoots and roots at germination in some Japanese wheat cultivars. Cereal Res Commun 18:229–232

    Google Scholar 

  • Stenglein S, Dinolfo M, Bongiorno F, Moreno MV (2012) Response of wheat (Triticum spp.) and barley (Hordeo vulgare) to Fusarium poae. Agrociencia 46:299–306

    Google Scholar 

  • Thrane U, Adler A, Clasen P, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A (2004) Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Food Microbiol 95:257–266

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y (1985) The toxicology of mycotoxins. Crit Rev Toxicol 14:99–132

    Article  PubMed  CAS  Google Scholar 

  • Vaamonde G, Scarmato G, Bonera N (1987) Zearalenone production by Fusarium species isolated from soybeans. Int J Food Microbiol 4:129–133

    Article  Google Scholar 

  • van Egmond HP, Schothorst RC, Jonker MA (2007) Regulations relating to mycotoxins in food: perspectives in a global and European context. Anal Bioanal Chem 389:147–157

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Miller J (1988) Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. J Phytopathol 122:118–125

    Article  CAS  Google Scholar 

  • Ward T, Clear R, Rooney A, O’Donnel K, Gaba D, Patrick S (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484

    Article  PubMed  Google Scholar 

  • Wegulo SN (2012) Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 4:1157–1180

    Article  PubMed  CAS  Google Scholar 

  • Weidner M, Welsch T, Hübner F, Schwerdt G, Gekle M, Humpf H (2012) Identification and apoptotic potential of T-2 toxin metabolites in human cells. J Agric Food Chem 60:5676–5684

    Article  PubMed  CAS  Google Scholar 

  • WHO (2001) Safety evaluation of certain mycotoxins in food. WHO food additives series 47, FAO food and nutrition paper 7, Presented at the 56th meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), WHO, Geneva, 557 pp

    Google Scholar 

  • WHO (2002) Evaluation of certain mycotoxins in food. WHO technical report series 906, Joint FAO/WHO Expert Committee on Food Additives. Fifty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva

    Google Scholar 

  • Yazar S, Omurtag G (2008) Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci 9:2062–2090

    Article  PubMed  CAS  Google Scholar 

  • Yli-Mattila T, Ward TJ, O'Donnell K, Proctor RH, Burkin AA, Kononenko GP, Gavrilova OP, Aoki T, McCormick S, Gagkaeva T (2011) Fusarium sibiricum sp. nov, a novel type A trichothecene-producing Fusarium from northern Asia closely related to F. sporotrichioides and F. langsethiae. Int J Food Microbiol 147:58–68

    Article  PubMed  CAS  Google Scholar 

  • Zapata Basílico ML, Pose G, Ludemann V, Fernández Pinto V, Aríngoli E, Ritieni A, Basílico JC (2010) Fungal diversity and natural occurrence of fusaproliferin, beauvericin, deoxynivalenol and nivalenol in wheat cultivated in Santa Fe Province, Argentina. Mycotoxin Res 26:85–91

    Article  Google Scholar 

  • Zinedine A, Soriano JM, Moltó JC, Mañes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Fernández Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pinto, V.F., Patriarca, A., Pose, G. (2013). Mycotoxins Associated to Fusarium Species that Caused Fusarium Head Blight in Wheat in Latin-America. In: Alconada Magliano, T., Chulze, S. (eds) Fusarium Head Blight in Latin America. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7091-1_5

Download citation

Publish with us

Policies and ethics