Skip to main content

Ecophysiology of Fusarium graminearum Main Pathogen Associated to Fusarium Head Blight in Latin America

  • Chapter
  • First Online:
  • 1109 Accesses

Abstract

In Argentina, the main pathogen associated with Fusarium Head Blight (FHB) is Fusarium graminearum Schw, perfect stage Gibberella zeae (Schw.) Petch. Prevention of mycotoxin contamination of food raw materials is now considered more important than subsequent cure. Accurate information is therefore needed on the impact of key environmental factors such as water availability and temperature and their interactions, and the identification of marginal and optimum conditions for growth and toxin production. Studies done in Argentina were focused on the impact of different abiotic factors (aW, temperature and fungicides) on F. graminearum growth rates and deoxynivalenol production. The impact of 5 fungicides (prochloraz, propioconazole, epoxiconazole, tebuconazole and azoxystrobin, 0.5–50 mg/ ml) on growth of F. graminearum isolated from wheat in Argentina were evaluated in relation to water activity (aW; 0.99, 0.97, 0.95) and temperature (15 and 25 °C) on wheat-based media (in vitro) and on wheat grains (in situ). Also the effect of osmotic (NaCl, glycerol) and matric (PEG8000) water stress on temporal germination and growth by F. graminearum strains isolated from wheat in Argentina over the water potential range of −0.7 to −14.0 MPa at 15 and 25 °C. The effect on endogenous water potentials and accumulation of sugars and sugar alcohols were also evaluated. The results showed that water potential and solute type have a significant effect on germination, germ tube extension, growth rates, germination, internal cell water potential and endogenous accumulation of sugars and sugar alcohols in F. graminearum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldred D, Magan N (2004) Prevention strategies for tricothecenes. Toxicol Lett 153:165–171

    Article  PubMed  CAS  Google Scholar 

  • Audenaert K, Callewaert E, Höfte M, De Saeger S, Haesaert G (2010) Hydrogen peroxide induced by fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol 10:112

    Article  PubMed  Google Scholar 

  • Bakan B, Pinson L, Cahagnier B, Melcion D, Semon E, Richard-Molard D (2001) Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Food Addit Contam 18:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Brennan JM, Fagan B, van Maanen A, Cooke BM, Doohan FM (2003) Studies on in vitro growth and pathogenicity of European Fusarium fungi. Eur J Plant Pathol 109:577–587

    Article  Google Scholar 

  • Chamley LL, Rosenberg A, Trenholom HL (1994) Factors responsible for economics losses due to Fusarium mycotoxin contamination of grains, food and feedstuffs. In: Miller JD, Trenholom HL (eds) Mycotoxins in grain compounds other than aflatoxin. Egan Press, St. Paul, pp 471–486

    Google Scholar 

  • Chirife J, Favetto G, Fontan CF (1984) Microbial growth at reduced water activities: some physicochemical properties of compatible solutes. J Appl Bacteriol 56:259–268

    Article  PubMed  CAS  Google Scholar 

  • Comerio RM, Fernandez Pinto VE, Vaamonde G (1999) Influence of water activity on deoxynivalenol accumulation on wheat. Mycotoxin Res 15:24–31

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ, Christen AA (1976) Growth of cereal root rot fungi as affected by temperature-water potential interactions. Phytopathology 66:193–197

    Article  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in an hydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  PubMed  CAS  Google Scholar 

  • Desjardins A (2006) Fusarium mycotoxins: chemistry, genetics and biology. APS Press, St. Paul, pp 79–108

    Google Scholar 

  • D’Mello JPF, Macdonald AMC, Bonte L (1997) The effects of difenoconazole on 3-acetyl deoxynivalenol synthesis by Fusarium culmorum: implications for cereal quality. In: Crop protection & food quality: meeting customers needs, proceedings of BCPC and ANPP conference, Kent, UK, pp 463–466

    Google Scholar 

  • D’Mello JPF, Macdonald AMC, Postel D, Dijksma WTP, Dujardin A, Placinta CM (1998) Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens. Eur J Plant Pathol 104:741–751

    Article  Google Scholar 

  • Dalcero A, Torres A, Etcheverry M, Chulze S, Varsavsky E (1997) Occurrence of deoxynivalenol and Fusarium graminearum in Argentinian wheat. Food Addit Contam 14:11–14

    Article  PubMed  CAS  Google Scholar 

  • Davis DJ, Burlak C, Money N (2000) Osmotic pressure of fungal compatible osmolytes. Mycol Res 104:800–880

    Article  CAS  Google Scholar 

  • Feofilova EP, Ivashechkin AA, Alekhin A, Sergeeva YE (2012) Fungal spores: dormancy, germination, chemical composition, and role in biotechnology (review). Appl Biochem Microbiol 48:1–11

    Article  CAS  Google Scholar 

  • Galich MT (1996) Fusarium head blight in Argentina. In: Duvin HJ, Gilchrist L, Reeves J, McNab A (eds) Fusarium head scab: global status and future prospects. Proceedings of a workshop held at CIMMYT. CIMMYT, Mexico

    Google Scholar 

  • Greenhalgh R, Neish GA, Miller JD (1983) Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of Fusarium graminearum on solid substrates. Appl Environ Microbiol 46:625–629

    PubMed  CAS  Google Scholar 

  • Griffin DM (1972) Ecology of soil fungi. Chapman and Hall, London

    Google Scholar 

  • Griffin DM (1981) Water and microbial stress. In: Alexander A (ed) Advances in microbial ecology 5. Plenum Publishing Co, New York, pp 91–136

    Chapter  Google Scholar 

  • Hallsworth JE, Magan N (1994) Effects of KCl concentration on accumulation of a cyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Lett Appl Microbiol 18:8–11

    Article  CAS  Google Scholar 

  • Holliger K, Ekperigin HE (1999) Mycotoxins in food producing animals. Vet Clin N Am 15:133–165

    Google Scholar 

  • Hope RJ, Magan N (2003) Two-dimensional environmental profiles of growth, deoxynivalenol and nivalenol production by Fusarium culmorum isolates on wheat-based substrate. Lett Appl Microbiol 37:70–74

    Article  PubMed  CAS  Google Scholar 

  • Hope RJ, Colleate A, Baxster ES, Magan N (2002) Interactions between environmental stress and fungicides effect growth and mycotoxin production by Fusarium culmorum isolates from wheat grain. Eur J Plant Pathol 108:685–690

    Article  Google Scholar 

  • Hope RJ, Aldred D, Magan N (2005) Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Lett Appl Microbiol 40:295–300

    Article  PubMed  CAS  Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jennings DH, Burke RM (1990) Compatible solute the mycological dimension and their role as physiological buffering agents. New Phytol 116:277–283

    Article  CAS  Google Scholar 

  • Lacey J, Magan N (1991) Fungi in cereal grain: their occurrence and water and temperature relationships. In: Chelkowsky J (ed) Trichotecenes and other mycotoxins. Wiley, New York, pp 243–256

    Google Scholar 

  • Llorens A, Mateo R, Hinojo MJ, Valle-Algarra FM, Jimenez M (2004) Influence of environmental factors on biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. Int J Food Microbiol 94:43–54

    Article  PubMed  CAS  Google Scholar 

  • Magan N (1988) Effects of water potential and temperature on spore germination and germ-tube growth in vitro and on straw leaf sheaths. Trans Br Mycol Soc 90:97–107

    Article  Google Scholar 

  • Magan N (1997) Fungi in extreme environments. In: Wicklow D, Soderstrom B (eds) The mycota, vol IV, Environmental and microbial relationships. Springer, Berlin, pp 99–113

    Google Scholar 

  • Magan N, Lacey J (1984) Water relations of some Fusarium species from infected wheat ears and grain. Trans Br Mycol Soc 83:281–285

    Article  Google Scholar 

  • Magan N, Lacey J (1985) The effect of water activity and temperature on mycotoxin production by Alternaria alternata in culture and on wheat grain. In: Lacey J (ed) Cereal grain mycotoxins, fungi and quality in drying and storage. Elsevier, Amsterdam, pp 77–118

    Google Scholar 

  • Magan N, Lynch JM (1986) Water potential, growth and cellulolysis of fungi involved in decomposition of cereal residues. J Gen Microbiol 132:1181–1187

    CAS  Google Scholar 

  • Marín S, Sanchis V, Viñas I, Canela R, Magan N (1995a) Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme on maize grain. Lett Appl Microbiol 21:298–301

    Article  PubMed  Google Scholar 

  • Marín S, Sanchis V, Magan N (1995b) Water activity, temperature and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Can J Microbiol 41:1063–1070

    Article  PubMed  Google Scholar 

  • Marín S, Sanchis V, Teixeido R, Saenz AJ, Ramos AJ, Magan N (1996) Water activity, temperature relationships and microconidial germination of Fusarium moniliforme and Fusarium proliferatum from maize. Can J Microbiol 42:1045–1050

    Article  PubMed  Google Scholar 

  • Martins ML, Martins HM (2002) Effect of water activity, temperature and incubation time on the simultaneous production of deoxynivalenol and zearalenone in corn (Zea mays) by Fusarium graminearum. Food Chem 79:315–318

    Article  Google Scholar 

  • Matthies A, Walker F, Buchenauer H (1999) Interference of select fungicides, plant growth retardants as well as piperonyl butoxide and 1-aminobenzotriazole in trichothecene production of Fusarium graminearum (strain 4528) in vitro. Z Pflanzenkr Pflanzenschutz 106:198–212

    CAS  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  Google Scholar 

  • Milus EA, Parson CE (1994) Evaluation of foliar fungicides for controlling Fusarium head blight of wheat. Plant Dis 78:697–699

    Article  CAS  Google Scholar 

  • Moss MO, Frank JM (1985) Influence of the fungicide tridemorh on T-2 toxin production by Fusarium sporotrichioides. Trans Br Mycol Soc 84:585–590

    Article  CAS  Google Scholar 

  • Parry DW, Pettit TR, Jenkinson P, Lees AK (1994) The cereal Fusarium complex. In: Blakeman JP, Williamson B (eds) Ecology of plant pathogens. CABI International, Wallingford, pp 301–320

    Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Paul PA, Lipps PE, Hershman DE, McMullen MP, Draper MA, Madden LV (2008) Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. Phytopathology 98:999–1011

    Article  PubMed  CAS  Google Scholar 

  • Placinta CM, Macdonald AMC, D’Mello JPF, Harling R (1996) The influence of carbendazim on mycotoxin production in Fusarium sporotrichioides. In: Proceedings of The Brighton crop protection conference British Crop Protection Council, Farnham, UK, pp 415–416

    Google Scholar 

  • Ramirez ML, Chulze S, Magan N (2004a) Impact of environmental factors and fungicides on growth and deoxynivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Prot 23:117–125

    Article  CAS  Google Scholar 

  • Ramirez ML, Chulze S, Magan N (2004b) Impact of osmotic and matric water stress on germination, growth, mycelial water potentials and endogenous accumulation of sugars and sugar alcohols on Fusarium graminearum. Mycologia 96:470–478

    Article  PubMed  CAS  Google Scholar 

  • Ramirez ML, Chulze S, Magan N (2006a) Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Int J Food Microbiol 106:291–296

    Article  PubMed  CAS  Google Scholar 

  • Ramirez ML, Reynoso MM, Farnochi MC, Chulze SN (2006b) Vegetative compatibility and mycotoxin chemotypes among Fusarium graminearum (Gibberella zeae) isolates from wheat in Argentina. Eur J Plant Pathol 115:129–138

    Article  Google Scholar 

  • Ramirez ML, Reynoso MM, Farnochi MC, Torres AM, Leslie JF, Chulze SN (2007) Population genetic structure of Gibberella zeae isolated from wheat in Argentina. Food Addit Contam 24:1115–1120

    Article  PubMed  CAS  Google Scholar 

  • Ryu D, Bullerman LB (1999) Effect of cycling temperatures on the production of deoxynivalenol and zearalenone by Fusarium graminearum NRRL 5883. J Food Prot 62:1451–1455

    PubMed  CAS  Google Scholar 

  • Sanchis V, Magan N (2004) Environmental conditions affecting mycotoxins. In: Magan N, Olsen M (eds) Mycotoxins in food: detection and control. Woodhead Publishing Ltd, Oxford, pp 174–189

    Chapter  Google Scholar 

  • Sung JM, Cook RJ (1981) Effect of water potential on reproduction and spore germination by Fusariun roseum “Graminearum”, “Culmorum” and “Avenaceum”. Phytopathology 71:499–504

    Article  Google Scholar 

  • Vesonder RF, Ellis JJ, Kwolek WF, DeMarini DJ (1982) Production of vomitoxin on corn by Fusarium graminearum NRRL 5883 and Fusarium roseum NRRL 6101. Appl Environ Microbiol 43:967–970

    PubMed  CAS  Google Scholar 

  • Wearing AH, Burgess LW (1979) Water potential and the saprophytic growth of Fusarium roseum ‘graminearum’. Soil Biol Biochem 11:661–667

    Article  Google Scholar 

  • Willcock J, Magan N (2001) Impact of environmental factors on fungal respiration and dry matter losses in wheat straw. J Stored Prod Res 37:35–45

    Article  Google Scholar 

  • World Health Organization (2001) Deoxynivalenol. In: WHO food additives series 47. Food and nutrition paper 74. International programme on chemical safety. World Health Organization, Geneva, pp 419–556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Laura Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ramírez, M.L., Farnochi, M.C., Chulze, S.N. (2013). Ecophysiology of Fusarium graminearum Main Pathogen Associated to Fusarium Head Blight in Latin America. In: Alconada Magliano, T., Chulze, S. (eds) Fusarium Head Blight in Latin America. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7091-1_4

Download citation

Publish with us

Policies and ethics