Species Identification, Genetic Diversity and Phenotypic Variation Studies on the Fusarium graminearum Complex Populations from Brazil

  • Emerson M. Del Ponte
  • Dauri J. Tessmann
  • Piérri Spolti
  • Paulo R. Kuhnem
  • Cleiltan N. da Silva
Chapter

Abstract

Fusarium graminearum sensu lato, the cause of Fusarium head blight (FHB), has been reported for more than 50 years in Brazil. However, it was only during the mid-1980s to late 1990s that FHB resurged as a primary concern of wheat production. More than a dozen studies in Brazil or elsewhere have been conducted since the year 2000 employing novel and accurate methods to explore genetic variability and identify the strains to phylogenetic species. Thus far, six species of the F. graminearum species complex (FGSC) have been reported in association with wheat, barley, oat, soybean, maize, rice and ryegrass in Brazil, and their prevalence rates appears to be dependent on the region and host surveyed. Although F. graminearum sensu stricto (s. str.) is dominant in wheat, F. meridionale is the most frequently found pathogen in maize, and F. asiaticum is the only species found in rice. Most of them preferentially exhibit specific trichothecene genotypes: F. graminearum s. str. is of the 15-acetyl-deoxynivalenol (DON) genotype, F. meridionale and F. asiaticum are of the nivalenol (NIV) genotype, and F. austroamericanum is of the 3-ADON genotype; an exception is that F. cortaderiae exhibits either the 3-ADON or NIV genotype. They have also exhibited differences in relation to their reproductive fitness, fungicide sensitivity and pathogenicity toward wheat and maize. Continuous monitoring of the genotypic and phenotypic traits of the FGSC populations will help to improve local disease management and contribute to the global knowledge of the biology of the pathogen.

Keywords

Amplify Fragment Length Polymorphism Fusarium Head Blight Mycelial Growth Rate Galactose Oxidase Triazol Fungicide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors are thankful to the National Council for Scientific and Technological Development (CNPq) for both financial support and research fellowships for the first and second authors and scholarships for the remaining authors.

References

  1. Alvarez CL, Somma S, Proctor RH, Stea G, Mulè G, Logrieco AF, Pinto VF, Moretti A (2011) Genetic diversity in Fusarium graminearum from a major wheat-producing region of Argentina. Toxins 10:1294–1309CrossRefGoogle Scholar
  2. Alves (2012) Levantamento e identificação de espécies e genótipos tricotecenos de Fusarium graminearum associados a sementes de soja em regiões produtoras do centro do sul do Brasil. Thesis Universidade Estadual de Maringá, BrazilGoogle Scholar
  3. Angelotti F, Tessmann DJ, Alves TCA, Vida JB, Jaccoud Filho DS, Harakava R (2006) Caracterização morfológica e identificação molecular de isolados de Fusarium graminearum associados à giberela do trigo e triticale no sul do Brasil. Summa Phytopathol 32:177–179CrossRefGoogle Scholar
  4. Aoki T, O’Donnel K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp nov., formerly recognized as the Group 1 population of F. graminearum. Mycologia 91:597–609CrossRefGoogle Scholar
  5. Astolfi P, Simon LL, Schneider L, Alves TCA, Tessmann DJ, Del Ponte EM (2010) Within-field patterns of B-trichothecene genotypes in the Fusarium graminearum complex affecting Wheat in Southern Brazil. In: Canty S, Clark A, Mundell J, Walton E, Ellis D, Van Sanford D (eds) Proceedings of the national fusarium head blight forum, University of Kentucky, Orlando/Lexington, 7–9 December 2009, pp 171Google Scholar
  6. Astolfi P, Reynoso M, Ramirez ML, Chulze SN, Alves TCA, Tessmann DJ, Del Ponte EM (2012a) Genetic population structure and trichothecene genotypes of Fusarium graminearum isolated from wheat in southern Brazil. Plant Pathol 61:289–295CrossRefGoogle Scholar
  7. Astolfi P, Dos Santos J, Schneider L, Gomes LB, Silva CN, Tessmann DJ, Del Ponte EM (2012b) Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in southern Brazil. Int J Food Microbiol 148:197–201Google Scholar
  8. Avozani A, Tonin RB, Reis EM, Camera J, Ranzi C (2011) Sensibilidade de Fusarium graminearum a fungicidas, in vitro. In: Reis EM (ed) Seminário sobre giberela em cereais de inverno – coletânea de trabalhos. Berthier, Passo Fundo, pp 235–252Google Scholar
  9. Biazio GR, Leite GGS, Tessmann DJ, Barbosa-Tessmann IP (2008) A new PCR approach for the identification of Fusarium graminearum. Braz J Microbiol 39:554–560CrossRefGoogle Scholar
  10. Brancão MF, Bianchi VJ, Farias CRJ, Santos J, Rossetto EA (2008) Caracterização genética de Fusarium graminearum Schwabe através de técnicas moleculares. Rev Bras de Agroc 14:67–76Google Scholar
  11. Busso C, Kaneshima EN, Franco FA, Querol CB, Castro-Prado MAA (2007) Vegetative compatibility and molecular characterization of Fusarium graminearum isolates from the State of Paraná, Brazil. Cienc Rural 37:1813–1816CrossRefGoogle Scholar
  12. Casa RT, Bogo A, Moreira EM, Kuhnem PR (2007) Época de aplicação e desempenho de fungicidas no controle da giberela em trigo. Cienc Rural 37:1558–1563CrossRefGoogle Scholar
  13. Chandler EA, Duncan RS, Thomsett MA, Nicholson P (2003) Development of PCR assays to Tri7 and Tri13 and characterisation of chemotypes of Fusarium graminearum, Fusarium culmorum, and Fusarium cerealis. Physiol Mol Plant Pathol 62:355–367CrossRefGoogle Scholar
  14. Ciliato ML (2012) Ocorrência de espécies de Fusarium em colmos de milho. Thesis, Universidade Estadual de MaringáGoogle Scholar
  15. Costa Neto KP (1947) Parasitas de plantas cultivadas no Rio Grande do Sul. Porto Alegre. Secretaria de Estado dos Negócios da Agricultura, Indústria e ComércioGoogle Scholar
  16. Creppy EE (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127:19–28PubMedCrossRefGoogle Scholar
  17. de Kuppler AL, Steiner U, Sulyok M, Krska R, Oerke EC (2011) Genotyping and phenotyping of Fusarium graminearum isolates from Germany related to their mycotoxin biosynthesis. Int J Food Microbiol 151:78–86PubMedCrossRefGoogle Scholar
  18. Del Ponte EM, Fernandes JMC, Pavan W, Baethgen WE (2009) A model-based assessment of the impacts of climate variability on Fusarium head blight seasonal risk in southern Brazil. J Phytopathol 157:675–681CrossRefGoogle Scholar
  19. Del Ponte EM, Garda-Buffon J, Badiale-Furlong E (2012) Deoxynivalenol and nivalenol in commercial wheat grain related to Fusarium head blight epidemics in southern Brazil. Food Chem 132:1087–1091CrossRefGoogle Scholar
  20. Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Mol Biol Rev 57:595–604Google Scholar
  21. Faria CB, Almeida-Ferreira GC, Gagliardi KB, Alves TCA, Tessmann DJ, Machinski M Jr, Barbosa-Tessmann IP (2012) Use of the polymerase chain reaction for detection of Fusarium graminearum in bulgur wheat. Cien Tecn de Alim 32:201–208CrossRefGoogle Scholar
  22. Furlong EB, Soares LMV, Lasca CC, Kohara EY (1995) Mycotoxins and fungi in wheat harvested during 1990 in test plots in the state of Sao Paulo Brazil. Mycopathologia 131:185–190PubMedCrossRefGoogle Scholar
  23. Geraldo MRF, Tessmann DJ, Kemmelmeier C (2006) Production of mycotoxins by Fusarium graminearum isolated from small cereals affected with scab disease in Southern Brazil. Braz J Microbiol 37:58–63CrossRefGoogle Scholar
  24. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525PubMedCrossRefGoogle Scholar
  25. Goswami RS, Kistler HC (2005) Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95:1397–1404PubMedCrossRefGoogle Scholar
  26. Klix MB, Verreet J-A, Beyer M (2007) Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Prot 26:683–690CrossRefGoogle Scholar
  27. Kuhnem PR, Stumpf R, Spolti P, Del Ponte EM (2013) Características patogênicas de isolados do complexo Fusarium graminearum e de Fusarium verticillioides em sementes e plântulas de milho. Cienc Rural 43:583–588Google Scholar
  28. Lamprecht SC, Tewoldemedhin YT, Botha WJ, Calitz FJ (2011) Fusarium graminearum species complex associated with maize crowns and roots in the KwaZulu-Natal province of South Africa. Plant Dis 95:1153–1158CrossRefGoogle Scholar
  29. Lima MIPM, Sousa CNA, De Fernandes JMC (1998) Informações de cultivares de trigo de origem distintas quanto ao espigamento, ao florescimento e à reação a giberela. Fitopatol Bras 23:253Google Scholar
  30. Lima MIPM, Fernandes JMC, Picinini EC (2000) Avaliação da resistência a giberela em trigo. Fitopatol Bras 25:30–35Google Scholar
  31. Luzzardi GC, Wetzel MMVS, Pierobom CR (1972) Meio de cultura para multiplicação de Gibberella zeae (Schw.), Petch. Fusarium graminearum Schw., agente da giberela do trigo. Fitopatol Bras 5:182–183Google Scholar
  32. Luzzardi GC, Pierobom CR, Osório EA, Moreira JCS, Wetzel MMVS, Dias JC (1974) Melhoramento de trigo para resistência à giberela. In: Reunião Latino Americana de Trigo. Anais Porto Alegre, pp 117–121Google Scholar
  33. Martinelli JA, Bocchese CAC, Xie W, O’Donnell K, Kistler HC (2004) Soybean pod blight and root rot caused by lineages of the Fusarium graminearum and the production of mycotoxins. Fitopatol Bras 29:492–498CrossRefGoogle Scholar
  34. O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623PubMedCrossRefGoogle Scholar
  35. Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals-a review. Plant Pathol 44:207–238CrossRefGoogle Scholar
  36. Picinini EC, Fernandes JMC (1998) Avaliação de fungicidas no controle de giberela em trigo. Fitopatol Bras 23:270Google Scholar
  37. Pierobom CR, Prestes AM, Luzzardi GC, Flechtmann CHW, Caetano VR (1977) Ocorrência de Fusarium tricinctum associado com ácaro Tyrophagus, em trigo. In: Reunião Anual conjunta de Pesquisa de Trigo. Londrina, PR (Brazil)Google Scholar
  38. Quarta A, Mita G, Haidukowski M, Logrieco A, Mulè G, Viscontiet A (2006) Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes. FEMS Microbiol Lett 259:7–13PubMedCrossRefGoogle Scholar
  39. Reis EM (1986a) Caracterização da população de Fusarium graminearum ocorrente no sul do Brasil. Fitopatol Bras 11:527–533Google Scholar
  40. Reis EM (1986b) Metodologia para determinação de perdas causadas em trigo por Gibberella zeae. Fitopatol Bras 11:951–955Google Scholar
  41. Reis EM (1988) Doenças do trigo III – Giberela, 2ed. Passo Fundo, RS (Brazil)Google Scholar
  42. Reis EM (1990) Perithecial formation of Gibberella zeae on senescente stems of grasses under natural conditions. Fitopatol Bras 15:52–53Google Scholar
  43. Reis EM, Blum MMC, Casa RT, Medeiros CA (1996) Grain losses caused by the infection of wheat heads by Gibberella zeae in southern Brazil, from 1984 to 1994. Summa Phytopathol 22:134–137Google Scholar
  44. Reynoso MM, Ramirez ML, Torres AM, Chulze SN (2011) Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Int J Food Microbiol 45:444–448CrossRefGoogle Scholar
  45. Rivadenera M (2001) Variabilidade de Fusarium spp. agente etiológico de Gibberella em trigo e identificação de fontes de resistência à fusariose da espiga em trigos sintéticos. Dissertação (mestrado) Universidade de Passo Fundo, BrazilGoogle Scholar
  46. Sarver BAJ, Ward TJ, Gale LR, Karen B, Kistler HC, Takayuki A, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48:1096–1107PubMedCrossRefGoogle Scholar
  47. Schmale DG, Wood-Jones AK, Cowger C, Bergstrom GC, Arellano C (2011) Trichothecene genotypes of Gibberella zeae from winter wheat fields in the eastern USA. Plant Pathol 60:909–917CrossRefGoogle Scholar
  48. Scoz LB, Del Ponte EM, Astolfi P, Reartes DS, Schmale DG, Moraes MG (2009) Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathol 58:344–351CrossRefGoogle Scholar
  49. Shen CM, Hu YC, Sun HY, Li W, Guo JH, Chen HG (2012) Geographic distribution of trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat production areas of China. Plant Dis 96:1172–1178CrossRefGoogle Scholar
  50. Silva AR (1966) Melhoramento das variedades de trigo destinadas à diferentes regiões do Brasil. Estudos Técnicos 33 Ministério da Agricultura 82 pGoogle Scholar
  51. Silva CN (2011) Identificação molecular de espécies de Fusarium e genes preditivos de micotoxinas associadas a grãos de milho e trigo no centro sul do Brasil. Thesis Universidade Estadual de Maringá, BrazilGoogle Scholar
  52. Spolti P, Barros NC, Gomes LB, dos Santos J, Del Ponte EM (2012a) Phenotypic and pathogenic traits of two species of the Fusarium graminearum complex possessing either 15-ADON or NIV genotype. Eur J Plant Pathol 133:621–629CrossRefGoogle Scholar
  53. Spolti P, de Jorge BC, Del Ponte EM (2012b) Sensitivity of Fusarium graminearum causing head blight of wheat in Brazil to tebuconazole and metconazole fungicides. Trop Plant Pathol 37:419–423CrossRefGoogle Scholar
  54. Spolti P, Guerra DS, Badiale-Furlong E, Del Ponte EM (2013) Single and sequential applications of metconazole alone or in mixture with pyraclostrobin to improve Fusarium head blight control and wheat yield in Brazil. Trop Plant Pathol 38:85–96CrossRefGoogle Scholar
  55. Stumpf R (2011) Prevalência, perfil toxigênico e agressividade de espécies de Fusarium associados aos grãos de milho do Estado do Rio Grande do Sul. Thesis Universidade Federal do Rio Grande do Sul, BrazilGoogle Scholar
  56. Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 4:195–209CrossRefGoogle Scholar
  57. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32PubMedCrossRefGoogle Scholar
  58. Tessmann DJ, Silva CN, Gomes LB, Faria CB, Melo MP, Barbosa-Tessmann IP, Lima CS, Del Ponte (2011) EM Molecular survey of toxigenic Fusarium species affecting maize kernels. In: Ramirez ML, Barros GG, Chulze S (Org.) Book of abstracts of the Mycored Argentina ISM 2011 conference: strategies to reduce the impact of mycotoxins in Latin America in a global context. Universidade Nacional de Rio Cuarto, Rio Cuarto, 2011, p 198Google Scholar
  59. Wang JH, Ndoye M, Zhang JB, Li HP, Liao YC (2011) Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins 3:1020–1037PubMedCrossRefGoogle Scholar
  60. Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99:9278–9283PubMedCrossRefGoogle Scholar
  61. Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Geiser DM, Nowicki TW (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol 45:473–484PubMedCrossRefGoogle Scholar
  62. Yin Y, Liu X, Li B, Ma Z (2009) Characterization of steroldemethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99:487–497PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Emerson M. Del Ponte
    • 1
  • Dauri J. Tessmann
    • 2
  • Piérri Spolti
    • 1
  • Paulo R. Kuhnem
    • 1
  • Cleiltan N. da Silva
    • 2
  1. 1.Departamento de FitossanidadeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Departamento de AgronomiaUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations