Landslides in Sensitive Clays – From Geosciences to Risk Management

  • Jean-Sébastien L’Heureux
  • Ariane Locat
  • Serge Leroueil
  • Denis Demers
  • Jacques Locat
Part of the Advances in Natural and Technological Hazards Research book series (NTHR, volume 36)


Landslides in sensitive clays represent a major hazard in the northern countries of the world such as Canada, Finland, Norway, Russia, Sweden and in the US state of Alaska. Examples of catastrophic landslides in sensitive clays that impacted populations are numerous: e.g., Saint-Jean-Vianney in 1971 (Tavenas et al. 1971; Potvin et al. 2001), Rissa in 1979 (Gregersen 1981; L’Heureux et al. 2012), Finneidfjord in 1996 (Longva et al. 2003), Kattmarka in 2009 (Nordal et al. 2009) and St-Jude in 2010 (Locat et al. 2012). In order to respond to the societal demands, the scientific community has to expand its knowledge of landslide mechanisms in sensitive clay to assist authorities with state-of-the-art investigation techniques, hazard assessment methods, risk management schemes, mitigation measures and planning.


Shear Strength Slope Stability Electric Resistivity Tomography Progressive Failure Undrained Shear Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersen BG, Borns HW (1994) The ice age world. Scandinavian Univ. Press, Oslo, 208 ppGoogle Scholar
  2. Bergren B, Lindgren J (eds) (1983) Symposium on slopes on soft clays. Swedish Geotechnical Institute Report No. 17, Linkoping, pp 455–461Google Scholar
  3. Bernander S (2000) Progressive landslides in long natural slopes. MSc thesis, Luleå University of TechnologyGoogle Scholar
  4. Bernander S (2011) Progressive landslides in long natural slopes, formation, potential extension and configuration of finished slides in strain-softening soils. PhD thesis, Department of Civil and Mining Engineering, Luleå University of TechnologyGoogle Scholar
  5. Broms BB, Stål T (1980) Landslides in sensitive clays. In: Proceedings: international symposium on landslides, vol 2. New Delhi, pp 39–66, 7–11 April 1980Google Scholar
  6. Canadian Geotechnical Society (CGS) (2006) Canadian foundation engineering manual, 4th edn. c/o BiTech Publisher Ltd, Richmond, 506 pGoogle Scholar
  7. Canadian Geotechnical Society (CGS) (2013) Errata – Canadian foundation engineering manual, 4th edn.
  8. Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, special report 247, Transportation, Research Board, National Research Council, National Academy press, Washington, DC, pp 37–75Google Scholar
  9. Gadd NR (1988) The basin, the ice, the Champlain Sea. The late quaternary development of the Champlain Sea basin. GAC special paper 35. Edited by Gadd NR. Geological Association of Canada. Ottawa, Ont. pp 15–24Google Scholar
  10. Gregersen O (1981) The quick clay landslide in Rissa, Norway. NGI Publication, vol 135, pp 1–6Google Scholar
  11. Gylland AS (2012) Material and slope failure in sensitive clays. PhD thesis, The Norwegian University of Sciences and TechnologyGoogle Scholar
  12. Jabeyedoff M, Demers D, Locat J, Locat A, Locat P, Oppikofer T, Robitaille D, Turmel D (2009) Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Can Geotech J 46:1379–1390CrossRefGoogle Scholar
  13. Johansson J, Løvolt F, Andersen KH, Madshus C, Aabøe R (2013) Impact of blast vibrations on the release of quick clay slides. In: Proceedings of the 18th ICSMGE, ParisGoogle Scholar
  14. Karlsrud K, Aas G, Gregersen O (1984) Can we predict landslide hazards in soft sensitive clays? Summary of Norwegian practice and experiences. In: Proceedings of the 4th international symposium on landslides, Toronto, vol 1, 16–21 September 1984. University of Toronto Press, Toronto, pp 107–130Google Scholar
  15. Karlsson R, Hansbo S (1989) Soil classification and identification. Byggforskningsrådet. Dokument D8:1989. StockholmGoogle Scholar
  16. L’Heureux JS (2012) A study of the retrogressive behaviour and mobility of Norwegian quick clay landslides. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes – protecting society through improved understanding, vol 1. CRC Press, London, UK, pp 981–988Google Scholar
  17. L’Heureux JS, Eilertsen RS, Glimstad S, Issler D, Solberg I, Harbitz CB (2012) The 1978 quick clay landslide at Rissa, mid-Norway: subaqueous morphology and tsunami simulations. In: Yamada Y et al (eds) Sub-marine mass movements and their consequences, vol 31, Advances in natural and technological hazards research. Springer, Dordrecht, pp 507–516CrossRefGoogle Scholar
  18. Le Bihan JP, Leroueil S (1981) The fall cone and the behaviour of remoulded clay. Terratech Ltd. Research Report, MontrealGoogle Scholar
  19. Lebuis J, Robert JM, Rissmann P (1983) Regional mapping of landslide hazard in Quebec. In: Proceedings of the symposium on slopes on soft clays. Swedish Geotechnical Institute report no. 17, Linköping, Sweden, pp 205–262Google Scholar
  20. Lefebvre G (1981) Fourth Canadian geotechnical colloquium: strength and slope stability in Canadian soft clay deposits. Can Geotech J 18(3):420–442CrossRefGoogle Scholar
  21. Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Géotechnique 51(3):197–243CrossRefGoogle Scholar
  22. Leroueil S, Vaunat J, Picarelli L, Locat J, Faure R, Lee H (1996) A geotechnical characterisation of slope movements. In: Senneset K (ed) Proceedings of the 7th international symposium on landslides, Trondheim, 1. Balkema, Rotterdam, pp 53–74Google Scholar
  23. Lo KY (1972) An approach to the problem of progressive failure. Can Geotech J 9(4):407–429CrossRefGoogle Scholar
  24. Lo KY, Lee CF (1973) Analysis of progressive failure in clay slopes. In: Proceedings of the 8th international conference on soil mechanic and foundation engineering, vol 1, Moscow, August 1973. ICSMFE Publications, USSR, pp 251–258Google Scholar
  25. Locat J (1995) On the development of microstructure in a collapsible soils. NATO workshop. In: Derbyshire E et al (eds) Genesis and properties of collapsible soils. Kluwer Academic Publishers, Dordrecht, pp 93–128CrossRefGoogle Scholar
  26. Locat J (1997) Normalized rheological behaviour of fine muds and their flow properties in a pseudoplastic regime. In: Chen CH (ed) Debris-flow hazards mitigation: mechanics, prediction, and assessment. ASCE, New York, pp 260–269Google Scholar
  27. Locat A (2012) Rupture progressive et étalements dans les argiles sensibles. PhD thesis, Université LavalGoogle Scholar
  28. Locat J, Demers D (1988) Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays. Can Geotech J 25:799–806CrossRefGoogle Scholar
  29. Locat J, Tanaka H, Tan TS, Dasari GR, Lee H (2003) Natural soils: geotechnical behavior and geological knowledge. In: Characterisation and engineering properties of natural soils, vol 1 (Proc. Singapore Workshop), Balkema, Swets and Zeitlinger, Lisse, pp 3–28Google Scholar
  30. Locat P, Leroueil S, Locat J (2008) Remaniement et mobilité des débris de glissements de terrain dans les argiles sensible de l’est du Canada. In: Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, Québec, pp 97–106Google Scholar
  31. Locat A, Leroueil S, Bernander S, Demers D, Jostad HP, Ouehb L (2011) Progressive failures in Eastern Canadian and Scandinavian sensitive clays. Can Geotech J 48(11):1696–1712CrossRefGoogle Scholar
  32. Locat P, Demers D, Robitaille D, Fournier T, Noël F, Leroueil S, Locat A, Lefebvre G (2012) The Saint-Jude landslide of May 10, 2012, Québec, Canada. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes – protecting society through improved understanding, vol 1. CRC Press, London, UK, pp 635–640Google Scholar
  33. Long M, Donohue S (2007) In situ shear wave velocity from multichannel analysis of surface waves (MASW) tests at eight Norwegian research sites. Can Geotech J 44:533–544CrossRefGoogle Scholar
  34. Long M, Donohue S (2010) Characterization of Norwegian marine clay with combined shear wave velocity and piezocone cone penetration test (CPTU) data. Can Geotech J 47:709–718CrossRefGoogle Scholar
  35. Long M, Donohue S, L’Heureux JS, Solberg IL, Rønning JS, Limacher R, O’Connor P, Sauvin G, Rømoen M, Lecomte I (2012) Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Can Geotech J 49(10):1158–1168CrossRefGoogle Scholar
  36. Longva O, Janbu N, Blikra LH, Boe R (2003) The 1996 Finneidfjord slide: seafloor failure and slide dynamics. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Kluwer, Dordrecht, pp 531–538CrossRefGoogle Scholar
  37. Lundström K, Andersson M (2008) Hazard mapping of landslides, a comparison of three overview mapping methods in fine-grained soils. In: J Locat, D Perret, D Turmel, D Demers, S Leroueil (eds) Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, QuébecGoogle Scholar
  38. Mitchell RJ, Markell AR (1974) Flowsliding in sensitive soils. Can Geotech J 11:11–31CrossRefGoogle Scholar
  39. Nordal S, Alén C, Emdal A, Jendeby L, Lyche E, Madshus C (2009) Skredet i Kattmarkvegen i Namsos 13. mars 2009 – Rapport fra undersøkelsesgruppe satt ned av Samferdselsdepartementet. Tapir Uttrykk, Trondheim (In Norwegian)Google Scholar
  40. Norsk Geoteknisk Forening (NGF) (1974) Retningslinjer for presentasjon av geotekniske undersøkelser. Oslo, 16 p (In Norwegian)Google Scholar
  41. Perret D, Mompin R, Bossé F, Demers D (2011) Stop 2-5B: the Binette road earth flow induced by the June 23rd, 2010 Val-des-Bois earthquake. In: Russell HAJ, Brooks GR, Cummins DI (eds) Deglacial history of the Champlain Sea basin and implications for urbanization. Joint annual meeting GAC-MAC-SEG-SGA, Ottawa, Ontario, May 25–27, 2011, Field Guide Book, pp 72–74. Geological Survey of Canada, Open File 6947Google Scholar
  42. Potvin J, Pellerin F, Demers D, Robitaille D, La Rochelle P, Chagnon J-Y (2001) Revue et investigation supplémentaire du site du glissement de Saint-Jean-Vianney. Paper presented at the 54th Canadian geotechnical conference, Calgary, vol 2, pp 792–800Google Scholar
  43. Quigley RM (1980) Geology, mineralogy and geochemistry of Canadian soft soils: a geotechnical perspective. Can Geotech J 17:261–285CrossRefGoogle Scholar
  44. Quinn PE, Diederichs MS, Rowe RK, Hutchinson DJ (2011) A new model for large landslides in sensitive clay using a fracture mechanism approach. Can Geotech J 48(8):1151–1162CrossRefGoogle Scholar
  45. Robitaille D, Demers D, Potvin J, Pellerin F (2002) Mapping of landslide-prone areas in the Saguenay region, Québec, Canada. In: Proceedings of the international conference on instability – planning and management, Ventnor, Isle of Wight, UK, pp 161–168Google Scholar
  46. Rosenqvist IT (1953) Consideration on the sensitivity of Norwegian quick-clays. Geotechnique 3:195–200CrossRefGoogle Scholar
  47. Tavenas F (1984) Landslides in Canadian sensitive clays – a state of the art. In: Proceedings of the 4th international symposium on landslides. Canadian Geotechnical Society, vol 1, pp 141–153Google Scholar
  48. Tavenas F, Chagnon JY, La Rochelle P (1971) The Saint-Jean-Vianney landslide: observations and eyewitnesses accounts. Can Geotech J 8:463–478CrossRefGoogle Scholar
  49. Tavenas F, Flon P, Leroueil S, Lebuis J (1983) Remoulding energy and risk of slide retrogression in sensitive clays. In: Proceedings of the symposium on slopes on soft clays, Linköping, Sweden. Swedish Geotechnical Institute, SGI report no. 17, pp 423–454Google Scholar
  50. Thakur V, Degago S (2012) Quickness of sensitive clays. Geotech Lett 2:81–88Google Scholar
  51. Torrance JK (1975) On the role of chemistry in the development and behaviour of the sensitive marine clays of Canada and Scandinavia. Can Geotech J 12:326–335CrossRefGoogle Scholar
  52. Torrance JK (1983) Towards a general model of quick clay development. Sedimentology 30:547–555CrossRefGoogle Scholar
  53. Torrance JK (2012) Landslides in quick clay. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, CambridgeGoogle Scholar
  54. Torrance JK, Ohtsubo M (1995) Ariake bay quick clays: a comparison with the general model. Soils Found 35:11–19CrossRefGoogle Scholar
  55. Vaunat J, Leroueil S (2002) Analysis of post-failure slope movements within the framework of hazard and risk analysis. Nat Hazards 26:83–102CrossRefGoogle Scholar
  56. Viberg L (1984) Landslide risk mapping in soft clays in Scandinavia and Canada. In: Proceedings of the 4th international symposium on landslides, vol 1, TorontoGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jean-Sébastien L’Heureux
    • 1
  • Ariane Locat
    • 2
  • Serge Leroueil
    • 2
  • Denis Demers
    • 3
  • Jacques Locat
    • 4
  1. 1.Norwegian Geotechnical Institute (NGI)TrondheimNorway
  2. 2.Department of Civil Engineering and Water EngineeringLaval UniversityQuébec CityCanada
  3. 3.Service de la Géotechnique et de la géologie (Geotechnique and Geology Branch)Ministère des Transports du Québec (MTQ)Québec CityCanada
  4. 4.Laboratoire d’études sur les risques naturels, Department of Geology and Geological EngineeringLaval UniversityQuébec CityCanada

Personalised recommendations