Skip to main content

Eucalyptus Breeding for Clonal Forestry

Part of the Forestry Sciences book series (FOSC,volume 81)

Abstract

As global demand for wood increases, planted forests will also become increasingly important. Accepting and promoting them as the only way to address the wood scarcity problem and also to help suppress the demand for illegally logged timber from natural forests is a major issue globally. Eucalypt clonal forestry is proving to be an iconic alternative in this context, due to their fast growth, wood quality appropriate to many different uses, huge existing variability, and suitability to vegetative propagation. However, efficient breeding and deployment strategies are essential. The present chapter aims to present, based on the authors’ practical experience, an overview on the most successful approaches that may be used during the different phases of eucalypt breeding programs for clonal forestry. Relevant topics covered are: identifying breeding objectives and related traits for the main eucalypt businesses worldwide; the major planted species and their value for different objectives; breeding strategies (recurrent selection methods, breeding cycle, etc.); recombination issues, such as effective population size, mating designs and controlled pollination methods; evaluation and selection procedures as applied to progeny and clonal trials; and deployment aspects, such as number of commercial clones, large scale vegetative propagation methods, and risk management.

Keywords

  • Basic Density
  • Wood Quality
  • Breeding Cycle
  • Progeny Trial
  • Reciprocal Recurrent Selection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-7076-8_16
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-7076-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • ABRAF (2011) Anuário estatístico da ABRAF 2011, ano base 2010. ABRAF, Brasília, Brazil, p 130

    Google Scholar 

  • Alfenas AC, Jeng R, Hubbes M (1983) Virulence of Cryphonectria cubensis on Eucalyptus species differing in resistance. Eur J For Pathol 13:197–205

    CrossRef  Google Scholar 

  • Alfenas AC, Zauza EAV, Mafia RG, Assis TF (2009) Clonagem e doenças do eucalipto, 2nd edn. UFV, Brazil, p 500

    Google Scholar 

  • Apiolaza LA (2009) Very early selection for solid wood quality: screening for early winners. Ann For Sci 66:6

    CrossRef  Google Scholar 

  • Araujo JA, Borralho NMG, Dehon G (2012) The importance and type of non-additive genetic effects for growth in Eucalyptus globulus. Tree Genet Genomes 8:327–337

    CrossRef  Google Scholar 

  • Assis TF (2000) Production and use of Eucalyptus hybrids for industrial purposes. In: Dungey HS, Dieters MJ. Nikles DG (eds) Hybrid breeding and genetics of forest trees: proceedings of QFRI/CRCSPF symposium, Australia, pp 63–74

    Google Scholar 

  • Assis TF (2011) Hybrids and mini-cutting: a powerful combination that has revolutionized the Eucalyptus clonal forestry. BMC Proc 5:I18

    CrossRef  Google Scholar 

  • Assis TF, Resende MDV (2011) Genetic improvement of forest tree species. Crop Breed Appl Biotechnol 11:44–49

    CrossRef  Google Scholar 

  • Assis TF, Warburton P, Harwood C (2005) Artificially induced protogyny: an advance in the controlled pollination of Eucalyptus. Aust For 68:27–33

    CrossRef  Google Scholar 

  • Bishir J, Roberds JH (1999) On numbers of clones needed for managing risks in clonal forestry. For Genet 6(3):149–155

    Google Scholar 

  • Bison O, Ramalho MAP, Rezende GDSP, Aguiar AM, Resende MDV (2007) Combining ability of elite clones of Eucalyptus grandis and Eucalyptus urophylla with Eucalyptus globulus. Genet Mol Biol 30:417–422

    CrossRef  Google Scholar 

  • Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, McDonald MW, Turner JD (2006) Forest trees of Australia, 5th edn. CSIRO, Australia, 736 pp

    Google Scholar 

  • Borralho NMG, Almeida MH, Potts BM (2008) O melhoramento do eucalipto em Portugal. In: Alves AM, Pereira JS, Silva JMN (eds) Impactes ambientais do eucaliptal em Portugal. ISAPress, Portugal, pp 61–110

    Google Scholar 

  • Borralho NMG, Cotterill PP, Kanowski PJ (1992) Genetic control of growth of Eucalyptus globulus in Portugal. II. Efficiencies of early selection. Silvae Genet 41(2):70–77

    Google Scholar 

  • Borralho NMG, Cotterill PP, Kanowski PJ (1993) Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Can J For Res 23:648–656

    CrossRef  Google Scholar 

  • Bouvet JM, Saya A, Vigneron PH (2009) Trends in additive, dominance and environmental effects with age for growth traits in Eucalyptus hybrid populations. Euphytica 165:35–54

    CrossRef  Google Scholar 

  • Buksnowitz C, Muller U, Evans R, Teischinger A, Grabner M (2008) The potential of SilviScan’s X-ray diffractometry method for the rapid assessment of spiral grain in softwood, evaluated by goniometric measurements. Wood Sci Technol 42:95–102

    CrossRef  CAS  Google Scholar 

  • Comstock RE (1996) Quantitative genetics with special reference to plant and animal breeding. Iowa State University Press, USA, p 421

    Google Scholar 

  • Costa e Silva J, Borralho N, Araújo J, Vaillancourt R, Potts B (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genet Genomes 5:291–305

    CrossRef  Google Scholar 

  • Costa e Silva J, Potts B, Dutkowski GW (2006) Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genet Genomes 2:61–75

    CrossRef  Google Scholar 

  • Downes GM, Hudson IL, Raymond CA, Dean GH, Michell AJ, Schimleck LR, Evans R, Muneri A (1997) Sampling plantation eucalypts for wood and fibre properties. CSIRO, Australia, 144 pp

    Google Scholar 

  • Drew DM, Downes GM, Evans R (2011) Short-term growth responses and associated wood density fluctuations in variously irrigated Eucalyptus globulus. Trees 25:153–161

    CrossRef  Google Scholar 

  • Drew DM, Downes GM, O’Grady AP, Read J, Worledge D (2009) High resolution temporal variation in wood properties in irrigated and non-irrigated Eucalyptus globulus. Ann For Sci 66:406

    CrossRef  Google Scholar 

  • Eldridge K, Davidson J, Hardwood C, van Wyk G (1993) Eucalypt domestication and breeding. Clarendon, UK, p 288

    Google Scholar 

  • FAO (2010) Global forest resources assessment, 2010 – main report. FAO, Rome, Italy, p 378

    Google Scholar 

  • FAO (2011) State of the world’s forests, 2011. FAO, Rome, Italy, p 179

    Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forestry and a role for biotechnology. Trends Biotechnol 20(7):291–296

    PubMed  CrossRef  CAS  Google Scholar 

  • Fonseca SM, Resende MDV, Alfenas AC, Guimarães LMS, Assis TF, Grattapaglia D (2010) Manual prático de melhoramento genetico de eucalipto. UFV, Brazil, 192 pp

    Google Scholar 

  • Gilmour AR, Cullis BR, Welham SJ, Thompson R (2002) ASReml reference manual. Release 1.0. 2 ed. Harpenden: Biomathematics and Statistics Department – Rothamsted Research, UK, p 187

    Google Scholar 

  • Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    PubMed  CrossRef  CAS  Google Scholar 

  • Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12:148–156

    PubMed  CrossRef  CAS  Google Scholar 

  • Grattapaglia D, Resende MDR (2011) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255

    CrossRef  Google Scholar 

  • Grattapaglia D, Ribeiro VJ, Rezende GDSP (2004) Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus. Theor Appl Genet 109(1):192–199

    PubMed  CrossRef  CAS  Google Scholar 

  • Grattapaglia D, Vaillancourt R, Shepherd M, Thumma B, Foley W, Külheim C, Potts B, Myburg A (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 1–46. doi:10.1007

    Google Scholar 

  • Greaves BL, Borralho NMG (1996) The influence of basic density and pulp yield on the cost of eucalypt Kraft pulping: a theoretical model for tree breeding. Appita J 49:90–95

    CAS  Google Scholar 

  • Griffin AR, Burgess IP, Wolf L (1988) Patterns of natural and manipulated hybridisation in the genus Eucalyptus L’Herit – a review. Aust J Bot 36:41–66

    CrossRef  Google Scholar 

  • Griffin AR, Whiteman P, Rudge T, Burgess IP, Moncur M (1993) Effect of paclobutrazol on flower-Bud production and vegetative growth in 2 species of Eucalyptus. Can J For Res 23:640–647

    CrossRef  CAS  Google Scholar 

  • Harbard JL, Griffin R, Espejo JE, Centurion C, Russel J (2000) “One stop pollination”: a new technology developed by Shell Forestry technology unit. In: Dungey HS, Dieters MJ. Nikles DG (eds) Hybrid Breeding and Genetics of Forest Trees: Proceedings of QFRI/CRCSPF Symposium, Department of Primary Industries, Brisbane, Australia, pp 430–434

    Google Scholar 

  • Hasan O, Reid JB (1995) Reduction of generation time in Eucalyptus globulus. Plant Growth Regul 17:53–60

    CAS  Google Scholar 

  • Henderson CR (1984) Aplications of linear models in animal breeding. University of Guelph, Canada, p 462

    Google Scholar 

  • Kerr RJ, Dieters MJ, Tier B (2004) Simulation of the comparative gains from four hybrid tree breeding strategies. Can J For Res 34(1):209–220

    CrossRef  Google Scholar 

  • Li Y, Dutkowski GW, Apiolaza LA, Pilbeam D, Costa e Silva J, Potts BM (2007) The genetic architecture of a Eucalyptus globulus full-sib breeding population in Australia. For Genet 12(3):167–179

    Google Scholar 

  • Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA, USA, p 980

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Moncur MW, Hasan O (1994) Floral induction in Eucalyptus nitens. Tree Physiol 14:1303–1312

    PubMed  CrossRef  Google Scholar 

  • Myburg AA, Potts BM, Marques CM, Kirst M, Gion JM, Grattapaglia D, Grima-Pettenati J (2007) Eucalyptus. In: Genome mapping and molecular breeding in plants. Springer, USA, pp 115–160

    Google Scholar 

  • Namkoong G, Kang HC, Brouard JS (1988) Tree breeding: principles and strategies. Springer, USA, p 180

    CrossRef  Google Scholar 

  • Osorio LF (1999) Estimation of genetic parameters, optimal test designs and prediction of the genetic merit of clonal and seedling material of Eucalyptus grandis. School of Forest Resources and Conservation, University of Florida, Gainesville

    Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    CrossRef  Google Scholar 

  • Potts BM (2004) Genetic improvement of eucalypts. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest science. Elsevier Science, UK, pp 1480–1490

    CrossRef  Google Scholar 

  • Potts BM, Dungey HS (2004) Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists. New For 27(2):115–138

    CrossRef  Google Scholar 

  • Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–553

    CrossRef  Google Scholar 

  • Raymond CA, Apiolaza LA (2004) Incorporating wood quality and deployment traits in Eucalyptus globulus and Eucalyptus nitens. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, India, pp 87–99

    Google Scholar 

  • Raymond CA, Schimleck LR (2002) Development of near infrared reflectance analysis calibrations for estimating genetic parameters for cellulose content in Eucalyptus globulus. Can J For Res 32:170–176

    CrossRef  Google Scholar 

  • Reis CAF, Gonçalves FMA, Rosse LN, Costa RRGF, Ramalho MAP (2011) Correspondence between performance of Eucalyptus spp. Trees selected from family and clonal tests. Genet Mol Res 10(2):1172–1179

    PubMed  CrossRef  CAS  Google Scholar 

  • Resende KFM, Santos FMC, Dias MAD, Ramalho MAP (2011) Implication of the changing concept of genes on plant breeder’s work. Crop Breed Appl Biotechnol 11(4):345–351

    Google Scholar 

  • Resende MDV, Assis TF (2008) Seleção recorrente recíproca entre populações sintéticas multi-espécies (SRR-PSME) de eucalipto. Pesqui Florest Bras 57:57–60

    Google Scholar 

  • Resende MDV, Barbosa MHP (2005) Melhoramento genético de plantas de propagação assexuada. Embrapa Florestas, Brazil, p 130

    Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    PubMed  CrossRef  Google Scholar 

  • Resende MDV, Striger JK, Cullis BC, Thompson R (2005) Joint modeling of competition and spatial variability in forest field trials. Braz J Math Stat 23(2):7–22

    Google Scholar 

  • Resende MDV, Thompson R (2004) Factor analytic multiplicative mixed models in the analysis of multiple experiments. Braz J Math Stat 22(2):31–52

    Google Scholar 

  • Rezende GDSP, de Bertolucci F LG, Ramalho MAP (1994) Eficiência da seleção precoce na recomendação de clones de eucalipto avaliados no Norte do espírito Santo e sul da Bahia. Cerne 1(1):45–50

    Google Scholar 

  • Rezende GDSP, Resende MDV (2000) Dominance effects in Eucalyptus grandis, Eucalyptus urophylla and hybrids. In: Dungey HS, Dieters MJ, Nikles DG (eds) Hybrid Breeding and Genetics of Forest Trees: Proceedings of QFRI/CRCSPF Symposium, Department of Primary Industries, Brisbane, Australia, pp 93–100

    Google Scholar 

  • Rezende GDSP, Resende MDV (2001) Genotypic evaluation and genotype x environment interaction in Eucalyptus clones selection at Aracruz Celulose S.A., Brazil. In: Developing the Eucalypt of the Future: Proceedings of Iufro International Symposium, Instituto Forestal, Valdivia, Chile, pp 69–81.

    Google Scholar 

  • Schimleck LR, Rezende GDSP, Demuner BJ, Downes GM (2006) Estimation of whole-tree wood quality traits using near infrared spectra from increment cores. Appita J 59(3):231–236

    CAS  Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, USA, p 528

    CrossRef  Google Scholar 

  • Stackpole DJ, Vaillancourt RE, Aguigar M, Potts BM (2010) Age trends in genetic parameters for growth and wood density in Eucalyptus globulus. Tree Genet Genomes 6:179–193

    CrossRef  Google Scholar 

  • van Heerden SW, Amerson HV, Preisig O, Wingfield BD, Wingfield MJ (2005) Relative pathogenicity of cryphonectria cubensis on Eucalyptus clones differing in their resistance to C-cubensis. Plant Dis 89:659–662

    CrossRef  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI, USA, p 682

    CrossRef  Google Scholar 

  • White TL, Hodge G (1989) Predicting breeding values with application in forest tree improvement. Kluwer, UK, p 367

    CrossRef  Google Scholar 

  • Wu Y, Wang SQ, Zhou DG, Xing C, Zhang Y (2009) Use of nanoindentation and silviscan to determine the mechanical properties of 10 hardwood species. Wood Fiber Sci 41:64–73

    CAS  Google Scholar 

  • Wynne RH, Nelson RF (2006) SilviScan special issue – lidar applications in forest assessment and inventory - foreword. Photogramm Eng Remote Sens 72:1337–1338

    Google Scholar 

  • Yang JL, Bailleres H, Evans R, Downes G (2006) Evaluating growth strain of Eucalyptus globulus labill. From SilviScan measurements. Holzforschung 60:574–579

    CrossRef  CAS  Google Scholar 

  • Zobel B, Talbert J (2003) Applied forest tree improvement, 3rd edn. Blackburn Press, Caldwell, NJ, USA, p 505

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Magno Antônio Patto Ramalho (UFLA - Federal University of Lavras, Brazil) and Dr. Dario Grattapaglia (Embrapa - Brazilian Agricultural Research Corporation) for their helpful comments on this manuscript.

The authors also acknowledge the Companies Veracel (Brazil) and Portucel Group (Portugal), for making available Figs. 1 and 5 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Dehon S. P. Rezende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rezende, G.D.S.P., de Resende, M.D.V., de Assis, T.F. (2014). Eucalyptus Breeding for Clonal Forestry. In: Fenning, T. (eds) Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_16

Download citation