Rational Design of Artificial Cellular Niches for Tissue Engineering

  • Ana Sancho
  • Javier Aldazabal
  • Alberto Rainer
  • Elena M. De-Juan-Pardo
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 31)


Tissue Engineering is a promising emerging field that studies the intrinsic regenerative potential of the human body and uses it to restore functionality of damaged organs or tissues unable of self-healing due to illness or ageing. In order to achieve regeneration using Tissue Engineering strategies, it is first necessary to study the properties of the native tissue and determine the cause of tissue failure; second, to identify an optimum population of cells capable of restoring its functionality; and third, to design and manufacture a cellular microenvironment in which those specific cells are directed towards the desired cellular functions. The design of the artificial cellular niche has a tremendous importance, because cells will feel and respond to both its biochemical and biophysical properties very differently. In particular, the artificial niche will act as a physical scaffold for the cells, allowing their three-dimensional spatial organization; also, it will provide mechanical stability to the artificial construct; and finally, it will supply biochemical and mechanical cues to control cellular growth, migration, differentiation and synthesis of natural extracellular matrix. During the last decades, many scientists have made great contributions to the field of Tissue Engineering. Even though this research has frequently been accompanied by vast investments during extended periods of time, yet too often these efforts have not been enough to translate the advances into new clinical therapies. More and more scientists in this field are aware of the need of rational experimental designs before carrying out complex, expensive and time-consuming in vitro and in vivo trials. This review highlights the importance of computer modeling and novel biofabrication techniques as critical key players for a rational design of artificial cellular niches in Tissue Engineering.


Additive Manufacturing Tissue Engineer Electrospun Fiber Soft Lithography Fibrous Scaffold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200. doi: 10.1242/jcs.023820 CrossRefGoogle Scholar
  2. 2.
    Oh J, Recknor JB, Recknor JC, Mallapragada SK, Sakaguchi DS (2009) Soluble factors from neocortical astrocytes enhance neuronal differentiation of neural progenitor cells from adult rat hippocampus on micropatterned polymer substrates. J Biomed Mater Res, Part A 91:575–585. doi: 10.1002/jbm.a.32242 CrossRefGoogle Scholar
  3. 3.
    Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300. doi: 10.1126/science.1131000 CrossRefGoogle Scholar
  4. 4.
    Mori H, Gjorevski N, Inman JL, Bissell MJ, Nelson CM (2009) Self-organization of engineered epithelial tubules by differential cellular motility. Proc Natl Acad Sci USA 106:14890–14895. doi: 10.1073/pnas.0901269106 CrossRefGoogle Scholar
  5. 5.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi: 10.1126/science.1116995 CrossRefGoogle Scholar
  6. 6.
    Sarkar P, Rao BM (2009) Molecular aspects of cardiac differentiation in embryonic stem cells. Crit Rev Biomed Eng 37:283–320. doi: 00f1eff12a65576b CrossRefGoogle Scholar
  7. 7.
    Leong WS, Tay CY, Yu H, Li A, Wu SC, Duc DH, Lim CT, Tan LP (2010) Thickness sensing of hMSCs on collagen gel directs stem cell fate. Biochem Biophys Res Commun 401:287–292. doi: 10.1016/j.bbrc.2010.09.052 CrossRefGoogle Scholar
  8. 8.
    Reilly GC, Engler AJ (2010) Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 43:55–62. doi: 10.1016/j.jbiomech.2009.09.009 CrossRefGoogle Scholar
  9. 9.
    Gang Z, Qi Q, Jing C, Wang C (2009) Measuring microenvironment mechanical stress of rat liver during diethylnitrosamine induced hepatocarcinogenesis by atomic force microscope. Microsc Res Tech 72:672–678. doi: 10.1002/jemt.20716 CrossRefGoogle Scholar
  10. 10.
    Dulinska I, Targosz M, Strojny W, Lekka M, Czuba P, Balwierz W, Szymonski M (2006) Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods 66:1–11. doi: 10.1016/j.jbbm.2005.11.003 CrossRefGoogle Scholar
  11. 11.
    Klein TJ, Malda J, Sah RL, Hutmacher DW (2009) Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng, Part B Rev 15:143–157. doi: 10.1089/ten.TEB.2008.0563 CrossRefGoogle Scholar
  12. 12.
    Vinatier C, Guicheux J, Daculsi G, Layrolle P, Weiss P (2006) Cartilage and bone tissue engineering using hydrogels. Biomed Mater Eng 16:S107–S113 Google Scholar
  13. 13.
    Balakumaran A, Robey PG, Fedarko N, Landgren O (2010) Bone marrow microenvironment in myelomagenesis: its potential role in early diagnosis. Expert Rev Mol Diagn 10:465–480. doi: 10.1586/erm.10.31 CrossRefGoogle Scholar
  14. 14.
    Schmeichel KL, Weaver VM, Bissell MJ (1998) Structural cues from the tissue microenvironment are essential determinants of the human mammary epithelial cell phenotype. J Mammary Gland Biol Neoplasia 3:201–213 CrossRefGoogle Scholar
  15. 15.
    Leibovici J, Itzhaki O, Huszar M, Sinai J (2011) The tumor microenvironment: Part 1. Immunotherapy 3:1367–1384. doi: 10.2217/imt.11.111 CrossRefGoogle Scholar
  16. 16.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York Google Scholar
  17. 17.
    Raspanti M, Protasoni M, Manelli A, Guizzardi S, Mantovani V, Sala A (2006) The extracellular matrix of the human aortic wall: ultrastructural observations by FEG-SEM and by tapping-mode AFM. Micron 37:81–86. doi: 10.1016/j.micron.2005.06.002 CrossRefGoogle Scholar
  18. 18.
    Oyen ML, Cook RF (2009) A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater 2:396–407. doi: 10.1016/j.jmbbm.2008.10.002 CrossRefGoogle Scholar
  19. 19.
    Lekka M, Gil D, Pogoda K, Dulinska-Litewka J, Jach R, Gostek J, Klymenko O, Prauzner-Bechcicki S, Stachura Z, Wiltowska-Zuber J, Okon K, Laidler P (2012) Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys 518:151–156. doi: 10.1016/j.abb.2011.12.013 CrossRefGoogle Scholar
  20. 20.
    Watanabe T, Kuramochi H, Takahashi A, Imai K, Katsuta N, Nakayama T, Fujiki H, Suganuma M (2012) Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells. J Cancer Res Clin Oncol. doi: 10.1007/s00432-012-1159-5 Google Scholar
  21. 21.
    Filas BA, Bayly PV, Taber LA (2011) Mechanical stress as a regulator of cytoskeletal contractility and nuclear shape in embryonic epithelia. Ann Biomed Eng 39:443–454. doi: 10.1007/s10439-010-0171-7 CrossRefGoogle Scholar
  22. 22.
    Butcher A, Milner R, Ellis K, Watson JT, Horner A (2009) Interaction of platelet-rich concentrate with bone graft materials: an in vitro study. J Orthop Trauma 23:195–200; discussion 201–192. doi: 10.1097/BOT.0b013e31819b35db CrossRefGoogle Scholar
  23. 23.
    Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438. doi: 10.1016/j.actbio.2007.04.002 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Guo WH, Frey MT, Burnham NA, Wang YL (2006) Substrate rigidity regulates the formation and maintenance of tissues. Biophys J 90:2213–2220. doi: 10.1529/biophysj.105.070144 CrossRefGoogle Scholar
  25. 25.
    Baker EL, Lu J, Yu D, Bonnecaze RT, Zaman MH (2010) Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential. Biophys J 99:2048–2057. doi: 10.1016/j.bpj.2010.07.051 CrossRefGoogle Scholar
  26. 26.
    Ulrich TA, de Juan-Pardo EM, Kumar S (2009) The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res 69:4167–4174. doi: 10.1158/0008-5472.can-08-4859 CrossRefGoogle Scholar
  27. 27.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi: 10.1016/j.cell.2006.06.044 CrossRefGoogle Scholar
  28. 28.
    Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121:3794–3802. doi: 10.1242/jcs.029678 CrossRefGoogle Scholar
  29. 29.
    Titushkin I, Cho M (2007) Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J 93:3693–3702. doi: 10.1529/biophysj.107.107797 CrossRefGoogle Scholar
  30. 30.
    Collinsworth AM, Zhang S, Kraus WE, Truskey GA (2002) Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol, Cell Physiol 283:C1219–1227. doi: 10.1152/ajpcell.00502.2001 CrossRefGoogle Scholar
  31. 31.
    Bratt-Leal AM, Carpenedo RL, McDevitt TC (2009) Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog 25:43–51. doi: 10.1002/btpr.139 CrossRefGoogle Scholar
  32. 32.
    Reese BE, Zheng S, Evans B, Datar RH, Thundat T, Lin HK (2010) Microfluidic device for studying tumor cell extravasation in cancer metastasis. In: Biomedical sciences and engineering conference (BSEC), 25–26 May 2010, pp 1–4. doi: 10.1109/bsec.2010.5510818 Google Scholar
  33. 33.
    Webster A, Dyer CE, Haswell SJ, Greenman J (2010) A microfluidic device for tissue biopsy culture and interrogation. Anal Methods 2:1005–1007. doi: 10.1039/C0AY00293C CrossRefGoogle Scholar
  34. 34.
    Nie FQ, Yamada M, Kobayashi J, Yamato M, Kikuchi A, Okano T (2007) On-chip cell migration assay using microfluidic channels. Biomaterials 28:4017–4022. doi: 10.1016/j.biomaterials.2007.05.037 CrossRefGoogle Scholar
  35. 35.
    Saadi W, Wang SJ, Lin F, Jeon NL (2006) A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis. Biomed Microdevices 8:109–118. doi: 10.1007/s10544-006-7706-6 CrossRefGoogle Scholar
  36. 36.
    Cheng SY, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M (2007) A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769. doi: 10.1039/b618463d CrossRefGoogle Scholar
  37. 37.
    Chien R-D (2006) Hot embossing of microfluidic platform. Int Commun Heat Mass Transf 33:645–653. doi: 10.1016/j.icheatmasstransfer.2006.01.017 CrossRefGoogle Scholar
  38. 38.
    Pu Q, Elazazy MS, Alvarez JC (2008) Label-free detection of heparin, streptavidin, and other probes by pulsed streaming potentials in plastic microfluidic channels. Anal Chem 80:6532–6536. doi: 10.1021/ac8003117 CrossRefGoogle Scholar
  39. 39.
    Becker H, Gartner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390:89–111. doi: 10.1007/s00216-007-1692-2 CrossRefGoogle Scholar
  40. 40.
    Berthier E, Young EW, Beebe D (2012) Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12:1224–1237. doi: 10.1039/c2lc20982a CrossRefGoogle Scholar
  41. 41.
    Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001. doi: 10.1088/1758-5082/2/2/022001 CrossRefGoogle Scholar
  42. 42.
    Schuurman W, Khristov V, Pot MW, van Weeren PR, Dhert WJ, Malda J (2011) Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication 3:021001. doi: 10.1088/1758-5082/3/2/021001 CrossRefGoogle Scholar
  43. 43.
    Arai K, Iwanaga S, Toda H, Capi G, Nishiyama Y, Nakamura M (2011) Three-dimensional inkjet biofabrication based on designed images. Biofabrication 3:034113 CrossRefGoogle Scholar
  44. 44.
    Snyder JE, Hamid Q, Wang C, Chang R, Emami K, Wu H, Sun W (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3:034112. doi: 10.1088/1758-5082/3/3/034112 CrossRefGoogle Scholar
  45. 45.
    Donati I, Stredanska S, Silvestrini G, Vetere A, Marcon P, Marsich E, Mozetic P, Gamini A, Paoletti S, Vittur F (2005) The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials 26:987–998. doi: 10.1016/j.biomaterials.2004.04.015 CrossRefGoogle Scholar
  46. 46.
    Nair S, Remya NS, Remya S, Nair PD (2011) A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications. Carbohydr Polym 85:838–844. doi: 10.1016/j.carbpol.2011.04.004 CrossRefGoogle Scholar
  47. 47.
    Kreger ST, Voytik-Harbin SL (2009) Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biology 28:336–346. doi: 10.1016/j.matbio.2009.05.001 CrossRefGoogle Scholar
  48. 48.
    Rainer A, Spadaccio C, Sedati P, De Marco F, Carotti S, Lusini M, Vadala G, Di Martino A, Morini S, Chello M, Covino E, Denaro V, Trombetta M (2011) Electrospun hydroxyapatite-functionalized PLLA scaffold: potential applications in sternal bone healing. Ann Biomed Eng 39:1882–1890. doi: 10.1007/s10439-011-0289-2 CrossRefGoogle Scholar
  49. 49.
    Park D, Wu W, Wang Y (2011) A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials 32:777–786. doi: 10.1016/j.biomaterials.2010.09.044 CrossRefGoogle Scholar
  50. 50.
    Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051. CrossRefGoogle Scholar
  51. 51.
    Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, Chen CS (2010) Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials 31:3736–3743. doi: 10.1016/j.biomaterials.2010.01.058 CrossRefGoogle Scholar
  52. 52.
    Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B (2011) Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cells Mater 22:43–55 Google Scholar
  53. 53.
    Baumann L, Prokoph S, Gabriel C, Freudenberg U, Werner C, Beck-Sickinger AG (2012) A novel, biased-like SDF-1 derivative acts synergistically with starPEG-based heparin hydrogels and improves eEPC migration in vitro. J Control Release 162:68–75. doi: 10.1016/j.jconrel.2012.04.049 CrossRefGoogle Scholar
  54. 54.
    Song JJ, Ott HC (2011) Organ engineering based on decellularized matrix scaffolds. Trends Mol Med 17:424–432. doi: 10.1016/j.molmed.2011.03.005 CrossRefGoogle Scholar
  55. 55.
    Hoshiba T, Lu H, Kawazoe N, Chen G (2010) Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10:1717–1728. doi: 10.1517/14712598.2010.534079 CrossRefGoogle Scholar
  56. 56.
    Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53. doi: 10.1146/annurev-bioeng-071910-124743 CrossRefGoogle Scholar
  57. 57.
    Moraes C, Mehta G, Lesher-Perez SC, Takayama S (2012) Organs-on-a-chip: a focus on compartmentalized microdevices. Ann Biomed Eng 40:1211–1227. doi: 10.1007/s10439-011-0455-6 CrossRefGoogle Scholar
  58. 58.
    Powers MJ, Domansky K, Kaazempur-Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, Kurzawski P, Wack KE, Stolz DB, Kamm R, Griffith LG (2002) A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 78:257–269 CrossRefGoogle Scholar
  59. 59.
    Powers MJ, Janigian DM, Wack KE, Baker CS, Beer Stolz D, Griffith LG (2002) Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng 8:499–513. doi: 10.1089/107632702760184745 CrossRefGoogle Scholar
  60. 60.
    Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP (2004) Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane). Biomed Microdevices 6:269–278. doi: 10.1023/B:BMMD.0000048559.29932.27 CrossRefGoogle Scholar
  61. 61.
    Huh D, Fujioka H, Tung YC, Futai N, Paine R 3rd, Grotberg JB, Takayama S (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 104:18886–18891. doi: 10.1073/pnas.0610868104 CrossRefGoogle Scholar
  62. 62.
    Lam MT, Huang YC, Birla RK, Takayama S (2009) Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials 30:1150–1155. doi: 10.1016/j.biomaterials.2008.11.014 CrossRefGoogle Scholar
  63. 63.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668. doi: 10.1126/science.1188302 CrossRefGoogle Scholar
  64. 64.
    Mao JJ, Vunjak-Novakovic G, Mikos AG, Atala A (eds) (2008) Translational approaches in tissue engineering and regenerative medicine. Artech House, Boston Google Scholar
  65. 65.
    Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362. doi: 10.1016/j.tibtech.2004.05.005 CrossRefGoogle Scholar
  66. 66.
    Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. doi: 10.1016/s0266-3538(03)00178-7 CrossRefGoogle Scholar
  67. 67.
    Quadrani P, Pasini A, Mattiolli-Belmonte M, Zannoni C, Tampieri A, Landi E, Giantomassi F, Natali D, Casali F, Biagini G, Tomei-Minardi A (2005) High-resolution 3D scaffold model for engineered tissue fabrication using a rapid prototyping technique. Med Biol Eng Comput 43:196–199 CrossRefGoogle Scholar
  68. 68.
    Erkizia G (2009) Modelling the microstructural degradation of scaffolds used in bone regeneration. University of Navarra, Spain Google Scholar
  69. 69.
    Sengers BG, Taylor M, Please CP, Oreffo RO (2007) Computational modelling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 28:1926–1940. doi: 10.1016/j.biomaterials.2006.12.008 CrossRefGoogle Scholar
  70. 70.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi: 10.1016/j.biotechadv.2010.01.004 CrossRefGoogle Scholar
  71. 71.
    Erkizia G, Rainer A, de Juan-Pardo EM, Aldazabal J (2010) Computer simulation of scaffold degradation. Paper presented at Bio-Coat 2010, Zaragoza, Spain, June 24, 2010 Google Scholar
  72. 72.
    Stylianopoulos T, Bashur CA, Goldstein AS, Guelcher SA, Barocas VH (2008) Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation. J Mech Behav Biomed Mater 1:326–335. doi: 10.1016/j.jmbbm.2008.01.003 CrossRefGoogle Scholar
  73. 73.
    Hosseini SA, Tafreshi HV (2010) 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technol 201:153–160. doi: 10.1016/j.powtec.2010.03.020 CrossRefGoogle Scholar
  74. 74.
    Kowalewski TA, Blonski S, Barral S (2005) Experiments and modelling of electrospinning process. Bull Pol Acad Sci 53:385–394 Google Scholar
  75. 75.
    Xu L, Wu Y, Nawaz Y (2011) Numerical study of magnetic electrospinning processes. Comput Math Appl 61:2116–2119. doi: 10.1016/j.camwa.2010.08.085 CrossRefGoogle Scholar
  76. 76.
    Genovese J, Spadaccio C, Rainer A, Covino E (2011) Electrospun nanocomposites and stem cells in cardiac tissue engineering. In: Boccaccini AR, Harding SE (eds) Myocardial tissue engineering. Studies in mechanobiology, tissue engineering and biomaterials, vol 6. Springer, Berlin–Heidelberg Google Scholar
  77. 77.
    Sun W, Starly B, Nam J, Darling A (2005) Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Des 37:1097–1114. doi: 10.1016/j.cad.2005.02.002 CrossRefGoogle Scholar
  78. 78.
    Wei X, Xia Z, Wong S-C, Baji A (2009) Modelling of mechanical properties of electrospun nanofibre network. Int J Exp Comput Biomech 1:45–57. doi: 10.1504/ijecb.2009.022858 CrossRefGoogle Scholar
  79. 79.
    Cioffi M, Boschetti F, Raimondi MT, Dubini G (2006) Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol Bioeng 93:500–510. doi: 10.1002/bit.20740 CrossRefGoogle Scholar
  80. 80.
    Sadir S, Öchsner A, Kadir MRA, Harun MN (2011) Simulation of direct perfusion through 3D cellular scaffolds with different porosity. Int Proc Chem Biol Environ Eng 5:123–126 Google Scholar
  81. 81.
    Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD, Chung S (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7:1247–1259. doi: 10.1038/nprot.2012.051 CrossRefGoogle Scholar
  82. 82.
    Lemon G, Howard D, Tomlinson MJ, Buttery LD, Rose FR, Waters SL, King JR (2009) Mathematical modelling of tissue-engineered angiogenesis. Math Biosci 221:101–120. doi: 10.1016/j.mbs.2009.07.003 MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Erkizia G, Rainer A, de Juan-Pardo EM, Aldazabal J (2010) Computer simulation of scaffold degradation. J Phys Conf Ser 252:012004. doi: 10.1088/1742-6596/252/1/012004 CrossRefGoogle Scholar
  84. 84.
    Erkizia G, de Juan-Pardo E, Kim G-M, Aldazabal J (2011) Computer simulation of manufacture, degradation and drug release of electrospun fibres. In: Fernandes PR, Bártolo PJ, Folgado J et al. (eds) Proc 2nd intern conf tissue eng 2011. IST Press, Lisbon, pp 83–88 Google Scholar
  85. 85.
    Chen Y, Zhou S, Li Q (2011) Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater 7:1140–1149. doi: 10.1016/j.actbio.2010.09.038 CrossRefGoogle Scholar
  86. 86.
    Erkizia G, de Juan-Pardo EM, Kim G-M, Estella-Hermoso de Mendoza A, Garbayo E, Aldazabal J (2011) Computer simulation of PLGA micro/nano particles degradation. Paper presented at Euro BioMat 2011, Jena, Germany, April 13–14, 2011 Google Scholar
  87. 87.
    Guy RH, Hadgraft J (1981) Calculations of drug release rates from cylinders. Int J Pharm 8:159–165. doi: 10.1016/0378-5173(81)90093-4 CrossRefGoogle Scholar
  88. 88.
    Guy RH, Hadgraft J, Kellaway IW, Taylor M (1982) Calculations of drug release rates from particles. Int J Pharm 11:199–207. doi: 10.1016/0378-5173(82)90038-2 CrossRefGoogle Scholar
  89. 89.
    Erkizia G (2012) Computer simulation of drug delivery and degradation of scaffolds. PhD dissertation. University of Navarra, Spain Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ana Sancho
    • 1
  • Javier Aldazabal
    • 1
  • Alberto Rainer
    • 1
  • Elena M. De-Juan-Pardo
    • 2
  1. 1.Tissue Engineering and Biomaterials Unit, CEIT and TecnunUniversity of NavarraSan SebastiánSpain
  2. 2.Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveAustralia

Personalised recommendations