Skip to main content

Optimization Approaches for the Design of Additively Manufactured Scaffolds

  • Chapter

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 31))

Abstract

Scaffolds play a pivotal role in tissue engineering, promoting the synthesis of neo extra-cellular matrix (ECM), and providing temporary mechanical support for the cells during tissue regeneration. Advances introduced by additive manufacturing techniques have significantly improved the ability to regulate scaffold architecture, enhancing the control over scaffold shape and porosity. Thus, considerable research efforts have been devoted to the fabrication of 3D porous scaffolds with optimized micro-architectural features. This chapter gives an overview of the methods for the design of additively manufactured scaffolds and their applicability in tissue engineering (TE). Along with a survey of the state of the art, the Authors will also present a recently developed method, called Load-Adaptive Scaffold Architecturing (LASA), which returns scaffold architectures optimized for given applied mechanical loads systems, once the specific stress distribution is evaluated through Finite Element Analysis (FEA).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bártolo PJS, Almeida H, Laoui T (2009) Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technol 36:1–9

    Article  Google Scholar 

  2. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbacha PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827

    Article  Google Scholar 

  3. Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN, Chandrasekaran M, Lee MW (2008) Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res, Part B, Appl Biomater 84B:17–25. doi:10.1002/jbm.b.30839

    Article  Google Scholar 

  4. Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24:489–495

    Article  Google Scholar 

  5. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376:440–448

    Article  Google Scholar 

  6. Shao X, Goh JC, Hutmacher DW, Lee EH, Zigang G (2006) Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model. Tissue Eng 12:1539–1551

    Article  Google Scholar 

  7. Abbah SA, Lam CX, Hutmacher DW, Goh JC, Wong HK (2009) Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086–5093

    Article  Google Scholar 

  8. Melchels FPW, Barradas AMC, van Blitterswijk CA, de Boer J, Feijen J, Grijpma DW (2010) Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater 6:4208–4217

    Article  Google Scholar 

  9. Sanz-Herrera JA, Garcìa-Aznar JM, Doblare M (2009) On scaffold designing for bone regeneration: a computational multiscale approach. Acta Biomater 5:219–229

    Article  Google Scholar 

  10. Cheah CM, Chua CK, Leong KF, Cheong CH, Naing MW (2004) Automatic algorithm for generating complex polyhedral scaffolds for tissue engineering. Tissue Eng 10:595–610

    Article  Google Scholar 

  11. Chua CK, Leong KF, Cheah CM, Chua SW (2003) Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification. Int J Adv Manuf Technol 21:291–301. doi:10.1007/s001700300034

    Article  Google Scholar 

  12. Wettergreen MA, Bucklen BS, Starly B, Yuksel E, Sun W, Liebschner MAK (2005) Creation of a unit block library of architectures for use in assembled scaffold engineering. Comput Aided Des 37:1141–1149

    Article  Google Scholar 

  13. Rajagopalan S, Robb RA (2006) Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Med Image Anal 10:693–712. doi:10.1016/j.media.2006.06.001

    Article  Google Scholar 

  14. Dong JY (2011) Porous scaffold design using the distance field and triply periodic minimal surface models. Biomaterials 32:7741–7754. doi:10.1016/j.biomaterials.2011.07.019

    Article  Google Scholar 

  15. Melchels FPW, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31:6909–6916

    Article  Google Scholar 

  16. Hollister SJ, Levy RA, Chu T-M, Halloran JW, Feinberg SE (2000) An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 29:67–71. doi:10.1016/s0901-5027(00)80128-9

    Article  Google Scholar 

  17. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  Google Scholar 

  18. Woodfield TBF, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161. doi:10.1016/j.biomaterials.2003.10.056

    Article  Google Scholar 

  19. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216

    Article  Google Scholar 

  20. Woodfield TBF, Moroni L, Malda J (2009) Combinatorial approaches to controlling cell behaviour and tissue formation in 3D via rapid-prototyping and smart scaffold design. Comb Chem High Throughput Screen 12:562–579. doi:10.2174/138620709788681899

    Article  Google Scholar 

  21. Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7:1009–1018. doi:10.1016/j.actbio.2010.11.003

    Article  Google Scholar 

  22. Pandithevan P, Saravana Kumar G (2009) Personalised bone tissue engineering scaffold with controlled architecture using fractal tool paths in layered manufacturing. Virt Phys Prototyp 4:165–180. doi:10.1080/17452750903055512

    Article  Google Scholar 

  23. Kou XY, Tan ST (2010) A simple and effective geometric representation for irregular porous structure modeling. Comput Aided Des 42:930–941. doi:10.1016/j.cad.2010.06.006

    Article  Google Scholar 

  24. Sun W, Starly B, Nam J, Darling A (2005) Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Des 37:1097–1114. doi:10.1016/j.cad.2005.02.002

    Article  Google Scholar 

  25. Pandithevan P, Kumar GS (2009) Reconstruction of subject-specific human femoral bone model with cortical porosity data using macro-CT. Virt Phys Prototyp 4:115–129

    Article  Google Scholar 

  26. Chen Z, Su Z, Ma S, Wu X, Luo Z (2007) Biomimetic modeling and three-dimension reconstruction of the artificial bone. Comput Methods Programs Biomed 88:123–130

    Article  Google Scholar 

  27. Tellis BC, Szivek JA, Bliss CL, Margolis DS, Vaidyanathan RK, Calvert P (2008) Trabecular scaffolds created using micro CT guided fused deposition modeling. Mater Sci Eng C 28:171–178

    Article  Google Scholar 

  28. Leong KF, Chua CK, Sudarmadji N, Yeong Y (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152

    Article  Google Scholar 

  29. Chen Y, Cadman J, Zhou S, Li Q (2011) Computer-aided design and fabrication of bio-mimetic materials and scaffold micro-structures. Adv Mater Res 213:628–632

    Article  Google Scholar 

  30. Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans R Soc A 367:1993–2009

    Article  MATH  Google Scholar 

  31. Sandino C, Planell JA, Lacroix D (2008) A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech 41:1005–1014

    Article  Google Scholar 

  32. Olivares AL, Marsal E, Planell JA, Lacroix D (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30:6142–6149

    Article  Google Scholar 

  33. Cahill S, Lohfeld S, McHugh PE (2009) Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J Mater Sci, Mater Med 20:1255–1262

    Article  Google Scholar 

  34. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  Google Scholar 

  35. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, London

    Google Scholar 

  36. Almeida HdE, Bártolo PJ (2010) Virtual topological optimisation of scaffolds for rapid prototyping. Med Eng Phys 32:775–782

    Google Scholar 

  37. Boccaccio A, Ballini A, Pappalettere C, Tullo D, Cantore S, Desiate A (2011) Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 7:112–132

    Article  Google Scholar 

  38. Chen Y, Zhou S, Li Q (2011) Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials 32:5003–5014. doi:10.1016/j.biomaterials.2011.03.064

    Article  Google Scholar 

  39. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554. doi:10.1016/j.biomaterials.2007.09.003

    Article  Google Scholar 

  40. Michell AGM (1904) The limits of economy of material in frame-structures. Philos Mag Ser 6 8:589–597. doi:10.1080/14786440409463229

    Article  MATH  Google Scholar 

  41. Culmann K (1866) Die graphische Statik. Meyer & Zeller, Zürich

    Google Scholar 

  42. Jang IG, Kim IY (2008) Computational study of Wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361

    Article  Google Scholar 

  43. Rainer A, Giannitelli SM, Accoto D, De Porcellinis S, Guglielmelli E, Trombetta M (2011) Load-adaptive scaffold architecturing: a bioinspired approach to the design of porous additively manufactured scaffolds with optimized mechanical properties. Ann Biomed Eng 40:966–975. doi:10.1007/s10439-011-0465-4

    Article  Google Scholar 

  44. Papini M, Zdero R, Schemitsch EH, Zalzal P (2007) The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. J Biomech Eng 129:12–19

    Article  Google Scholar 

  45. Keaveny TM, Guo XE, Wachtel EF, McMahon TA, Hayes WC (1994) Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J Biomech 27:1127–1136

    Article  Google Scholar 

  46. McIntosh L, Cordell JM, Wagoner Johnson AJ (2009) Impact of bone geometry on effective properties of bone scaffolds. Acta Biomater 5:680–692

    Article  Google Scholar 

  47. Viceconti M, Bellingeri L, Cristofolini L, Toni A (1998) A comparative study on different methods of automatic mesh generation on human femurs. Med Eng Phys 20:1–10

    Article  Google Scholar 

  48. Koch JC (1917) The laws of bone architecture. Am J Anat 21:177–298

    Article  Google Scholar 

  49. Hobbie RK, Roth BJ (2007) Intermediate physics for medicine and biology. Springer, Berlin

    Google Scholar 

  50. Pálfi P (2002) Locally orthotropic femur model. J Comput Appl Mech 5:103–115

    Google Scholar 

  51. Pandithevan P, Kumar GS (2010) Finite element analysis of a personalized femoral scaffold with designed microarchitecture. Proc Inst Mech Eng H 224:877–889. doi:10.1243/09544119jeim633

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Giannitelli, S.M. et al. (2014). Optimization Approaches for the Design of Additively Manufactured Scaffolds. In: Fernandes, P., Bartolo, P. (eds) Tissue Engineering. Computational Methods in Applied Sciences, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7073-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7073-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7072-0

  • Online ISBN: 978-94-007-7073-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics