Skip to main content

In Silico Biology of Bone Regeneration Inside Calcium Phosphate Scaffolds

  • Chapter

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 31))

Abstract

Bone tissue engineering plays a key role in finding better solutions for the healing of large bone defects and non-unions. Despite extensive experimental research, many of the mechanisms of the bone regeneration process still remain to be elucidated. As such, mathematical modeling is a useful tool to further investigate the different influential factors and their interactions in silico. This chapter starts with a description of the biological processes that take place during bone regeneration in calcium phosphate (CaP) scaffolds. The second section gives an overview of the most recent mathematical models of bone regeneration in (CaP) scaffolds. One model is explained in more detail and used to illustrate the potential of mathematical modeling in the bone tissue engineering field. Finally, the drawbacks of the current modeling techniques and the need for more quantitative experimental research, together with possible solutions are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barrère F, van Blitterswijk C, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramic. Int J Nanomed 1:317–332

    Google Scholar 

  2. Barrère F, van der Valk C, Dalmeijer R, Meijer G, van Blitterswijk C, de Groot K, Layrolle P (2003) Osteogenecity of octacalcium phosphate coatings applied on porous metal implants. J Biomed Mater Res, Part A 66:779–788

    Article  Google Scholar 

  3. Beck Jr. GR Knecht N (2003) Osteopontin regulation by inorganic phosphate is ERK1/2-, protein kinase C-, and proteasome-dependent. J Biol Chem 278:41921–41929

    Article  Google Scholar 

  4. Bhandari M, Jain AK (2009) Bone stimulators: beyond the black box. Indian J Orthop 43:109–110

    Article  Google Scholar 

  5. Bohner M, Loosli Y, Baroud G, Lacroix D (2011) Commentary: deciphering the link between architecture and biological response in a bone graft substitute. Acta Biomater 7:478–484

    Article  Google Scholar 

  6. Bohner M, Baumgart F (2004) Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25:3569–3582

    Article  Google Scholar 

  7. Bootman M, Young K, Young J, Moreton R, Berridge M (1996) Extracellular calcium concentration controls the frequency of intracellular calcium spiking independently of inositol 1, 4,5-triphosphate production in hela cells. Biochem J 314:347–354

    Google Scholar 

  8. Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554

    Article  Google Scholar 

  9. Chai YC, Roberts SJ, Schrooten J, Luyten FP (2011) Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng A 17(7–8):1083–1097

    Article  Google Scholar 

  10. Chang Y, Stanford C, Keller J (2000) Calcium and phosphate supplementation promotes bone cell mineralization: implications for hydroxyapatite-enhanced bone formation. J Biomed Mater Res 52:240–278

    Article  Google Scholar 

  11. Carlier A, Chai Y, Moesen M, Theys T, Schrooten J, Van Oosterwyck H, Geris L (2011) Designing optimal calcium phosphate scaffold-cell combinations using an integrative model based approach. Acta Biomater 7:3573–3585

    Article  Google Scholar 

  12. Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43:961–968

    Article  Google Scholar 

  13. Dvorak M, Siddiqua A, Ward D, Carter D, Dallas S, Nemeth E, Riccardi D (2004) Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc Natl Acad Sci USA 101:5140–5145

    Article  Google Scholar 

  14. Eyckmans J, Roberts S, Schrooten J, Luyten F (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signaling. J Cell Mol Med 14:1845–1856

    Article  Google Scholar 

  15. Geris L, Reed AAC, Vander Sloten J, Simpson AHRW, Van Oosterwyck H (2010) Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 6(9):e1000915. doi:10.1371/journal.pcbi.1000915

    Article  Google Scholar 

  16. Geris L, Gerisch A Schugart RC (2010) Mathematical modeling in wound healing, bone regeneration and tissue engineering. Acta Biotheor 58:355–367

    Article  Google Scholar 

  17. Geris L, Schugart RC, Van Oosterwyck H (2010) In silico design of treatment strategies in wound healing and bone fracture healing. Philos Trans R Soc Lond A 368:2683–2706

    Article  Google Scholar 

  18. Geris L, Vander Sloten J, Van Oosterwyck H (2009) In silico biology of bone modelling and remodelling: regeneration. Philos Trans R Soc, Math Phys Eng Sci 367:2031–2053

    Article  Google Scholar 

  19. Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32

    Article  Google Scholar 

  20. Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H et al. (1997) Early bone formation around calcium-ion-implanted titanium inserted into rat tibia. J Biomed Mater Res 36:131–135

    Article  Google Scholar 

  21. Hartman E, Vehof J, Spauwen P, Jansen J (2005) Ectopic bone formation in rats: the importance of the carrier. Biomaterials 26:1829–1835

    Article  Google Scholar 

  22. Impens S, Schelstraete R, Mullens S, Thijs I, Luyten J, Schrooten J (2008) scaffolds for bone tissue engineering. In: vitro dissolution behavior of custom made CaP. Key eng mater, vol 20, pp 7–10

    Google Scholar 

  23. Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF et al. (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24:1856–1868

    Article  Google Scholar 

  24. Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffold for bone tissue engineering. Philos Trans R Soc Lond A 367:1993–2009

    Article  MATH  Google Scholar 

  25. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5510):920–926

    Article  Google Scholar 

  26. Liu G, Qutub A, Vempati P, Mac Gabhann F, Popel AS (2011) Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor Biol Med Model 8:6

    Article  Google Scholar 

  27. Liu YK, Lu QZ, Pei R, Ji HJ, Zhou GS, Zhao XL et al. (2009) The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed Mater 4:025004

    Article  Google Scholar 

  28. Liu YK, Wang GC, Cai YR, Ji HJ, Zhou GS, Zhao XL, Tang RK, Zhang M (2008) In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Biomed Mater Res, Part A 90(4):1083–1091

    Google Scholar 

  29. Massa A (2007) The merging field of regenerative medicine. MMG 445 Basic Biotech eJournal 3:137–143

    Google Scholar 

  30. Meier-Schellersheim M, Fraser I, Klauschen F (2009) Multiscale modeling for biologists. WIREs Syst Biol Med 1:4–14

    Article  Google Scholar 

  31. Milan JL, Planell JA, Lacroix D (2010) Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomech Model Mechanobiol 9:583–596

    Article  Google Scholar 

  32. Murshed M, Harmey D, Millan JL, McKee MD, Karsenty G (2005) Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19:1093–1104

    Article  Google Scholar 

  33. Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L (2011) A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 10:383–395

    Article  Google Scholar 

  34. Pioletti D, Takei H, Lin T, Van Landuyt P, Ma Q, Kwon S, Sung KL (2000) The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 21:1103–1114

    Article  Google Scholar 

  35. Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17:31–35

    Article  Google Scholar 

  36. Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, Luyten F (2011) The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials 32:4393–4405

    Article  Google Scholar 

  37. Sanz-Herrera JA, Garcia-Aznar JM, Doblare M (2008) A mathematical model for bone tissue regeneration inside a specific type of scaffold. Biomech Model Mechanobiol 7:355–366

    Article  Google Scholar 

  38. Sanz-Herrera JA, García-Aznar JM, Doblaré M (2008) Micro-macro numerical modeling of bone regeneration in tissue engineering. Comput Methods Appl Mech Eng 197:3092–3107

    Article  MATH  Google Scholar 

  39. Sengers BG, Taylor M, Please C, Oreffo RO (2007) Computational modeling of cell spreading and tissue regeneration in porous scaffolds. Biomaterials 28:1926–1940

    Article  Google Scholar 

  40. Shelton RM, Rasmussen AC, Davies JE (1988) Protein adsorption at the interface between charged polymer substrata and migrating osteoblasts. Biomaterials 9:24–29

    Article  Google Scholar 

  41. Stein GS, Lian JB, Stein JL, van Wijnen AJ, Frenkel B, Monteccino M (1996) Mechanisms regulating osteoblast proliferation and differentiation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, California, pp 69–87

    Google Scholar 

  42. Stops AJF, Heraty KB, Browne M, O’Brien FJ, McHugh PE (2010) A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech 43(4):618–626

    Article  Google Scholar 

  43. Sun S, Liu Y, Lipsky S, Cho M (2007) Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells. FASEB J 21:1472–1480

    Article  Google Scholar 

  44. Titorencu I, Jinga V, Constantinescu E, Gafencu A, Ciohodaru C, Manolescu I et al. (2007) Proliferation, differentiation and characterization of osteoblasts from human BM mesenchymal stem cells. Cytotherapy 9:682–696

    Article  Google Scholar 

  45. van der Meulen MC, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401–414

    Article  Google Scholar 

  46. Yuan H, van Blitterswijk C, de Groot K, de Bruijn J (2006) A comparison of bone formation in biphasic calcium phosphate and hydroxyapatite implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res, Part A 78:130–147

    Google Scholar 

  47. Zhou GS, Su ZY, Cai YR, Liu YK, Dai LC, Tang RK, Zhang M (2007) Different effects of nanophase and conventional hydroxyapatite thin films on attachment, proliferation and osteogenic differentiation of bone marrow derived mesenchymal stem cells. Biomed Mater Eng 17:387–395

    Google Scholar 

  48. Bailón-Plaza A, van der Meulen M (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209

    Article  Google Scholar 

  49. Eyckmans J, Roberts S, Schrooten J, Luyten F (2010) A clinically relevant model of osteoinduction: a process requiring calcium phosphate and BMP/Wnt signaling. J Cell Mol Med 14:1845–1856

    Article  Google Scholar 

  50. Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: A bioregulatory model. J Theor Biol 251:137–158

    Article  Google Scholar 

  51. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A et al. (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855

    Article  Google Scholar 

  52. Liu Y, Lu Q, Pei R, Ji H, Zhou G, Zhao X et al. (2009) The effect of extracellular calcium and inorganic phosphate on the growth and osteogenic differentiation of mesenchymal stem cells in vitro: implication for bone tissue engineering. Biomed Mater 4(2):025004

    Article  Google Scholar 

  53. Yuan H, van Blitterswijk C, de Groot K, de Bruijn J (2006) A comparison of bone formation in biphasic calcium phosphate and hydroxyapatite implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res, Part A 78:130–417

    Google Scholar 

Download references

Acknowledgements

Aurélie Carlier is a PhD fellow of the Research Foundation Flanders (FWO-Vlaanderen). The work is part of Prometheus, the Leuven Research and Development Division of Skeletal Tissue Engineering of that Katholieke Universiteit Leuven: www.kuleuven.be/Prometheus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Carlier .

Editor information

Editors and Affiliations

Appendix

Appendix

The equations contain the following model parameters:

$$\begin{aligned} J(t) = J_{in}.\frac{\mathit{Ca}(t)}{H_{\mathit{Ca}4} + \mathit{Ca}(t)} \end{aligned}$$
$$\begin{aligned} A_{m}(t) = \frac{A_{m0}.m(t)}{K_{m}^{2} + m(t)^{2}} \end{aligned}$$
$$\begin{aligned} \beta_{cm}(t) = \frac{a_{cm}}{c_{cm}}.\exp \biggl( - \frac{1}{2}. \biggl( \frac{\mathit{Ca}(t) - b_{cm}}{c_{cm}} \biggr)^{2} \biggr) \end{aligned}$$
$$\begin{aligned} F_{1}(t) = \frac{Y_{11}.g_{b}(t)^{6}}{H_{11}^{6} + g_{b}(t)^{6}}.F_{11}.\exp \biggl( - \frac{1}{2}. \bigl( \mathit{Ca}(t) - F_{12} \bigr)^{2} \biggr) \end{aligned}$$
$$\begin{aligned} A_{b}(t) = \frac{A_{b0}.m(t)}{K_{b}^{2} + m(t)^{2}} \end{aligned}$$
$$\begin{aligned} \beta_{cb}(t) = \frac{a_{cb}}{c_{cb}}.\exp \biggl( - \frac{1}{2}. \biggl( \frac{\mathit{Ca}(t) - b_{cb}}{c_{cb}} \biggr)^{2} \biggr) \end{aligned}$$
$$\begin{aligned} E_{gb}(t) = \frac{G{}_{gb}.g_{b}(t)}{H_{gb} + g_{b}(t)} \end{aligned}$$
$$\begin{aligned} R(t) = \bigl \vert c{}_{m}(t) - c_{m}(t - t_{3}) \bigr \vert .\frac{G_{\mathit{con}}.g_{b}(t)}{H_{\mathit{con}} + g_{b}(t)} \end{aligned}$$

The following scaling factors were chosen for the non-dimensionalization of the model variables:

$$\begin{aligned} \widetilde{t} = \frac{t}{T}, \qquad \widetilde{c_{m}} = \frac{c_{m}}{c_{0}}, \qquad \widetilde{c_{b}} = \frac{c_{b}}{c_{0}}, \qquad \widetilde{m} = \frac{m}{m_{0}}& \\ \widetilde{b} = \frac{b}{m_{0}}, \qquad \widetilde{g_{b}} = \frac{g_{b}}{g_{0}}, \qquad \widetilde{\mathit{Ca}} = \frac{\mathit{Ca}}{\mathit{Ca}_{0}}& \end{aligned}$$

The time T=1 day was considered to be a representative unit time for the process under study (similar to fracture healing models e.g. Geris et al. [50]). Representative concentrations for the collagen content (m 0=0.1 g/ml) and growth factors (g 0=100 ng/ml) are adopted from Geris et al. [50]. A typical value for the cell density (c 0=106 cells/ml) is derived from Bailón-Plaza and van der Meulen [48]. The scaling factor for the calcium concentration was assumed to be equal to the extracellular calcium concentration (Ca 0=1 mM). An overview of the model parameter values and the initial variable values is given in Table 1 and Table 2 respectively.

The model parameters were non-dimensionalized as follows (the tildes represent the non-dimensional parameters):

$$\begin{aligned} \widetilde{P_{bs}} = \frac{P_{bs}.c_{0}.T}{m_{0}}, \qquad \widetilde{\kappa_{b}} = \kappa_{b}.m_{0}, \qquad \widetilde{A_{m0}} = \frac{A_{m0}.T}{m_{0}},& \\ \widetilde{K_{m}} = \frac{K_{m}}{m_{0}}, \qquad \widetilde{a_{cm}} = \frac{a_{cm}}{\mathit{Ca}_{0}}, \qquad \widetilde{b_{cm}} = \frac{b_{cm}}{\mathit{Ca}_{0}},& \\ \widetilde{c_{cm}} = \frac{c_{cm}}{\mathit{Ca}_{0}}, \qquad \widetilde{\alpha_{m}} = \alpha_{m}.c_{0}, \qquad \widetilde{H_{11}} = \frac{H_{11}}{g_{0}},& \\ \widetilde{Y_{11}} =Y_{11}.T, \qquad \widetilde{G_{gb}} =\frac{G_{gb}.T.c_{0}}{g_{0}}, \qquad \widetilde{H_{gb}} =\frac{H_{gb}}{g_{0}},& \\ \widetilde{d_{gb}} = d_{gb}.T, \qquad \widetilde{A_{b0}} = \frac{A_{b0}.T}{m_{0}}, \qquad \widetilde{K_{b}} = \frac{K_{b}}{m_{0}}, \qquad \widetilde{a_{cb}} = \frac{a_{cb}}{\mathit{Ca}_{0}},& \\ \widetilde{b_{cb}} = \frac{b_{cb}}{\mathit{Ca}_{0}}, \qquad \widetilde{c_{cb}} = \frac{c_{cb}}{\mathit{Ca}_{0}}, \qquad \widetilde{\alpha_{b}} =\alpha_{b}.c_{0},& \\ \widetilde{d_{b}} = d_{b}.T, \qquad \widetilde{P_{bb}} = \frac{P_{bb}.c_{0}.T}{m_{0}}, \qquad \widetilde{\kappa_{bb}} =\kappa _{bb}.m_{0},& \\ \widetilde{\sigma} =\sigma.T, \qquad \widetilde{\mathit{Ca}_{\infty}} = \frac{\mathit{Ca}_{\infty}}{\mathit{Ca}_{0}}, \qquad \widetilde{J_{\mathit{leaky}}} = \frac{J_{\mathit{leaky}}.T.c_{0}}{\mathit{Ca}_{0}},& \\ \widetilde{H_{\mathit{ca}4}} = \frac{H_{\mathit{ca}4}}{\mathit{Ca}_{0}}, \qquad \widetilde{d_{Ca}} =d_{\mathit{Ca}}.T.c_{0}, \qquad \widetilde{F_{11}} =F_{11}, \qquad \widetilde{F_{12}} =F_{12},& \\ \widetilde{G_{\mathit{con}}} =G_{\mathit{con}}.c_{0}, \qquad \widetilde{H_{\mathit{con}}} =\frac{H_{\mathit{con}}}{g_{0}}, \qquad \widetilde{d_{cm}} = d_{cm}.T.m_{0}& \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carlier, A., Van Oosterwyck, H., Geris, L. (2014). In Silico Biology of Bone Regeneration Inside Calcium Phosphate Scaffolds. In: Fernandes, P., Bartolo, P. (eds) Tissue Engineering. Computational Methods in Applied Sciences, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7073-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7073-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7072-0

  • Online ISBN: 978-94-007-7073-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics