Advertisement

Agent-Based Modelling

  • Corinna Elsenbroich
  • Nigel Gilbert
Chapter

Abstract

The methodology of agent-based modelling is introduced. Using examples, terminology, definitions, distinctions and problems are explicated. It is proposed that agent-based modelling is a fruitful methodology for the study of social norms due to the possibility of generating macro-phenomena from micro-specifications. Some philosophical considerations regarding the possibility of explanation and prediction from agent-based modelling are discussed.

Keywords

Agent-based modelling Method Explanation Prediction 

References

  1. Abdou, M., Hamill, L., & Gilbert, N. (2012). Designing and building an agent-based model. In J. Heppenstal, A. Crooks, L. See, & M. Batty (Eds.), Agent-based models of geographical systems (pp. 141–165). Dordrecht/New York: Springer.CrossRefGoogle Scholar
  2. Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah: Erlbaum.Google Scholar
  3. Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.Google Scholar
  4. Axelrod, R. (1986). An evolutionary approach to norms. American Political Science Review, 80(4), 1095–1111.CrossRefGoogle Scholar
  5. Balci, O. (1994). Validation, verification and testing techniques throughout the life cycle of a simulation study. Annals of Operations Research, 53, 121–173.CrossRefGoogle Scholar
  6. Berlekamp, E., Conway, J., & Guy, R. (1982). Winning ways for your mathematical plays. Vol. 2: Games in particular. London: Academic.Google Scholar
  7. Boella, G., & van der Torre, L. (2004). An agent oriented ontology of social reality. In Proceedings of FOIS’04, Amsterdam, (pp. 199–209). IOS Press.Google Scholar
  8. Castelfranchi, C., Dignum, F., Jonker, C. M., & Treur, J. (1999). Deliberate normative agents: Principles and architecture. In N. Jennings & Y. Lesperance (Eds.), Intelligent agents VI. Volume proceedings of the sixth international workshop on agent theories, architectures, and languages ATAL’99, Orlando (pp. 364–378).Google Scholar
  9. Chattoe-Brown, E. (2010). Gin and tonic or oil and water? Can we integrate research methods rather than just “mixing” them? A case study of social mobility research. http://www2.le.ac.uk/departments/sociology/people/echattoebrown/publications.
  10. Chrisley, R. (2003). Embodied artificial intelligence. Artificial Intelligence, 149, 131–150.CrossRefGoogle Scholar
  11. Deffuant, G., Amblard, F., Weisbuch, G., & Faure, T. (2002). How can extremism prevail? A study based on the relative agreement interaction model. Journal of Artificial Societies and Social Simulation, 5(4), 1. http://jasss.soc.surrey.ac.uk/5/4/1.html.
  12. Dignum, F., Morley, D., Sonnenberg, E., & Cavedon, L. (2000). Towards socially sophisticated BDI agents. In E. Dufree (Ed.), Proceedings of the international conference on multi-agent systems, ICMAS’00, Boston (pp. 111–118).Google Scholar
  13. Douglas, H. E. (2009). Reintroducing prediciton to explanation. Philosophy of Science, 76, 444–463.CrossRefGoogle Scholar
  14. Durfee, E. H. (1999). Distributed problem solving and planning. In G. Weiss (Ed.), Multiagent systems (pp. 121–164). Cambridge: MIT.Google Scholar
  15. Elsenbroich, C. (2012). Explanation in agent-based modelling: Functions, causality or mechanisms? Journal of Artificial Societies and Social Simulation, 15(3), 1.Google Scholar
  16. Epstein, J. (2000). Learning to be thoughtless: Social norms and individual computing. Technical report, Center on Social and Economic Dynamics Working Paper, No. 6.Google Scholar
  17. Epstein, J. M. (2006). Generative social science studies in agent-based computational modeling. Princeton: Princeton University Press.Google Scholar
  18. Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12.Google Scholar
  19. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the bottom up. Washington, DC: Brookings Institution Press.Google Scholar
  20. Flentge, F., Polani, D., & Uthmann, T. (2001). Modelling the emergence of possession norms using memes. Journal of Artificial Societies and Social Simulation, 4(4), 3. http://jasss.soc.surrey.ac.uk/4/4/3.html.
  21. Gatherer, D. (2002). Identifying cases of social contagion using memetic isolation: Comparison of the dynamics of a multisociety simulation with an ethnographic data set. Journal of Artificial Societies and Social Simulation, 5(4), 5.Google Scholar
  22. Gilbert, N. (2008). Agent-based models (Number 153 in quantitative applications in the social sciences). Los Angeles: Sage.Google Scholar
  23. Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist (2nd ed.). Maidenhead/New York: Open University Press.Google Scholar
  24. Gilbert, N., Hawksworth, J. C., & Swinney, P. A. (2008). An agent-based model of the uk housing market. Technical report, CRESS University of Surrey, http://cress.soc.surrey.ac.uk/housingmarket/ukhm.html.
  25. Hegselmann, R. (2012). Thomas C. Schelling and the computer some notes on Schelling’s essay “On Letting a Computer Help With the Work”. Journal of Artificial Societies and Social Simulation, 15(4), 9.Google Scholar
  26. Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence: Models, analysis and simulation. Journal of Artificial Societies and Social Simulation, 5(3), 2. http://jasss.soc.surrey.ac.uk/5/3/2.html.
  27. Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15, 135–175.CrossRefGoogle Scholar
  28. Hirschi, T. (1969). Causes of delinquency. Berkely: University of California Press.Google Scholar
  29. Iozzi, F. (2008). A simple implementation of Schelling’s segregation model in netlogo. Working papers 015, Centre for Research on Social Dynamics (DONDENA), Università Commerciale Luigi Bocconi.Google Scholar
  30. Lorscheid, I., & Troitzsch, K. G. (2009). How do agents learn to behave normatively? Machine learning concepts for norm learning in the emil project. In B. Edmonds & N. Gilbert (Eds.), Proceedings of the sixth conference of ESSA, Guilford.Google Scholar
  31. Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.CrossRefGoogle Scholar
  32. Mirowski, P. (1999). More heat than light: Economics as social physics, physics as nature’s economics. Polity Press in association with Blackwell Publishers, Cambridge University Press.Google Scholar
  33. Neumann, M. (2009). Dissecting the BOID perspective on norms. In B. Edmonds & N. Gilbert (Eds.), Proceedings of the Sixth Conference of ESSA, Guilford.Google Scholar
  34. Newell, A. (1990). Unified theories of cognition. Cambridge: Harvard University Press.Google Scholar
  35. Ngo, T. A., & See, L. M. (2012). Calibration and validation of agent-based models of land cover change. In J. Heppenstal, A. Crooks, L. See, & M. Batty (Eds.), Agent-based models of geographical systems. Dordrecht/New York: Springer.Google Scholar
  36. Rescher, N. (1957). On prediction and explanation. British Journal for the Philosophy of Science, 8, 281–290.Google Scholar
  37. Salmon, W. (1978). Why ask, ‘Why?’? An inquiry concerning scientific explanation. Proceedings and Addresses of the American Philosophical Association, 51, 683–705.CrossRefGoogle Scholar
  38. Schelling, T. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1, 143–186.CrossRefGoogle Scholar
  39. Thompson, N. S., & Derr, P. (2009). Contra Epstein, good explanations predict. Journal of Artificial Societies and Social Simulation, 12(1), 9.Google Scholar
  40. Troitzsch, K. G. (2009). Not all explanations predict satisfactorily, and not all good predictions explain. Journal of Artificial Societies and Social Simulation, 12(1), 10.Google Scholar
  41. Wilensky, U. (1997). NetLogo segregation model. Technical report, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston.Google Scholar
  42. Wilensky, U. (2003). NetLogo ising model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston.Google Scholar
  43. Wooldridge, M. (2002). An introduction to multi-agent systems. Chichester: Wiley.Google Scholar
  44. Yang, L., & Gilbert, N. (2008). Getting away from numbers: Using qualitative observation for agent-based modeling. Advances in Complex Systems, 11(2), 175–185.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Corinna Elsenbroich
    • 1
  • Nigel Gilbert
    • 1
  1. 1.Department of Sociology Centre for Research in Social Simulation (CRESS)University of SurreyGuildfordUK

Personalised recommendations