Advertisement

Coupled Computational Aerodynamics

  • P. G. Tucker
Chapter
  • 3.7k Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 104)

Abstract

Coupled computational aerodynamics is discussed. In relation to this, mesh movement, conservation, geometry alignment, stability, data interpolation, and other matters related to using moving meshes is overviewed. Code coupling software is discussed. The coupled simulations addressed encompass aeroelasticity; conjugate heat transfer and coupled aerodynamic simulations. Numerical approaches in relation to these are outlined. Examples of coupled eddy resolving simulations are reviewed along with validation levels for them and schemes used. As would be expected, there are much less examples of eddy resolving simulations for more complex, multifaceted coupled problems. However, for practical systems, such simulations are identified as being vital to gaining physically plausible solutions.

Keywords

Moving meshes Conjugate heat transfer Aeroelasticity Code coupling Wall distance Data interpolation Geometry alignment Space conservation 

References

  1. M.J. Aftosmis, M.J. Berger, J.E. Melton, Robust and efficient Cartesian mesh generation for component-based geometry. AIAA J. 36(6), 952–960 (1998) CrossRefGoogle Scholar
  2. J.J. Alonso, S. Hahn, F. Ham, M. Herrmann, G. Iaccarino, G. Kalitzin, P. LeGresley, K. Mattsson, G. Medic, P. Moin et al., CHIMPS: a high-performance scalable module for multi-physics simulations. AIAA J. 5274, 2006 (2006) Google Scholar
  3. D. Amirante, N.J. Hills, C.J. Barnes, Use of dynamic meshes for transient metal temperature prediction, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68782 Google Scholar
  4. Y.S. Baik, J.M. Rausch, L.P. Bernal, M.V. Ol, Experimental investigation of pitching and plunging airfoils at Reynolds number between 1×104 and 6×104. AIAA J. 4030 (2009) Google Scholar
  5. R.E. Bartels, A.I. Sayma, Computational aeroelastic modelling of airframes and turbomachinery: progress and challenges. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 365(1859), 2469–2499 (2007) CrossRefGoogle Scholar
  6. D. Boger, Efficient method for calculating wall proximity. AIAA J. 39(12), 2404–2406 (2001) CrossRefGoogle Scholar
  7. S. Buis, A. Piacentini, D. Déclat, PALM: a computational framework for assembling high-performance computing applications. Concurr. Comput., Pract. Exp. 18(2), 231–245 (2006) CrossRefGoogle Scholar
  8. H.A. Carlson, G. Berkooz, J.L. Lumley, Direct numerical simulation of flow in a channel with complex, time-dependent wall geometries: a pseudospectral method. J. Comput. Phys. 121(1), 155–175 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  9. H.A. Carlson, J.Q. Feng, J.P. Thomas, R.E. Kielb, K.C. Hall, E.H. Dowell, Computational models for nonlinear aeroelasticity, in 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV (2005). AIAA Paper 2005-1085 Google Scholar
  10. L. Cavagna, P. Masarati, G. Quaranta, Simulation of maneuvering flexible aircraft by coupled multibody/CFD, in Proceedings of ECCOMAS Thematic Conference, “Multibody Dynamics 2009” (2009) Google Scholar
  11. R.V. Chima, D.J. Arend, R.S. Castner, J.W. Slater, P.P. Truax, CFD models of a serpentine inlet, fan, and nozzle. AIAA J. 33 (2010a) Google Scholar
  12. R.V. Chima, T.R. Conners, T.R. Wayman, Coupled analysis of an inlet and fan for a quiet supersonic jet. AIAA J. 479 (2010b) Google Scholar
  13. D.J. Clark, M.J. Jansen, G.T. Montague, An overview of magnetic bearing technology for gas turbine engines. National Aeronautics and Space Administration. NASA/TM-20 4-213177 (2004) Google Scholar
  14. C. Davies, P.W. Carpenter, Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. J. Fluid Mech. 335, 361–392 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  15. S.S. Davis, Data set 2, NACA 64A010 (NASA Ames model), Oscillatory pitching. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982a), pp. 2.1–2.22. Report No. 702 Google Scholar
  16. S.S. Davis, Data set 5, NLR 7301 Supercritical airfoil oscillatory pitching. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982b), pp. 5.1–5.27. Report No. 702 Google Scholar
  17. F.M. De Jongh, P.G. Morton, R. Holmes, The synchronous instability of a compressor rotor due to bearing journal differential heating. Discussion. J. Eng. Gas Turbines Power 118(4), 816–824 (1996) CrossRefGoogle Scholar
  18. I. Demirdžić, M. Perić, Space conservation law in finite volume calculations of fluid flow. Int. J. Numer. Methods Fluids 8(9), 1037–1050 (1988) zbMATHCrossRefGoogle Scholar
  19. P. Dhopade, A.J. Neely, J. Young, K. Shankar, High-cycle fatigue of fan blades accounting for fluid-structure interaction, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68102 Google Scholar
  20. H. Doi, Fluid/structure coupled aeroelastic computations for transonic flows in turbomachinery. PhD thesis, Department of Aeronautics and Astronautics, Stanford University (2002) Google Scholar
  21. F. Duchaine, A. Corpron, L. Pons, V. Moureau, F. Nicoud, T. Poinsot, Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Int. J. Heat Fluid Flow 30(6), 1129–1141 (2009) CrossRefGoogle Scholar
  22. G. Dufour, N. Gourdain, F. Duchaine, O. Vermorel, L.Y.M. Gicquel, J.F. Boussuge, T. Poinsot, Large Eddy Simulation Applications. VKI Lecture Series Numerical Investigations in Turbomachinery: The State of the Art (2009) Google Scholar
  23. S. Eastwood, Hybrid RANS-LES of Complex Geometry Jets. PhD thesis, University of Cambridge (2009) Google Scholar
  24. T. Endo, R. Himeno, Direct numerical simulation of turbulent flow over a compliant surface. J. Turbul. 3 (2002) Google Scholar
  25. E. Fares, W. Schröder, A differential equation for approximate wall distance. Int. J. Numer. Methods Fluids 39(8), 743–762 (2002) zbMATHCrossRefGoogle Scholar
  26. T.H. Fransson, M. Jöcker, A. Bölcs, P. Ott, Viscous and inviscid linear/nonlinear calculations versus quasi-three-dimensional experimental cascade data for a new aeroelastic turbine standard configuration. J. Turbomach. 121(4), 717–725 (1999) CrossRefGoogle Scholar
  27. A.L. Gaitonde, S.P. Fiddes, A three-dimensional moving mesh method for the calculation of unsteady transonic flows, in Recent Developments and Applications in Aeronautical CFD (1993), p. 13 Google Scholar
  28. V. Ganine, N.J. Hills, B.L. Lapworth, Nonlinear acceleration of coupled fluid-structure transient thermal problems by Anderson mixing. Int. J. Numer. Methods Fluids (2012) Google Scholar
  29. J.A. Garcia, Numerical investigation of non-linear aeroelastic effects on flexible high aspect ratio wings. J. Aircr. 42(4), 1025–1036 (2005) CrossRefGoogle Scholar
  30. M.B. Giles, Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Methods Fluids 25(4), 421–436 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
  31. O. Hassan, K. Morgan, N. Weatherill, Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 365(1859), 2531–2552 (2007a) MathSciNetCrossRefGoogle Scholar
  32. O. Hassan, K.A. Sørensen, K. Morgan, N.P. Weatherill, A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing. Int. J. Numer. Methods Fluids 53(8), 1243–1266 (2007b) zbMATHCrossRefGoogle Scholar
  33. L. He, Fourier methods for turbomachinery applications. Prog. Aerosp. Sci. 46(8), 329–341 (2010) CrossRefGoogle Scholar
  34. R.A. Huls, Acousto-elastic interaction in combustion chambers. PhD thesis, University of Twente (2006) Google Scholar
  35. R.A. Huls, A.X. Sengissen, P.J.M. Van der Hoogt, J.B.W. Kok, T. Poinsot, A. de Boer, Vibration prediction in combustion chambers by coupling finite elements and large eddy simulations. J. Sound Vib. 304(1), 224–229 (2007) CrossRefGoogle Scholar
  36. I.V. Iourokina, S.K. Lele, Towards large eddy simulation of film-cooling flows on a model turbine blade leading edge. AIAA J. 670 (2005) Google Scholar
  37. C.K. Kang, Y. Baik, L. Bernal, M.V. Ol, W. Shyy, Fluid dynamics of pitching and plunging airfoils of Reynolds number between 1×104 and 6×104. AIAA Paper 2009-0536 (2009) Google Scholar
  38. M. Kato, B.E. Launder, The modelling of turbulent flow around stationary and vibrating square cylinder, in 9th Symposium on Turbulent Shear Flows, Kyoto, Japan (1993), pp. 10-4-1–10-4-6 Google Scholar
  39. C. Kato, Y. Yamade, H. Wang, Y. Guo, M. Miyazawa, T. Takaishi, S. Yoshimura, Y. Takano, Numerical prediction of sound generated from flows with a low Mach number. Comput. Fluids 36(1), 53–68 (2007) zbMATHCrossRefGoogle Scholar
  40. H.P. Kersken, G. Ashcroft, C. Frey, O. Putz, H. Stuer, S. Schmitt, Validation of a linearized Navier-Stokes based flutter prediction tool—Part 1: numerical methods, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68018 Google Scholar
  41. R.E. Kielb, J.W. Barter, J.P. Thomas, K.C. Hall, Blade excitation by aerodynamic instabilities: a compressor blade study, in Proceedings of ASME Turbo Expo 2003 (2003). ASME Paper GT-2003-38634 Google Scholar
  42. G. Kingsley, J.M. Siegel, Development of a multi-disciplinary computing environment (MDICE), in AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 7th, St. Louis, MO (1998). AIAA Paper 98-4738 Google Scholar
  43. T. Knopp, K. Weinman, D. Schwamborn, Oscillating airfoil NACA0012 at 15 a basic case for aero-elasticity, in DESider a European Effort on Hybrid RANS-LES Modelling. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (2009), pp. 261–269 Google Scholar
  44. N.C. Lambourne, Data set 7, NORA model, oscillation about a swept axis. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982), pp. 7.1–7.35. Report No. 702 Google Scholar
  45. R. Landon, Data set 3, NACA 0012, Oscillatory and Transient Pitching. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982), pp. 3.1–3.25. Report No. 702 Google Scholar
  46. R. Langtry, P. Spalart, Detached eddy simulation of a nose landing-gear cavity, in IUTAM Symposium on Unsteady Separated Flows and Their Control (Springer, Berlin, 2009), pp. 357–366 CrossRefGoogle Scholar
  47. X. Liu, N. Qin, H. Xia, Fast dynamic grid deformation based on Delaunay graph mapping. J. Comput. Phys. 211(2), 405–423 (2006) zbMATHCrossRefGoogle Scholar
  48. S. Loiodice, P.G. Tucker, J. Watson, Coupled open rotor engine intake simulations, in Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida (2010). AIAA Paper 2010-840 Google Scholar
  49. J.W. Lund, J. Tonnesen, An approximate analysis of the temperature conditions in a journal bearing. Part II: application. J. Tribol. 106, 237 (1984) CrossRefGoogle Scholar
  50. D.G. Mabey, Data set 6, NLR 7301 RAE wing A, oscillating flap. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982), pp. 6.1–6.15. Report No. 702 Google Scholar
  51. J.C. Marongiu, F. Leboeuf, E. Parkinson, Numerical simulation of the flow in a Pelton turbine using the meshless method smoothed particle hydrodynamics: a new simple solid boundary treatment. Proc. Inst. Mech. Eng. A, J. Power Energy 221(6), 849–856 (2007) CrossRefGoogle Scholar
  52. J.C. Marongiu, F. Leboeuf, J.Ë. Caro, E. Parkinson, Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method. J. Hydraul. Res. 48(S1), 40–49 (2010) CrossRefGoogle Scholar
  53. F. Mathey, J. Froehlich, W. Rodi, Flow in a matrix of surface-mounted cubes description of numerical methodology for test case 6.2, in 8th ERCOFTAC/IAHR/COST Workshop on Rened Turbulence Modeling, Laboratory of Applied Thermodynamics, Espon, Helsinki University of Technology, Helsinki, Finland (1999), pp. 46–49. Report 127 Google Scholar
  54. W.J. McCroskey, K.W. McAlister, L.W. Carr, S.L. Pucci, An experimental study of dynamic stall on advanced airfoil sections. Volume 1. Summary of the experiment. Technical report, DTIC Document (1982) Google Scholar
  55. G. Medic, G. Kalitzin, D. You, V.D. Weide, J.J. Alonso, H. Pitsch, Integrated RANS-LES computation of an entire gas turbine jet engine, in 45th AIAA Aerospace Sciences Meeting and Exhibit (2008). AIAA Paper 2007–1117 Google Scholar
  56. E.R. Meinders, Experimental study of heat transfer in turbulent flows over wall-mounted cubes. PhD thesis, Delft University of Technology (1998) Google Scholar
  57. E.R. Meinders, K. Hanjalić, Vortex structure and heat transfer in turbulent flow over a wall-mounted matrix of cubes. Int. J. Heat Fluid Flow 20(3), 255–267 (1999) CrossRefGoogle Scholar
  58. F.R. Menter, Zonal two equation Kappa-Omega turbulence models for aerodynamic flows. AIAA Paper 93-2906 (1993) Google Scholar
  59. D. Micallef, D. Witteck, A. Wiedermann, D. Klub, R. Mailach, Three-dimensional viscous flutter analysis of a turbine cascade in subsonic and transonic flows, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-68396 Google Scholar
  60. C. Michler, E.H. Van Brummelen, R. De Borst, An interface Newton-Krylov solver for fluid-structure interaction. Int. J. Numer. Methods Fluids 47(10–11), 1189–1195 (2005) zbMATHCrossRefGoogle Scholar
  61. K. Nakahashi, F. Togashi, Unstructured overset grid method for flow simulation of complex multiple body problems, in Proceedings of ICAS 2000 Congress (2000). Paper No. ICAS 0263 Google Scholar
  62. B. Ničeno, A.D.T. Dronkers, K. Hanjalić, Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large eddy simulation. Int. J. Heat Fluid Flow 23(2), 173–185 (2002) CrossRefGoogle Scholar
  63. M.V. Ol, L. Bernal, C.K. Kang, W. Shyy, Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp. Fluids 46(5), 883–901 (2009) CrossRefGoogle Scholar
  64. J.H. Page, P. Hield, P.G. Tucker, Inverse design of 3D multistage transonic fans at dual operating points, in Proceedings of ASME Turbo Expo 2013 (2013). ASME Paper GT2013-95062 Google Scholar
  65. M.A. Potsdam, G.P. Guruswamy, A parallel multiblock mesh movement scheme for complex aeroelastic applications. AIAA J. 716, 2000 (2001) Google Scholar
  66. F. Rahman, J.A. Visser, R.M. Morris, Capturing sudden increase in heat transfer on the suction side of a turbine blade using a Navier-Stokes solver. J. Turbomach. 127(3), 552–556 (2005) CrossRefGoogle Scholar
  67. P. Rautaheimo, T. Siikonen, Flow in a matrix of surface-mounted cubes description of numerical methodology for test case 6.2, in 8th ERCOFTAC/IAHR/COST Workshop on Rened Turbulence Modeling, Laboratory of Applied Thermodynamics, Espon, Helsinki University of Technology, Helsinki, Finland (1999), pp. 31–36. Report 127 Google Scholar
  68. S. Salvadori, G. Riccio, M. Insinna, F. Martelli, Analysis of combustor/vane interaction with decoupled and loosely coupled approaches, in Proceedings of ASME Turbo Expo 2012 (2012) ASME Paper GT2012-69038 Google Scholar
  69. N. Sayma, Personal Communication (2011) Google Scholar
  70. J.A. Sethian, Fast marching methods. SIAM Rev. 41(2), 199–235 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  71. M. Shahi, J.B.W. Kok, P.R. Alemela, Simulation of 2-way fluid structure interaction in a 3D model combustor, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-69681 Google Scholar
  72. M. Shevtsov, A. Soupikov, A. Kapustin, Highly parallel fast KD-tree construction for interactive ray tracing of dynamic scenes, in Computer Graphics Forum, vol. 26 (Wiley Online Library, New York, 2007), pp. 395–404 Google Scholar
  73. W.A. Silva, R.E. Bartels, Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code. J. Fluids Struct. 19(6), 729–745 (2004) CrossRefGoogle Scholar
  74. P.R. Spalart, Trends in turbulence treatments. American Institute of Aeronautics and Astronautics (2000). AIAA Paper 2000-2306 Google Scholar
  75. P.R. Spalart, S.R. Allmaras, A one equation turbulence model for aerodynamic flows. Rech. Aérosp. 1, 5–21 (1992) Google Scholar
  76. P.R. Spalart, D.R. Bogue, The role of CFD in aerodynamics, off-design. Aeronaut. J. 107(1072), 323–329 (2003) Google Scholar
  77. D.B. Spalding, Calculation of turbulent heat transfer in cluttered spaces, in Proceedings of the 10th International Heat Transfer Conference (Society for Industrial and Applied Mathematics, Brighton, 1994) Google Scholar
  78. C.H. Stephens, A.S. Arena Jr., K.K. Gupta, C.A. Edwards, Application of the transpiration method for aeroservoelastic prediction using CFD. AIAA J. 2071 (1998) Google Scholar
  79. M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162(2), 301–337 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  80. J. Thomas, E. Dowell, K. Hall, C. Denegri Jr., Modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach, in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2004). AIAA Paper 2004-1696 Google Scholar
  81. J.P. Thomas, K.C. Hall, W.S. Clark, Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 40(5) (2012) Google Scholar
  82. P.G. Tucker, Computation of Unsteady Internal Flows: Fundamental Methods with Case Studies (Kluwer Academic, Norwell, 2001) CrossRefGoogle Scholar
  83. P.G. Tucker, Computation of unsteady turbomachinery flows: Part 1 progress and challenges. Prog. Aerosp. Sci. 47(7), 522–545 (2011a) CrossRefGoogle Scholar
  84. P.G. Tucker, Hybrid Hamilton-Jacobi-Poisson wall distance function model. Comput. Fluids 44(1), 130–142 (2011b) CrossRefGoogle Scholar
  85. P.G. Tucker, P.S. Keogh, On the dynamic thermal state in a hydrodynamic bearing with a whirling journal using CFD techniques. J. Tribol. 118(2), 356–363 (1996) CrossRefGoogle Scholar
  86. P.G. Tucker, C.L. Rumsey, R.E. Bartels, R.T. Biedron, Transport equation based wall distance computations aimed at flows with time-dependent geometry. NASA-TM 2003-212680 (2003) Google Scholar
  87. P.G. Tucker, C.L. Rumsey, P.R. Spalart, R.E. Bartels, R.T. Biedron, Computations of wall distances based on differential equations. AIAA J. 43(3), 539–549 (2005) CrossRefGoogle Scholar
  88. N.R. Vadlamani, High fidelity large eddy simulation of turbines: current status and future outlook. PhD thesis, University of Cambridge (2013) Google Scholar
  89. M. Vahdati, A.I. Sayma, C. Bréard, M. Imregun, Computational study of intake duct effects on fan flutter stability. AIAA J. 40(3), 408–418 (2002) CrossRefGoogle Scholar
  90. J.F. van Kampen, Acoustic pressure oscillations induced by confined turbulent premixed natural gas flames. PhD thesis, University of Twente (2006) Google Scholar
  91. J.A. Verdicchio, J.W. Chew, N.J. Hills, Coupled Fluid/solid Heat Transfer Computation for Turbine Discs. Proceedings of ASME Turbo. Expo. 2001 (2001-GT) (2001), p. 123. ASME Paper GT2001-0205 Google Scholar
  92. S. Vergne, J.M. Auger, F. Périé, A. Jacques, D. Nicolopoulos, Aeroelastic noise, in Large-Eddy Simulation for Acoustics, ed. by C. Wagner, T. Huttl, P. Sagaut (2007), pp. 272–293 Google Scholar
  93. M.R. Visbal, Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011) MathSciNetCrossRefGoogle Scholar
  94. C. Voigt, C. Frey, H. Kersken, Development of a generic surface mapping algorithm for fluid-structure interaction simulations in turbomachinery, in V European Conference on Computational Fluid Dynamics, Lisbon, Portugal (2010) Google Scholar
  95. L.B. Wigton, Optimizing CFD codes and algorithms for use on Cray computer, in Frontiers of Computational Fluid Dynamics (1998), pp. 1–15 Google Scholar
  96. J. Wissink, W. Rodi, DNS of a laminar separation bubble affected by free-stream disturbances. ERCOFTAC Ser. 9, 213–220 (2004) CrossRefGoogle Scholar
  97. H. Xia, P.G. Tucker, Finite volume distance field and its application to medial axis transforms. Int. J. Numer. Methods Eng. 82(1), 114–134 (2010) MathSciNetzbMATHGoogle Scholar
  98. H. Xia, P.G. Tucker, Fast equal and biased distance fields for medial axis transform with meshing in mind. Appl. Math. Model. 35(12), 5804–5819 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  99. H. Xia, P.G. Tucker, W.N. Dawes, Level sets for CFD in aerospace engineering. Prog. Aerosp. Sci. 46(7), 274–283 (2010) CrossRefGoogle Scholar
  100. S. Xu, D. Rempfer, J. Lumley, Turbulence over a compliant surface: numerical simulation and analysis. J. Fluid Mech. 478(1), 11–34 (2003) MathSciNetzbMATHGoogle Scholar
  101. G. Yang, D.M. Causon, D.M. Ingram, R. Saunders, P. Batten, A Cartesian cut cell method for compressible flows—Part B: moving body problems. Aeronaut. J. 101(1002), 57–65 (1997) Google Scholar
  102. S.Y. Yoon, Z. Lin, W. Jiang, P.E. Allaire, Flow-rate observers in the suppression of compressor surge using active magnetic bearings, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-70011 Google Scholar
  103. M. Zhang, A. Hou, S. Zhou, X. Yang, Analysis on flutter characteristics of transonic compressor blade row by a fluid-structure coupled method, in Proceedings of ASME Turbo Expo 2012 (2012). ASME Paper GT2012-69439 Google Scholar
  104. B. Zhong, P.G. Tucker, kl based hybrid LES/RANS approach and its application to heat transfer simulation. Int. J. Numer. Methods Fluids 23(10), 983–1005 (2004) CrossRefGoogle Scholar
  105. R.J. Zwaan, Data Set 1, NACA 64A006 Oscillating Flap. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982a), p. 1. Report No. 702 Google Scholar
  106. R.J. Zwaan, Data Set 4, Supercritical airfoil oscillatory pitching and oscillatory flap. Compendium of Unsteady Aerodynamics Measurements, AGARD (1982b), pp. 4.1–4.25. Report No. 702 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • P. G. Tucker
    • 1
  1. 1.Department of Engineering, Whittle LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations