Advertisement

Applications of Eddy Resolving Methods

  • P. G. Tucker
Chapter
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 104)

Abstract

The application of eddy resolving methods to a wide range of propulsive and airframe systems is reviewed. For propulsive systems the following areas are addressed: turbines, compressors, fans, internal air systems, turbine blade cooling and combustors. For airframes the following zones are looked at: airfoil and trailing edges flows, multi-component airfoils, swept and delta wings, full aircraft configurations, base flows, landing gear, cavity and other miscellaneous flows. The frequency of use for the different turbulence modelling techniques described in Chap.  3 is outlined. As might be expected, hybrid RANS-LES methods find much greater use for airframes. The grid densities used are contrasted with expected theoretically based estimates discussed in Chaps.  1 and  3. For propulsion system studies, simulations are found to be generally under resolved. Notably, for all of the above, levels of validation are defined. It is found that there is a lack of detailed validation data to explore in depth the performance of LES and thus refine it. This is especially so for turbomachinery. The need for LES best practices is again discussed.

Keywords

Turbines Compressors Fan Airfoil Trailing edge Multi-component airfoils Swept wing Delta wing Aircraft Base flow Landing gear Cavities 

References

  1. S. Acharya, S. Dutta, T.A. Myrum, R.S. Baker, Periodically developed flow and heat transfer in a ribbed duct. Int. J. Heat Mass Transf. 36(8), 2069–2082 (1993) CrossRefGoogle Scholar
  2. D. Ahlman, G. Brethouwer, A.V. Johansson, Direct numerical simulation of a plane turbulent wall-jet including scalar mixing. Phys. Fluids 19(6), 065102 (2007) CrossRefGoogle Scholar
  3. R. Allen, F. Mendonca, D. Kirkham, RANS and DES turbulence model predictions of noise on the M219 cavity at M=0.85. Int. J. Aeroacoust. 4(1), 135–152 (2005) CrossRefGoogle Scholar
  4. H.I. Andersson, M. Lygren, LES of open rotor-stator flow. Int. J. Heat Fluid Flow 27(4), 551–557 (2006) CrossRefGoogle Scholar
  5. A. Arnott, G. Schneider, K.P. Neitzke, J. Agocs, A. Schröder, B. Sammler, J. Kompenhans, Detailed characterisation, using piv, of flow around an airfoil in high-lift configuration, in Particle Image Velocimetry: Recent Improvements Proceedings of the EUROPIV, vol. 2 (2003) Google Scholar
  6. L.U. Axelsson, W.K. George, Spectral analysis of the flow in an intermediate turbine duct, in Proc. of ASME Turbo Expo 2008, Berlin, Germany, 9–13 June 2008. ASME Paper Number GT2008–51340 Google Scholar
  7. Y.S. Baik, J.M. Rausch, L.P. Bernal, M.V. Ol, Experimental investigation of pitching and plunging airfoils at Reynolds. number between 1×104 and 6×104. AIAA Paper Number AIAA–2009–4030 (2009) Google Scholar
  8. G.R. Baker, S.J. Barker, K.K. Bofah, P.G. Saffman, Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65(2), 325–336 (1974) CrossRefGoogle Scholar
  9. W. Balzer, H.F. Fasel, Direct numerical simulations of laminar separation bubbles on a curved plate: Part 1—simulation setup and uncontrolled flow, in Proc. of ASME Turbo Expo, San Antonio, Texas, USA, 3–7 June 2013a. ASME Paper Number GT2013–95277 Google Scholar
  10. W. Balzer, H.F. Fasel, Direct numerical simulations of laminar separation bubbles on a curved plate: Part 2—flow control using pulsed vortex generator jets, in Proc. of ASME Turbo Expo, San Antonio, Texas, USA, 3–7 June 2013b. ASME Paper Number GT2013–95278 Google Scholar
  11. R.S. Barlow, J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames, in Symposium (International) on Combustion, vol. 27 (1998), pp. 1087–1095 Google Scholar
  12. J.W. Baughn, X.J. Yan, M. Mesbah, The effect of Reynolds number on the heat transfer distribution from a flat plate to a turbulent impinging jet, in Proc. of ASME Winter Annual Meeting 1992, ASME HTD-vol. 226 (1992), pp. 1–7 Google Scholar
  13. R.A. Baurle, C.J. Tam, J.R. Edwards, H.A. Hassan, Hybrid simulation approach for cavity flows: blending, algorithm, and boundary treatment issues. AIAA J. 41(8), 1463–1480 (2003) CrossRefGoogle Scholar
  14. N.J. Bisek, D.P. Rizzetta, J. Poggie, Plasma control of a turbulent shock boundary-layer, interaction. AIAA J. (2013). doi: 10.2514/1.J052248 Google Scholar
  15. W.K. Blake, A statistical description of pressure and velocity fields at the trailing edges of a flat strut. Technical Report, David Taylor Naval Ship Research and Development Center, Rept. 4241, Bethesda, MD (1975) Google Scholar
  16. W.K. Blake, J.L. Gershfeld, The aeroacoustics of trailing edges. Front. Exp. Fluid. Mech. 1, 457–532 (1989) CrossRefGoogle Scholar
  17. D.J. Bodony, S.K. Lele, Review of the current status of jet noise predictions using large-eddy simulation (invited), in 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA (2006). AIAA Paper Number AIAA–2006–0468 Google Scholar
  18. D.J. Bodony, S.K. Leley, Jet noise prediction of cold and hot subsonic jets using large-eddy simulation, in 10th AIAA/CEAS Aeroacoustics Conference (2004). AIAA Paper Number AIAA–2004–3022 Google Scholar
  19. D.E. Bohn, A. Decker, H. Ma, M. Wolff, Influence of sealing air mass flow on the velocity distribution in and inside the rim seal of the upstream cavity of a 1.5-stage turbine, in Proc. of ASME Turbo Expo 2003, Atlanta, Georgia, USA, 16–19 June 2003. ASME Paper Number GT2003–38459 Google Scholar
  20. D.E. Bohn, A. Decker, N. Ohlendorf, R. Jakoby, Influence of an axial and radial rim seal geometry on hot gas ingestion into the upstream cavity of a 1.5-stage turbine, in Proc. of ASME Turbo Expo 2006, Barcelona, Spain, 8–11 May 2006. ASME Paper Number GT2006–90454 Google Scholar
  21. G. Boudier, L.Y.M. Gicquel, T. Poinsot, D. Bissieres, C. Bérat, Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber. Proc. Combust. Inst. 31(2), 3075–3082 (2007) CrossRefGoogle Scholar
  22. C.J. Bourdon, J.C. Dutton, Planar visualizations of large-scale turbulent structures in axisymmetric supersonic separated flows. Phys. Fluids 11, 201–213 (1999) zbMATHCrossRefGoogle Scholar
  23. C.J. Bourdon, J.C. Dutton, Shear layer flapping and interface convolution in a separated supersonic flow. AIAA J. 38(10), 1907–1915 (2000) CrossRefGoogle Scholar
  24. C.J. Bourdon, J.C. Dutton, Effects of boattailing on the turbulence structure of a compressible base flow. J. Spacecr. Rockets 38, 534–541 (2001) CrossRefGoogle Scholar
  25. P. Bradshaw, M.T. Gee, Turbulent wall jets with and without an external stream. Aeronaut. Res. Counc. R & M 3252 (1960) Google Scholar
  26. C. Breitsamter, Turbulente Strömungsstrukturen an Flugzeugkonfigurationen mit Vorderkantenwirbeln. PhD thesis, Technical University, Munich, January 1997 Google Scholar
  27. J. Bridges, C.A. Brown, Parametric testing of chevrons on single flow hot jets, in 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, May 2004. AIAA Paper Number AIAA–2004–2824 Google Scholar
  28. J. Bridges, C.A. Brown, Validation of the small hot jet acoustic rig for aeroacoustic research, in 11th AIAA Aeroacoustics Conference, Monterey, California, 23–25 May 2005. AIAA Paper Number AIAA–2005–0363 Google Scholar
  29. J. Bridges, M.P. Wernet, Measurements of the aeroacoustic sound source in hot jets. Technical Report NASA–TM–221508, NASA Glenn Research Centre (2004) Google Scholar
  30. J. Bridges, M.P. Wernet, Effect of temperature on jet velocity spectra, in 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), Rome, Italy, 21–23 May 2007. AIAA Paper Number AIAA–2007–3628 Google Scholar
  31. K.M. Britchford, A.P. Manners, J.J. McGuirk, S.J. Stevens, Measurement and prediction of low in annular s-shaped ducts. Exp. Therm. Fluid Sci. 9(2), 197–205 (1994) CrossRefGoogle Scholar
  32. V. Brunet, S. Deck, Zonal-detached eddy simulation of transonic buffet on a civil aircraft type configuration. AIAA Paper Number AIAA–2008–4152 (2008) Google Scholar
  33. R.K. Byskov, Large eddy simulation of flow structures in a centrifugal pump impeller. PhD thesis, Aalborg University, Denmark (2000) Google Scholar
  34. P.M. Cannon, G.S. Elliott, J.C. Dutton, Time-series axisymmetric base-pressure measurements with simultaneous near-wake visualizations. AIAA Paper Number AIAA–2005–5285 (2005) Google Scholar
  35. N. Ceresola, TU Munich, delta wing, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  36. N. Chauvet, S. Deck, L. Jacquin, Zonal detached eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007) CrossRefGoogle Scholar
  37. J.S. Chow, G.G. Zilliac, P. Bradshaw, Mean and turbulence measurements in the near field of a wingtip vortex. AIAA J. 35(10), 1561–1567 (1997a) CrossRefGoogle Scholar
  38. J. Chow, G. Zilliac, P. Bradshaw, Turbulence measurements in the near field of a wingtip vortex. Technical Report NASA–TM–110418, NASA (1997b) Google Scholar
  39. D. Coles, A.J. Wadcock, Flying-hot-wire study of flow past an naca 4412 airfoil at maximum lift. AIAA J. 17(4), 321–329 (1979) CrossRefGoogle Scholar
  40. Y. Colin, B. Aupoix, J. Boussuge, P. Chanez, Numerical simulation of the distortion generated by crosswind inlet flows, in Proceedings of the 18th ISABE Conference, Beijing, China (2007). Paper Number ISABE–2007–1210 Google Scholar
  41. S. Connell, M. Braaten, L. Zori, R. Steed, B. Hutchinson, G. Cox, A comparison of advanced numerical techniques to model transient flow in turbomachinery blade rows, in Proc. of ASME Turbo Expo 2011, Vancouver, BC, Canada, 6–11 June 2011. ASME Paper Number GT2011–45820 Google Scholar
  42. S. Connell, B. Hutchinson, P. Galpin, R. Campregher, P. Godin, The efficient computation of transient flow in turbine blade rows using transformation methods, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. ASME Paper Number GT2012–69019 Google Scholar
  43. D. Cooper, D.C. Jackson, B.E. Launder, G.X. Liao, Impinging jet studies for turbulence model assessment—I. Flow-field experiments. Int. J. Heat Mass Transf. 36(10), 2675–2684 (1993) CrossRefGoogle Scholar
  44. J.D. Coull, Wake induced transition in low pressure turbines. PhD thesis, Engineering Department, Cambridge University (2009) Google Scholar
  45. R.M. Cummings, S.A. Morton, J.R. Forsythe, Detached-Eddy simulation of slat and flap aerodynamics for a high-lift wing, in 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 5–8 January 2004. AIAA Paper Number AIAA–2004–1233 Google Scholar
  46. J. Dacles-Mariani, G.G. Zilliac, J.S. Chow, P. Bradshaw, Numerical/experimental study of a wingtip vortex in the near field. AIAA J. 33(9) (1995) Google Scholar
  47. S. Dahlström, L. Davidson, Large eddy simulation of the flow around an airfoil. AIAA Paper Number AIAA–2001–0425 (2001) Google Scholar
  48. J.W. Daily, R.E. Nece, Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Eng. 82, 217–232 (1960) CrossRefGoogle Scholar
  49. B.B. Dally, A.R. Masri, R.S. Barlow, G.J. Fiechtner, Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame 114(1–2), 119–148 (1998) CrossRefGoogle Scholar
  50. M.J.C. de Henshaw, M2129 cavity case: verification and validation data for computational unsteady aerodynamics. Technical Report RTO–TR–26, AC/323(AVT)TP/19, QinetiQ, UK, pp. 453–472 (2002) Google Scholar
  51. C.C. De Wiart, K. Hillewaert, P. Geuzaine, DNS of a low pressure turbine blade computed with the discontinuous Galerkin method, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012 Google Scholar
  52. J.R. DeBonis, Progress toward large-eddy simulations for prediction of realistic nozzle systems, in 44th AIAA Aerospace Sciences Meeting and Exhibit (2006). AIAA Paper Number AIAA–2006–487 Google Scholar
  53. J.R. Debonis, J.N. Scot, Large-eddy simulation of a turbulent compressible round jet. AIAA J. 40(7), 1346–1354 (2002) CrossRefGoogle Scholar
  54. S. Deck, Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005a) CrossRefGoogle Scholar
  55. S. Deck, Zonal-Detached-Eddy simulation of the flow around a high-lift configuration. AIAA J. 43(11), 2372–2384 (2005b) CrossRefGoogle Scholar
  56. S. Deck, Delayed detached eddy simulation of the end-effect regime and side-loads in an overexpanded nozzle flow. Shock Waves 19(3), 239–249 (2009a) zbMATHCrossRefGoogle Scholar
  57. S. Deck, TU Munich, three element airfoil, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009b) Google Scholar
  58. S. Deck, P. Thorigny, Unsteadiness of an axisymmetric separating-reattaching flow: numerical investigation. Phys. Fluids 19, 65–103 (2007) CrossRefGoogle Scholar
  59. J. Denecke, K. Dullenkopf, S. Wittig, H.J. Bauer, Experimental investigation of the total temperature increase and swirl development in rotating labyrinth seals, in Proc. of ASME Turbo Expo 2005 (2005). ASME Paper Number GT2005–47268 Google Scholar
  60. W. Devenport, R. Simpson, Time-dependent and time-averaged turbulence structure near the nose of a wing-body junction. J. Fluid Mech. 210(1), 23–55 (1990) CrossRefGoogle Scholar
  61. W.J. Devenport, M.C. Rife, S.I. Liapis, G.J. Follin, The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67–106 (1996) MathSciNetCrossRefGoogle Scholar
  62. G. Dufour, N. Gourdain, F. Duchaine, O. Vermorel, L.Y.M. Gicquel, J.F. Boussuge, T. Poinsot, Large Eddy Simulation Applications. VKI Lecture Series Numerical Investigations in Turbomachinery: the State of the Art (2009) Google Scholar
  63. K. Duraisamy, S.K. Lele, Evolution of isolated turbulent trailing vortices. Phys. Fluids 20, 035102 (2008) CrossRefGoogle Scholar
  64. P.A. Durbin, Separated flow computations with the kϵv-squared model. AIAA J. 33(4) (1995) Google Scholar
  65. S.J. Eastwood, P.G. Tucker, H. Xia, P. Carpenter, P. Dunkley, Hybrid LES computations and measurements of a small scale high speed coflowing jet. AIAA J. 48(5), 963–974 (2010) CrossRefGoogle Scholar
  66. Y. Elazar, R.P. Shreeve, Viscous flow in a controlled diffusion compressor cascade with increasing incidence. J. Turbomach. 112(2), 256–266 (1990) CrossRefGoogle Scholar
  67. J.G. Eriksson, R.I. Karlsson, J. Persson, An experimental study of a two-dimensional plane turbulent wall jet. Exp. Fluids 25(1), 50–60 (1998) CrossRefGoogle Scholar
  68. P.R. Farthing, C.A. Long, J.M. Owen, J.R. Pincombe, Rotating cavity with axial throughflow of cooling air: flow structure. J. Turbomach. 114(1), 237–246 (1992a) CrossRefGoogle Scholar
  69. P.R. Farthing, C.A. Long, J.M. Owen, J.R. Pincombe, Rotating cavity with axial throughflow of cooling air-heat transfer. J. Turbomach. 114(1), 229 (1992b) CrossRefGoogle Scholar
  70. M. Fenot, Etude du refroidissement par impact de jets. Application aux aubes de turbines. PhD thesis, Universite de Poitiers, Portiers, France (2004) Google Scholar
  71. N. Forestier, L. Jacquin, P. Geffroy, The mixing layer over a deep cavity at high-subsonic speed. J. Fluid Mech. 475(1), 101–145 (2003) zbMATHGoogle Scholar
  72. J.R. Forsythe, K.A. Hoffmann, R.M. Cummings, K.D. Squires, Detached-eddy simulation with compressibility corrections applied to a supersonic axisymmetric base flow. J. Fluids Eng. 124(4), 911–923 (2002) CrossRefGoogle Scholar
  73. J.R. Forsythe, K.D. Squires, K.E. Wurtzler, P.R. Spalart, Detached-eddy simulation of the f–15E at high alpha. J. Aircr. 41(2), 193–200 (2004) CrossRefGoogle Scholar
  74. S. Fu, Z. Xiao, H. Chen, Y. Zhang, J. Huang, Simulation of wing-body junction flows with hybrid RANS/LES methods. Int. J. Heat Fluid Flow 28(6), 1379–1390 (2007) CrossRefGoogle Scholar
  75. S. Fujimoto, Large eddy simulation of film cooling flows using octree hexahedral meshes, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. ASME Paper Number GT2012–70090 Google Scholar
  76. C. Fureby, Large eddy simulation modelling of combustion for propulsion applications. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2957–2969 (2009) zbMATHCrossRefGoogle Scholar
  77. C. Fureby, Y. Nilsson, K. Andersson, Large eddy simulation of supersonic base flow. AIAA Paper Number AIAA–99–0426 (1999) Google Scholar
  78. C. Fureby, N. Alin, N. Wikström, S. Menon, N. Svanstedt, L. Persson, D. Knight, R. Friedrich, W. Rodi, M. Lesieur et al., Large eddy simulation of high Reynolds number wall bounded flows. AIAA J. 42(3), 457–468 (2004) CrossRefGoogle Scholar
  79. A.J.M. Gamal, J.M. Vance, Labyrinth seal leakage tests: tooth profile, tooth thickness, and eccentricity effects. J. Eng. Gas Turbines Power 130(1), 012510 (2008) CrossRefGoogle Scholar
  80. F. Gand, Zonal detached eddy simulation of a civil aircraft with a deflected spoiler. AIAA J. 1–11 (2012) Google Scholar
  81. U. Ganz, S.A.L. Dlegg, P. Joppa, Measurement and prediction of broadband fan noise. AIAA Paper Number AIAA–98–2316 (1998a) Google Scholar
  82. U.W. Ganz, P.D. Joppa, T.J. Patten, D.F. Scharpf, Boeing 18–inch fan rig broadband noise test. Technical Report NASA–CR–1998–208704, NASA (1998b) Google Scholar
  83. A. Garbaruk, M. Shur, M. Strelets, A. Travin, NACA0021 at 60 degrees incidence, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009a) Google Scholar
  84. A. Garbaruk, M. Shur, M. Strelets, A. Travin, Supersonic base flow, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009b) Google Scholar
  85. A. Garcia-Sagrado, Boundary layer and trailing edge noise sources. PhD thesis, Engineering Department, Cambridge University (2007) Google Scholar
  86. A. Garcia-Sagrado, T. Hynes, Wall-pressure sources near an airfoil trailing edge under separated laminar boundary layers. AIAA J. 49(9), 1841–1856 (2011) CrossRefGoogle Scholar
  87. B. Gardarin, L. Jacquin, P. Geffroy, Experimental studies on a rudimentary four wheel landing gear. AIAA Paper Number AIAA–2008–3773 (2008) Google Scholar
  88. E. Garnier, S. Deck, Large-eddy simulation of transonic buffet over a supercritical airfoil. ERCOFTAC Ser. (2008). doi: 10.1007/978-90-481-3652-0_81 Google Scholar
  89. S. Gdadebo, Three dimensional separation in compressors. PhD thesis, Engineering Department, Cambridge University (2003) Google Scholar
  90. L.F.G. Geers, M.J. Tummers, K. Hanjalić, Experimental investigation of impinging jet arrays. Exp. Fluids 36(6), 946–958 (2004) CrossRefGoogle Scholar
  91. O. Gentilhomme, Turbine rim seal ingestion. PhD thesis, School of Engineering, University of Sussex (2004) Google Scholar
  92. O. Gentilhomme, N.J. Hills, A.B. Turner, J.W. Chew, Measurement and analysis of ingestion through a turbine rim seal. J. Turbomach. 125, 505–512 (2010) CrossRefGoogle Scholar
  93. B. Geurts, D. Holm, Leray and LANS—a modeling of turbulent mixing. J. Turbul. 7(10), 1–33 (2006) MathSciNetGoogle Scholar
  94. M. Goodhand, Compressor leading edges. PhD thesis, Engineering Department, Cambridge University (2010) Google Scholar
  95. M.N. Goodhand, R.J. Miller, Compressor leading edge spikes: a new performance criterion. J. Turbomach. 133(2), 021006 (2010) CrossRefGoogle Scholar
  96. E. Göttlich, A. Marn, R. Pecnik, F.J. Malzacher, O. Schennach, H.P. Pirker, The influence of blade tip gap variation on the flow through an aggressive S-shaped intermediate turbine duct downstream a transonic turbine stage: Part II—time-resolved results and surface flow, in Proc. of GT2007 ASME Turbo Expo 2007, Montreal, Canada, 14–17 May 2007. ASME Paper Number GT2007–28069 Google Scholar
  97. N. Gourdain, L.Y.M. Gicquel, E. Collado, Comparison of RANS and LES for prediction of wall heat transfer in a highly loaded turbine guide vane. AIAA J. Propuls. Power 28(2) (2012) Google Scholar
  98. S.M. Grace, W.G. Dewar, D.E. Wroblewski, Experimental investigation of the flow characteristics within a shallow wall cavity for both laminar and turbulent upstream boundary layers. Exp. Fluids 36(5), 791–804 (2004) CrossRefGoogle Scholar
  99. S.I. Green, A.J. Acosta, Unsteady flow in trailing vortices. J. Fluid Mech. 227(1), 107–134 (1991) CrossRefGoogle Scholar
  100. A. Hadjadj, Large-eddy simulation of shock/boundary-layer interaction. AIAA J. (2012, in press) Google Scholar
  101. C. Hah, Large eddy simulation of transonic flow field in NASA rotor 37, in 47th AIAA Aerospace Sciences Meeting (2009). AIAA Paper Number AIAA–2009–1061 Google Scholar
  102. C. Hah, M. Voges, M. Mueller, H.P. Schiffer, Investigation of unsteady flow behaviour in transonic compressor rotors with LES and PIV measurements. ISABE. 2009 Paper No. Technical Report, ISABE–2009–02 (2009) Google Scholar
  103. M. Hahn, D. Drikakis, Implicit large-eddy simulation of swept-wing flow using high-resolution methods. AIAA J. 47(3), 618–630 (2009) CrossRefGoogle Scholar
  104. E.E. Halila, D.T. Lenahan, T.T. Thomas, Energy efficient engine high pressure turbine test hardware detailed design report. Technical Report NASA–CR–167955, NASA (1982) Google Scholar
  105. C.A. Hall, T.P. Hynes, Measurements of intake separation hysteresis in a model fan and nacelle rig. J. Propuls. Power 22(4), 872–879 (2006) CrossRefGoogle Scholar
  106. D.E. Halstead, D.C. Wisler, T.H. Okiishi, G.J. Walker, H.P. Hodson, H.W. Shin, Boundary layer development in axial compressors and turbines: Part 1 of 4—composite picture. J. Turbomach. 119(1), 114–127 (1997) CrossRefGoogle Scholar
  107. A. Hamed, D. Basu, K. Das, Detached eddy simulations of supersonic flow over cavity. AIAA Paper Number AIAA–2003–0549 (2003) Google Scholar
  108. J.C. Han, P.R. Chandra, S.C. Lau, Local heat/mass transfer distributions around sharp 180 deg turns in two-pass smooth and rib-roughened channels. ASME Trans. J. Heat Transf. 110, 91–98 (1988) CrossRefGoogle Scholar
  109. M. Harper-Bourne, Some observations on the noise of heated jets, in 13th AIAA/CEAS Aeroacoustics Conf., Rome, Italy, 21–23 May 2007. AIAA Paper Number AIAA–2007–3632 Google Scholar
  110. L. He, Efficient computational model for nonaxisymmetric flow and heat transfer in rotating cavity. ASME J. Turbomach. 133, 021018 (2011) CrossRefGoogle Scholar
  111. L.S. Hedges, A.K. Travin, P.R. Spalart, Detached-eddy simulations over a simplified landing gear. J. Fluids Eng. 124(2), 413–423 (2002) CrossRefGoogle Scholar
  112. I. Helms, Effect of non-uniform inlet turbulence distributions on high-pressure turbine heat transfer. Master’s thesis, Oxford University (2011) Google Scholar
  113. J.L. Herrin, J.C. Dutton, Supersonic base flow experiments in the near wake of a cylindrical afterbody. AIAA J. 32(1) (1994a) Google Scholar
  114. J.L. Herrin, J.C. Dutton, Supersonic near-wake afterbody boattailing effects on axisymmetric bodies. J. Spacecr. Rockets 31(6), 1021–1028 (1994b) CrossRefGoogle Scholar
  115. J.L. Herrin, J.C. Dutton, Effect of a rapid expansion on the development of compressible free shear layers. Phys. Fluids 7, 159–171 (1995) CrossRefGoogle Scholar
  116. J.L. Herrin, J.C. Dutton, The turbulence structure of a reattaching axisymmetric compressible free shear layer. Phys. Fluids 9, 3502–3512 (1997) CrossRefGoogle Scholar
  117. C.G. Himmel, Ultra-high lift blades for low pressure turbines. PhD thesis, Engineering Department, Cambridge University (2010) Google Scholar
  118. G.V. Hobson, D.J. Hansen, D.G. Schnorenberg, D.V. Grove, Effect of Reynolds number on separation bubbles on compressor blades in cascade. J. Propuls. Power 17(1), 154–162 (2001) CrossRefGoogle Scholar
  119. B.M. Holley, S. Becz, L.S. Langston, Measurement and calculation of turbine cascade endwall pressure and shear stress. J. Turbomach. 128(2), 232–239 (2006) CrossRefGoogle Scholar
  120. D.S. Holloway, J.H. Leylek, F.A. Buck, Pressure-side bleed film cooling: Part I—steady framework for experimental and computational results, in Proc. of ASME Turbo Expo 2002 (2002a). ASME Paper Number GT2002–30471 Google Scholar
  121. D.S. Holloway, J.H. Leylek, F.A. Buck, Pressure-side bleed film cooling: Part II—unsteady framework for experimental and computational results, in Proc. of ASME Turbo Expo 2002 (2002b). ASME Paper Number GT2002–30472 Google Scholar
  122. R.J. Howell, Wake-separation bubble interactions in low Reynolds number turbomachinery. PhD thesis, Engineering Department, Cambridge University (1999) Google Scholar
  123. M. Inagaki, T. Kondoh, Y. Nagano, A mixed-time-scale sgs model with fixed model-parameters for practical LES. Eng. Turbul. Model. Exp. 257–266 (2002) Google Scholar
  124. I.V. Iourokina, S.K. Lele, Towards large eddy simulation of film-cooling flows on a model turbine blade leading edge, in 43rd Aerospace Sciences Exhibit (2005). AIAA Paper Number AIAA–2005–0670 Google Scholar
  125. M. Itoh, Experiments on the turbulent flow in the narrow clearance between a rotating and a stationary disk. Turbul. Flows 1995, 27–32 (1995) Google Scholar
  126. M. Itoh, Y. Yamada, S. Imao, M. Gonda, Experiments on turbulent flow due to an enclosed rotating disk. Exp. Therm. Fluid Sci. 5(3), 359–368 (1992) CrossRefGoogle Scholar
  127. M.C. Jacob, J. Boudet, D. Casalino, M. Michard, A rod-airfoil experiment as a benchmark for broadband noise modeling. Theor. Comput. Fluid Dyn. 19(3), 171–196 (2005) zbMATHCrossRefGoogle Scholar
  128. L. Jacquin, P. Molton, S. Deck, B. Maury, D. Soulevant, An experimental study of shock oscillation over a transonic supercritical profile. AIAA Paper Number AIAA–2005–4902 (2005) Google Scholar
  129. J.R. Janssen, J.C. Dutton, Time-series analysis of supersonic base-pressure fluctuations. AIAA J. 42(3), 605–613 (2004) CrossRefGoogle Scholar
  130. R.J. Jefferson-Loveday, P.G. Tucker, LES of impingement heat transfer on a concave surface. Numer. Heat Transf., Part A, Appl. 58(4), 247–271 (2010) CrossRefGoogle Scholar
  131. R.J. Jefferson-Loveday, P.G. Tucker, Wall-resolved LES and zonal LES of round jet impingement heat transfer on a flat plate. Numer. Heat Transf., Part B, Fundam. 59(3), 190–208 (2011) CrossRefGoogle Scholar
  132. R.J. Jefferson-Loveday, P.G. Tucker, N.R. Vadlamani, J.D. Northall, Differential equation specification of integral turbulence length scales, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. ASME Paper Number GT2012–68091 Google Scholar
  133. T. Jimbo, D. Biswas, Y. Yokono, Y. Niizeki, A high-order LES turbulent model to study unsteady flow characteristics in a high pressure turbine cascade, in Proc. of ASME Turbo Expo 2008 (2008). ASME Paper Number GT2008–51458 Google Scholar
  134. P.B.V. Johansson, L.U. Axelsson, Numerical and experimental analysis of the flow in an aggressive intermediate turbine duct, in Proc. of ASME Turbo Expo 2009, Orlando, Florida, USA, 8–12 June 2009. ASME Paper Number GT2009–59299 Google Scholar
  135. J. Joo, P. Durbin, Simulation of turbine blade trailing edge cooling. J. Fluids Eng. 131, 021102 (2009) CrossRefGoogle Scholar
  136. J.C. Jouhaud, L.Y.M. Gicquel, B. Enaux, M.J. Esteve, Large-eddy-simulation modeling for aerothermal predictions behind a jet in crossflow. AIAA J. 45(10), 2438–2447 (2007) CrossRefGoogle Scholar
  137. S.C. Kacker, J.H. Whitelaw, The effect of slot height and slot-turbulence intensity on the effectiveness of the uniform density, two-dimensional wall jet (impervious wall effectiveness of two dimensional wall jet, discussing effectiveness dependence on slot height and turbulence intensity). ASME Trans., Ser. C, J. Heat Transf. 90, 469–475 (1968a) CrossRefGoogle Scholar
  138. S.C. Kacker, J.H. Whitelaw, Some properties of the two-dimensional, turbulent wall jet in a moving stream (open circuit wind tunnel experiment to measure properties of two dimensional plane turbulent wall jet in moving stream). ASME Trans., Ser. E, J. Appl. Mech. 35, 641–651 (1968b) CrossRefGoogle Scholar
  139. S.C. Kacker, J.H. Whitelaw, An experimental investigation of the influence of slot-lip-thickness on the impervious-wall effectiveness of the uniform-density, two-dimensional wall jet. Int. J. Heat Mass Transf. 12(9), 1196–1201 (1969) CrossRefGoogle Scholar
  140. S.C. Kacker, J.H. Whitelaw, The turbulence characteristics of two-dimensional wall-jet and wall-wake flows. J. Appl. Mech. 38, 239 (1971) CrossRefGoogle Scholar
  141. C.K. Kang, Y. Baik, L. Bernal, M.V. Ol, W. Shyy, Fluid dynamics of pitching and plunging airfoils of Reynolds number between 1×104 and 6×104. AIAA–2009–0536 (2009) Google Scholar
  142. M.K. Karakasis, E.M.J. Naylor, R.J. Miller, H.P. Hodson, The effect of an upstream compressor on a non-axisymmetric s-duct. Glasgow, UK, June 2010. ASME Paper Number GT–2010–2340414–18 Google Scholar
  143. N. Karthikeyan, L. Venkatakrishnan, Application of photogrammetry to surface flow visualization. Exp. Fluids 50(3), 689–700 (2011) CrossRefGoogle Scholar
  144. C. Kato, M. Kaiho, A. Manabe, An overset finite-element large-eddy simulation method with applications to turbomachinery and aeroacoustics: flow simulation and modeling. J. Appl. Mech. 70(1), 32–43 (2003a) zbMATHCrossRefGoogle Scholar
  145. C. Kato, H. Mukai, A. Manabe, Large-eddy simulation of unsteady flow in a mixed-flow pump. Int. J. Rotating Mach. 9(5), 345–351 (2003b) Google Scholar
  146. S. Kawai, K. Fujii, Computational study of supersonic base flow using hybrid turbulence methodology. AIAA J. 43(6), 1265–1275 (2005) CrossRefGoogle Scholar
  147. M.R. Khorrami, M.E. Berkman, F. Li, B.A. Singer, Computational simulations of a three-dimensional high-lift wing. AIAA Paper Number AIAA–2002–2804 (2002) Google Scholar
  148. N.S. Kim, Analyse expérimentale d’un jet turbulent impactant sur une plaque plane et sur un obstacle de section carrée. PhD thesis, Universite Paul Sabatier Toulouse III, Toulouse, France (2005) Google Scholar
  149. W.W. Kim, S. Menon, An unsteady incompressible Navier-Stokes solver for large eddy simulation of turbulent flows. Int. J. Numer. Methods Fluids 31(6), 983–1017 (1999) zbMATHCrossRefGoogle Scholar
  150. P. Kjellgren, N. Anderberg, I. Wygnanski, Download alleviation by periodic excitation on a typical tilt-rotor configuration-computation and experiment. AIAA Paper Number AIAA–2000–2697 (2000) Google Scholar
  151. C. Klostermeier, Investigation into the capability of large eddy simulation for turbomachinery design. PhD thesis, Engineering Department, University of Cambridge (2008) Google Scholar
  152. T. Knopp, K. Weinman, D. Schwamborn, Oscillating airfoil NACA0012 at 15 degrees—a basic case for aero-elasticity, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  153. U. Köller, R. Mönig, B. Kösters, H.A. Schreiber, Development of advanced compressor airfoils for heavy-duty gas turbines—Part I: design and optimization. J. Turbomach. 122(3), 397–405 (2000) CrossRefGoogle Scholar
  154. M. Konopka, M. Meinke, W. Schröder, Large-eddy simulation of shock/cooling-film interaction. AIAA J. 50(10), 2102–2114 (2012) CrossRefGoogle Scholar
  155. J.E. Kopriva, G.M. Laskowski, M. Reza, H. Shiekhi, Assessment of scale resolution on high pressure turbine blade wakes via URANS and LES at engine scale conditions, in Proc. of ASME Turbo. Expo., San Antonio, Texas, USA (2013), pp. 3–7. ASME Paper Number GT2013–94285 Google Scholar
  156. B. Kosovic, Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech. 336(1), 151–182 (1997) zbMATHCrossRefGoogle Scholar
  157. B. Küsters, H.A. Schreiber, U. Köller, R. Mönig, N.A. Cumpsty, Development of advanced compressor airfoils for heavy-duty gas turbines: Part II: experimental and theoretical analysis. Discussion. J. Turbomach. 122(3), 406–415 (2000) CrossRefGoogle Scholar
  158. G. Lalizel, Q. Sultan, M. Fenot, E. Dorignac, Aerothermal study of periodic pulsed jet issuing into a crossflow: application to temperature mixture near wall, in 7th Int. Symposium on Turbulence, Heat and Mass Transfer, Palmero, Sicily, Italy, 24–27 September 2012 Google Scholar
  159. L.S. Langston, Crossflows in a turbine cascade passage. ASME J. Eng. Power 102(4), 866–874 (1980) CrossRefGoogle Scholar
  160. L.S. Langston, M.L. Nice, R.M. Hooper, Three-dimensional flow within a turbine cascade passage. J. Eng. Power 99, 21–28 (1977) CrossRefGoogle Scholar
  161. R. Langtry, P. Spalart, Detached eddy simulation of a nose landing-gear cavity, in IUTAM Symposium on Unsteady Separated Flows and Their Control, ed. by M. Braza, K. Hourigan (2009), pp. 357–366 CrossRefGoogle Scholar
  162. R. Laraufie, S. Deck, Zonal detached eddy simulation (zdes) study of a 3d curved duct, in 7th Int. Symposium on Turbulence, Heat and Mass Transfer, Palmero, Sicily, Italy, 24–27 September 2012 Google Scholar
  163. L. Larchevêque, P. Sagaut, I. Mary, O. Labbé, P. Comte, Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids 15, 193 (2003) CrossRefGoogle Scholar
  164. S. Lardeau, M. Leschziner, T. Zaki, Large eddy simulation of transitional separated flow over a flat plate and a compressor blade. Flow Turbul. Combust. 88(1–2), 19–44 (2012) zbMATHCrossRefGoogle Scholar
  165. S.J. Lawson, G.N. Barakos, P. Nayyar, Appendix for M219 cavity flow: computations with and without bay doors, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  166. B. Lazos, Surface topology on the wheels of a generic four-wheel landing gear. AIAA J. 40(12), 2402–2411 (2002a) CrossRefGoogle Scholar
  167. B.S. Lazos, Mean flow features around the inline wheels of four-wheel landing gear. AIAA J. 40(2), 193–198 (2002b) CrossRefGoogle Scholar
  168. B.S. Lazos, Reynolds stresses around the wheels of a simplified four-wheel landing gear. AIAA J. 42(1), 196–198 (2004) CrossRefGoogle Scholar
  169. F. Le Chuiton, A.D. Alascio, G. Barakos, R. Steijl, D. Schwamborn, H. Lu-deke, EC145 helicopter fuselage—an industrial case, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  170. B.H.K. Lee, Transonic buffet of a supercritical airfoil. Aeronaut. J. 94(935), 143–152 (1990) Google Scholar
  171. D.H. Lee, Y.S. Chung, S.Y. Won, The effect of concave surface curvature on heat transfer from a fully developed round impinging jet. Int. J. Heat Mass Transf. 42(13), 2489–2497 (1999) CrossRefGoogle Scholar
  172. K. Lehmann, Heat Transfer and aerodynamics of over-shroud leakage flows in a high pressure turbine. PhD thesis, Engineering Department, University of Cambridge (2009) Google Scholar
  173. S. Leicher, FA–5 configuration, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  174. J. Leray, Sur les movements d’un fluide visqueux remplaisant l’espace. Acta Math. 64, 193 (1934) MathSciNetCrossRefGoogle Scholar
  175. M.A. Leschziner, F. Tessicini, Separated flow behind an aerofoil trailing edge without camber, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  176. M. Leschziner, N. Li, F. Tessicini, M. Leschziner, N. Li, F. Tessicini, Simulating flow separation from continuous surfaces: routes to overcoming the Reynolds number barrier. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2885–2903 (2009) zbMATHCrossRefGoogle Scholar
  177. J. Li, Hybrid RANS/LES modelling of OGV/prediffuser flow. PhD thesis, Department of Aeronautical and Automotive Engineering, Loughborough University (2012) Google Scholar
  178. N. Li, M.A. Leschziner, Large-eddy simulation of separated flow over a swept wing with approximate near-wall modelling. Aeronaut. J. 111(1125), 689–697 (2007) Google Scholar
  179. Y. Liu, P.G. Tucker, G. Lo Iacono, Comparison of zonal RANS and LES for a non-isothermal ribbed channel flow. Int. J. Heat Fluid Flow 27(3), 391–401 (2006) CrossRefGoogle Scholar
  180. D.P. Lockard, M.R. Khorrami, F. Li, High resolution calculation of a simplified landing gear. AIAA Paper Number AIAA–2004–2887 (2004) Google Scholar
  181. C.A. Long, P.G. Tucker, Shroud heat transfer measurements from a rotating cavity with an axial throughflow of air. J. Turbomach. 116(3) (1994) Google Scholar
  182. M. Lygren, H.I. Andersson, Turbulent flow between a rotating and a stationary disk. J. Fluid Mech. 426(1), 297–326 (2001) zbMATHCrossRefGoogle Scholar
  183. M. Lygren, H.I. Andersson, Turbulence statistics in an open rotor-stator configuration. Phys. Fluids 14, 1137–1145 (2002) CrossRefGoogle Scholar
  184. D. Lytle, B.W. Webb, Air jet impingement heat transfer at low nozzle-plate spacings. Int. J. Heat Mass Transf. 37(12), 1687–1697 (1994) CrossRefGoogle Scholar
  185. W. Ma, X. Ottavy, L. Lu, F. Leboeuf, F. Gao, Experimental study of corner stall in a linear compressor cascade. Chin. J. Aeronaut. 24(3), 235–242 (2011) CrossRefGoogle Scholar
  186. P. Martini, A. Schulz, Experimental and numerical investigation of trailing edge film cooling by circular coolant wall jets ejected from a slot with internal rib arrays. J. Turbomach. 126(2), 229–236 (2004) CrossRefGoogle Scholar
  187. P. Martini, A. Schulz, C.F. Whitney, E. Lutum, Experimental and numerical investigation of trailing edge film cooling downstream of a slot with internal rib arrays. Proc. Inst. Mech. Eng. A, J. Power Energy 217(4), 393–401 (2003) CrossRefGoogle Scholar
  188. P. Martini, A. Schulz, H.J. Bauer, C.F. Whitney, Detached eddy simulation of film cooling performance on the trailing edge cutback of gas turbine airfoils. J. Turbomach. 128(2), 292–299 (2006a) CrossRefGoogle Scholar
  189. P. Martini, A. Schulz, H.J. Bauer, C.F. Whitney, Film cooling effectiveness and heat transfer on the trailing edge cutback of gas turbine airfoils with various internal cooling designs. J. Turbomach. 128(1), 196–205 (2006b) CrossRefGoogle Scholar
  190. I. Mary, P. Sagaut, Large eddy simulation of flow around an airfoil near stall. AIAA J. 40(6), 1139–1145 (2002) CrossRefGoogle Scholar
  191. K. Matsuura, C. Kato, Large-eddy simulation of compressible transitional cascade flows with and without incoming free-stream turbulence. JSME Int. J., Ser. B 49(3), 660–669 (2006) CrossRefGoogle Scholar
  192. N.E. May, C.A. McHugh, A.J. Peace, An investigation of two intake/S-bend diffuser geometries using the Sauna CFD system—phase 1. Aircraft Research Association, MEMO 386, 1993 Google Scholar
  193. J.J. McGuirk, Development, validation and application of large eddy simulation for gas-turbine combustion system fluid mechanics, in Proc. 2nd ISJPPE, 2nd Int. Symposium on Jet Propulsion and Power Engineering Gulin, China, 22–26 September 2008. Paper Number 2008–ISJPPE–0006 Google Scholar
  194. J.J. McGuirk, A. Taylor, Numerical simulation of gas turbine combustion processes-present status and future trends. J. Gas Turbine Soc. Jpn. 30(5), 347–361 (2002) Google Scholar
  195. W.A. McMullan, G.J. Page, Large eddy simulation of a compressor cascade and the influence of spanwise domain. J. Power Energy 225(6), 817–831 (2011) CrossRefGoogle Scholar
  196. G. Medic, O. Sharma, Large-eddy simulation of flow in a low-pressure turbine cascade, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. ASME Paper Number GT2012–68878 Google Scholar
  197. Y. Mei, A. Guha, Implicit numerical simulation of transonic flow through turbine cascades on unstructured grids. Proc. Inst. Mech. Eng. A, J. Power Energy 219(1), 35–47 (2005) CrossRefGoogle Scholar
  198. C.P. Mellen, J. Fröhlich, W. Rodi, Lessons from LESFOIL project on large-eddy simulation of flow around an airfoil. AIAA J. 41(4), 573–581 (2003) CrossRefGoogle Scholar
  199. F. Mendonca, O. Baris, G. Capon, Simulation of radial compressor aeroacoustics using CFD, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. ASME Paper Number GT2012–70028 Google Scholar
  200. K. Menzies, Large eddy simulation applications in gas turbines. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2827–2838 (2009) CrossRefGoogle Scholar
  201. N.L. Messersmith, J.C. Dutton, Characteristic features of large structures in compressible mixing layers. AIAA J. 34(9), 1814–1821 (1996) CrossRefGoogle Scholar
  202. V. Michelassi, J.G. Wissink, J. Fröhlich, W. Rodi, Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes. AIAA J. 41(11), 2143–2156 (2003a) CrossRefGoogle Scholar
  203. V. Michelassi, J.G. Wissink, W. Rodi, Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison. J. Power Energy 217(4), 403–411 (2003b) CrossRefGoogle Scholar
  204. R. Mittal, S. Venkatasubramanian, F.M. Najjar, Large-eddy simulation of flow through a low-pressure turbine cascade. AIAA Paper Number AIAA–2001–2560 (2001) Google Scholar
  205. M.V. Morales, The effect of compressibility on unsteady boundary layers in high lift low pressure turbines. PhD thesis, Engineering Department, University of Cambridge (2004) Google Scholar
  206. S.A. Morton, R.M. Cummings, D.B. Kholodar, High resolution turbulence treatment of f/a–18 tail buffet. J. Aircr. 44(6) (2007) Google Scholar
  207. S. Murari, S. Sunnam, J.S. Liu, Steady state and transient cfd studies on aerodynamic performance validation of a high pressure turbine, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012. ASME Paper Number GT2012–68853 Google Scholar
  208. A. Murata, S. Mochizuki, Large eddy simulation with a dynamic subgrid-scale model of turbulent heat transfer in an orthogonally rotating rectangular duct with transverse rib turbulators. Int. J. Heat Mass Transf. 43(7), 1243–1259 (2000) zbMATHCrossRefGoogle Scholar
  209. C. Muthanna, Flowfield downstream of a compressor cascade with tip leakage. PhD thesis, Virginia Polytechnic Institute and State University (1998) Google Scholar
  210. Y. Nagano, H. Hattori, T. Houra, DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. Int. J. Heat Fluid Flow 25(3), 393–403 (2004) CrossRefGoogle Scholar
  211. W.B. Nicoll, J.H. Whitelaw, The effectiveness of the uniform density, two-dimensional wall jet. Int. J. Heat Mass Transf. 10(5), 623–639 (1967) CrossRefGoogle Scholar
  212. M.V. Ol, L. Bernal, C.K. Kang, W. Shyy, Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp. Fluids 46(5), 883–901 (2009) CrossRefGoogle Scholar
  213. T.S.D. O’Mahoney, Large-eddy simulation of turbine rim seals. PhD thesis, School of Engineering, University of Surrey (2011) Google Scholar
  214. T.S.D. O’Mahoney, N.J. Hills, J.W. Chew, T. Scanlon, Large-eddy simulation of rim seal ingestion, in Proc. of ASME Turbo Expo 2010, Glasgow, UK, 14–18 June 2010. ASME Paper Number GT2010–22962 Google Scholar
  215. M. Opiela, R. Keinke, W. Schroder, LES of wake-blade interaction, in Proc. of the 4th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Firenze, Italy, 20–23 March 2001. AIAA Paper Number AIAA–2011–2881 Google Scholar
  216. M.M. Opoka, The effect of upstream and downstream blade rows on transition in low pressure turbines. PhD thesis, Engineering Department, University of Cambridge (2007) Google Scholar
  217. L.R. Owens, B.G. Allan, S.A. Gorton, Boundary-layer-ingesting inlet flow control. J. Aircr. 45(4), 1431–1440 (2008) CrossRefGoogle Scholar
  218. J. Panda, Two point space-time correlation of density fluctuations measured in high velocity free jets. Technical Report NASA–CR–2006–214222, NASA (2006) Google Scholar
  219. J. Panda, R.G. Seasholtz, Velocity and temperature measurement in supersonic free jets using spectrally resolved Rayleigh scattering. Technical Report NASA–TM–2004–212391, NASA (2004) Google Scholar
  220. J. Panda, R.G. Seasholtz, K.A. Elam, A.F. Mielke, D.G. Eck, Effect of heating on turbulent density fluctuations and noise generation from high speed jets, in 10th AIAA Aeroacoustics Conference (2004). AIAA Paper Number AIAA–2004–3016 Google Scholar
  221. K. Paschal, L. Jenkins, C. Yao, Unsteady slat-wake characteristics of a high-lift configuration. AIAA Paper Number AIAA–2000–0139 (2000) Google Scholar
  222. W.R. Pauley, J.K. Eaton, Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J. 26(7), 816–823 (1988) CrossRefGoogle Scholar
  223. S.-H. Peng, M219 cavity flow, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  224. G. Petit, M. Mallet, Contribution of Dassault to DESider, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  225. A. Pfau, M. Treiber, M. Sell, G. Gyarmathy, Flow interaction from the exit cavity of an axial turbine blade row labyrinth seal. J. Turbomach. 123(2), 342–352 (2001) CrossRefGoogle Scholar
  226. A. Pfau, A.I. Kalfas, R.S. Abhari, Making use of labyrinth interaction flow. ASME Trans. J. Turbomach. 129(1), 164–174 (2007) CrossRefGoogle Scholar
  227. J.R. Pietrzyk, D.G. Bogard, M.E. Crawford, Effects of density ratio on the hydrodynamics of film cooling. J. Turbomach. 112, 437–443 (1990) CrossRefGoogle Scholar
  228. H. Pitsch, Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006) MathSciNetCrossRefGoogle Scholar
  229. I. Popovic, Aerothermal investigation of hub leakage flows in high-pressure turbines. PhD thesis, Engineering Department, University of Cambridge (2010) Google Scholar
  230. G. Rau, M. Cakan, D. Moeller, T. Arts, The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel. J. Turbomach. 120(2), 368–375 (1988) CrossRefGoogle Scholar
  231. B. Raverdy, I. Mary, P. Sagaut, N. Liamis, High-resolution large-eddy simulation of flow around low-pressure turbine blade. AIAA J. 41(3), 390–397 (2003) CrossRefGoogle Scholar
  232. H.J. Rehder, A. Dannhauer, Experimental investigation of turbine leakage flows on the three-dimensional flow field and endwall heat transfer. J. Turbomach. 129(3), 608–618 (2007) CrossRefGoogle Scholar
  233. A.J. Revell, T.J. Craft, D.R. Laurence, Turbulence modelling of unsteady turbulent flows using the stress strain lag model. Flow Turbul. Combust. 86(1), 129–151 (2011) zbMATHCrossRefGoogle Scholar
  234. C.M. Rhie, W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983) zbMATHCrossRefGoogle Scholar
  235. D.P. Rizzetta, M.R. Visbal, Large-eddy simulation of supersonic cavity flowfields including flow control. AIAA J. 41(8), 1452–1462 (2003) CrossRefGoogle Scholar
  236. D.P. Rizzetta, M.R. Visbal, P.E. Morgan, A high-order compact finite-difference scheme for large-eddy simulation of active flow control. Prog. Aerosp. Sci. 44(6), 397–426 (2008) CrossRefGoogle Scholar
  237. B. Rosic, The control of shroud leakage flows in low aspect ratio multistage turbines. PhD thesis, Engineering Department, University of Cambridge (2006) Google Scholar
  238. S. Roy, S. Kapadia, J.D. Heidmann, Film cooling analysis using des turbulence model, in Proceedings of ASME Turbo Expo, Citeseer (2003), pp. 16–19 Google Scholar
  239. A. Rozati, D.K. Tafti, Large eddy simulation of leading edge film cooling: Part I—computational domain and effect of coolant pipe inlet condition, in Proc. of ASME Turbo Expo 2007, Montreal, Canada, 14–17 May 2007. ASME Paper Number GT2007–27689 Google Scholar
  240. A. Rozati, D.K. Tafti, Large eddy simulation of leading edge film cooling—Part II: heat transfer and effect of blowing ratio. J. Turbomach. 130, 041015 (2008) CrossRefGoogle Scholar
  241. P. Sagaut, LES and DNS simulation of turbomachinery flows, in Recent Developments in Numerical Methods for Turbomachinery Flows. VKI Lecture (2001) Google Scholar
  242. P. Sagaut, S. Deck, Large eddy simulation for aerodynamics: status and perspectives. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2849–2860 (2009) zbMATHCrossRefGoogle Scholar
  243. A.K. Saha, S. Acharya, Flow and heat transfer in an internally ribbed duct with rotation: an assessment of large eddy simulations and unsteady Reynolds-averaged Navier-Stokes simulations. J. Turbomach. 127(2), 306–320 (2005) CrossRefGoogle Scholar
  244. R.D. Sandberg, Numerical investigation of turbulent supersonic axisymmetric wakes. J. Fluid Mech. 1(1), 1–33 (2012) Google Scholar
  245. R.D. Sandberg, H.F. Fasel, Direct numerical simulations of transitional supersonic base flows. AIAA Paper Number AIAA–2005–98 (2005) Google Scholar
  246. R.D. Sandberg, H.F. Fasel, Numerical investigation of transitional supersonic axisymmetric wakes. J. Fluid Mech. 563(1), 1–41 (2006a) zbMATHCrossRefGoogle Scholar
  247. R.D. Sandberg, H.F. Fasel, Direct numerical simulations of transitional supersonic base flows. AIAA J. 44(4), 848–858 (2006b) CrossRefGoogle Scholar
  248. S. Sarkar, Effects of passing wakes on a separating boundary layer along a low-pressure turbine blade through large-eddy simulation. J. Power Energy 221(4), 551–564 (2007) CrossRefGoogle Scholar
  249. S. Sarkar, Identification of flow structures on a lp turbine blade due to periodic passing wakes. J. Fluids Eng. 130(6), 061103 (2008) CrossRefGoogle Scholar
  250. S. Sarkar, Influence of wake structure on unsteady flow in a low pressure turbine blade passage. J. Turbomach. 131(4) (2009) Google Scholar
  251. S. Sarkar, P.R. Voke, LES of Passing Wakes Influencing Transition on Turbine Blades. Number ERCOFTAC Series, Direct and Large-Eddy Simulation V (Kluwer Academic, Dordrecht, 2003) Google Scholar
  252. S. Sarkar, P.R. Voke, Large-eddy simulation of unsteady surface pressure over a low-pressure turbine blade due to interactions of passing wakes and inflexional boundary layer. J. Turbomach. 128(2), 221–231 (2006) CrossRefGoogle Scholar
  253. J.U. Schlüter, Large eddy simulations of flow and mixing in jets and swirl flows: application to a gas turbine. PhD thesis, INPT, Toulouse, France (2000) Google Scholar
  254. H. Schneider, D. von Terzi, H.J. Bauer, Large-eddy simulations of trailing-edge cutback film cooling at low blowing ratio. Int. J. Heat Fluid Flow 31(5), 767–775 (2010) CrossRefGoogle Scholar
  255. P. Schuler, K. Dullenkopf, H.J. Bauer, Investigation of the influence of different rim seal geometries in a low-pressure turbine, in Proc. of ASME Turbo Expo (2011). ASME Paper Number GT2011–45682 Google Scholar
  256. V. Schulte, Unsteady separated boundary layers in axial-flow turbomachinery. PhD thesis, Engineering Department, University of Cambridge (1995) Google Scholar
  257. A.X. Sengissen, J.F. Van Kampen, R.A. Huls, G.G.M. Stoffels, J.B.W. Kok, T.J. Poinsot, LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation. Combust. Flame 150(1), 40–53 (2007) CrossRefGoogle Scholar
  258. E. Séverac, E. Serre, A spectral vanishing viscosity for the LES of turbulent flows within rotating cavities. J. Comput. Phys. 226(2), 1234–1255 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  259. E.A. Sewall, D.K. Tafti, Large eddy simulations of the developing region of a rotating ribbed internal turbine blade cooling channel, in Proc. of ASME Turbo Expo 2004, Vienna, Austria (2004). ASME Paper Number GT2004–53833 Google Scholar
  260. L. Shaw, Active control for cavity acoustics. AIAA Paper Number AIAA–98–2347 (1998) Google Scholar
  261. C.M. Shieh, P.J. Morris, Comparison of two- and three-dimensional cavity flows, in 39th AIAA, Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA (2001). AIAA Paper Number AIAA–2001–0511 Google Scholar
  262. M. Shur, P.R. Spalart, M. Strelets, A. Travin, Detached-eddy simulation of an airfoil at high angle of attack. Eng. Turbul. Model. Exp. 4, 669–678 (1999) Google Scholar
  263. C.H. Sieverding, D. Ottolia, C. Bagnera, A. Comadoro, J.F. Brouckaert, J.M. Desse, Unsteady turbine blade wake characteristics. J. Turbomach. 126(4), 551–559 (2004) CrossRefGoogle Scholar
  264. F. Simon, S. Deck, P. Guillen, P. Sagaut, Reynolds averaged Navier-Stokes/Large-Eddy simulations of supersonic base flow. AIAA J. 44(11), 2578–2590 (2006) CrossRefGoogle Scholar
  265. F. Simon, S. Deck, P. Guillen, R. Cayzac, A. Merlen, Zonal-detached-eddy simulation of projectiles in the subsonic and transonic regimes. AIAA J. 45(7), 1606–1619 (2007a) CrossRefGoogle Scholar
  266. F. Simon, S. Deck, P. Guillen, P. Sagaut, A. Merlen et al., Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J. Fluid Mech. 591, 215–254 (2007b) zbMATHCrossRefGoogle Scholar
  267. A.K. Sinha, D.G. Bogard, M.E. Crawford, Film cooling effectiveness downstream of a single row of holes with variable density ratio. J. Turbomach. 113, 442–449 (1991) CrossRefGoogle Scholar
  268. K.M. Smith, J.C. Dutton, Investigation of large-scale structures in supersonic planar base flows. AIAA J. 34(6), 1146–1152 (1996) CrossRefGoogle Scholar
  269. K.M. Smith, J.C. Dutton, Evolution and convection of large-scale structures in supersonic reattaching shear flows. Phys. Fluids 11, 2127–2138 (1999) zbMATHCrossRefGoogle Scholar
  270. K.M. Smith, J.C. Dutton, The effects of expansion strength on large-scale structures in compressible free shear layers. Phys. Fluids 13, 2076–2086 (2001) CrossRefGoogle Scholar
  271. B.I. Soemarwoto, J.C. Kwok, H. van der Ven, Contribution of Dassault to DESider, in DESider—A European Effort on Hybrid RANS-LES Modelling, ed. by W. Haase, M. Braza, A. Revell. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 103 (Springer, Berlin, 2009) Google Scholar
  272. P. Spalart, L. Hedges, M. Shur, A. Travin, Simulation of active flow control on a stalled airfoil. Flow Turbul. Combust. 71(1), 361–373 (2003) zbMATHCrossRefGoogle Scholar
  273. P.R. Spalart, M.L. Shur, M.K. Strelets, A.K. Travin, Towards noise prediction for rudimentary landing gear, in IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction Procedia IUTAM, vol. 1 (2010), pp. 283–292 Google Scholar
  274. M. Sreedhar, S. Ragab, Large eddy simulation of a longitudinal vortex, in 32nd AIAA, Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA, 10–13 January 1994. AIAA Paper Number AIAA–94–0529 Google Scholar
  275. R.D. Stieger, The effects of wakes on separating boundary layers in low pressure turbines. PhD thesis, Engineering Department, University of Cambridge (2002) Google Scholar
  276. R.D. Stieger, H.P. Hodson, The transition mechanism of highly loaded low-pressure turbine blades, in Proc. of ASME Turbo Expo 2003, Atlanta, Georgia, USA, 16–19 June 2003. ASME Paper Number GT2003–38304 Google Scholar
  277. M. Strelets, Detached eddy simulation of massively separated flows. AIAA Paper Number AIAA–2001–0879 (2001) Google Scholar
  278. K.L. Suder, Ml. Celestina, Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor. Technical Report NASA–TM–106711, NASA (1994) Google Scholar
  279. K.L. Suder, R.V. Chima, A.J. Strazisar, W.B. Roberts, The effect of adding roughness and thickness to a transonic axial compressor rotor. Technical Report NASA–TR–95–30524, NASA STI/Recon Technical Report N (1995) Google Scholar
  280. K.E. Swalwell, J. Sheridan, W.H. Melbourne, Frequency analysis of surface pressure on an airfoil after stall, in 21st AIAA Aerodynamics Conference (2003). AIAA Paper Number AIAA–2003–3416 Google Scholar
  281. N. Swaminathan, K. Bray, Turbulent Premixed Flames (Cambridge University Press, Cambridge, 2011) CrossRefGoogle Scholar
  282. R.C. Swanson, E. Turkel, On central-difference and upwind schemes. J. Comput. Phys. 101(2), 292–306 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  283. M.F. Tachie, R. Balachandar, D.J. Bergstrom, Roughness effects on turbulent plane wall jets in an open channel. Exp. Fluids 37(2), 281–292 (2004) CrossRefGoogle Scholar
  284. D.K. Tafti, Evaluating the role of subgrid stress modeling in a ribbed duct for the internal cooling of turbine blades. Int. J. Heat Fluid Flow 26(1), 92–104 (2005) CrossRefGoogle Scholar
  285. K. Takeda, G.B. Ashcroft, X. Zhang, P.A. Nelson, Unsteady aerodynamics of slat cove flow in a high-lift device configuration. AIAA Paper Number AIAA–2001–0706 (2001) Google Scholar
  286. H.K. Tanna, An experimental study of jet noise. Part I: turbulent mixing noise. J. Sound Vib. 50(3), 405–428 (1977) CrossRefGoogle Scholar
  287. N. Tauveron, Simulation of a compressor cascade with stalled flow using large eddy simulation with two-layer approximate boundary conditions. Nucl. Eng. Des. 240(2), 321–335 (2010) CrossRefGoogle Scholar
  288. B. Thomber, D. Dfikakis, Implicit large-eddy simulation of a deep cavity using high-resolution methods. AIAA J. 46(10), 2634–2645 (2008) CrossRefGoogle Scholar
  289. S. Trapier, P. Duveau, S. Deck, Experimental study of supersonic inlet buzz. AIAA J. 44(10), 2354–2365 (2006) CrossRefGoogle Scholar
  290. S. Trapier, S. Deck, P. Duveau, P. Sagaut, Time-frequency analysis and detection of supersonic inlet buzz. AIAA J. 45(9), 2273–2284 (2007) CrossRefGoogle Scholar
  291. S. Trapier, S. Deck, P. Duveau, Delayed detached-eddy simulation and analysis of supersonic inlet buzz. AIAA J. 46(1), 118–131 (2008) CrossRefGoogle Scholar
  292. P.G. Tucker, Temporal behavior of flow in rotating cavities. Numer. Heat Transf., Part A, Appl. 41(6–7), 611–627 (2002) CrossRefGoogle Scholar
  293. P.G. Tucker, Turbulence modelling of problem aerospace flows. Int. J. Numer. Methods Fluids 51(3), 261–283 (2006) zbMATHCrossRefGoogle Scholar
  294. P.G. Tucker, Computation of unsteady turbomachinery flows: Part 1—progress and challenges. Prog. Aerosp. Sci. 47(7), 522–545 (2011a) CrossRefGoogle Scholar
  295. P.G. Tucker, Hybrid Hamilton-Jacobi-Poisson wall distance function model. Comput. Fluids 44(1), 130–142 (2011b) CrossRefGoogle Scholar
  296. P. Tucker, S. Eastwood, C. Klostermeier, R. Jefferson-Loveday, J. Tyacke, Y. Liu, Hybrid les approach for practical turbomachinery flows—Part I: hierarchy and example simulations. J. Turbomach., Trans. ASME 134(2) (2012) Google Scholar
  297. J. Tyacke, R.J. Jefferson-Loveday, P.G. Tucker, Numerical modelling of seal type geometries, in Proc. of ASME Turbo Expo, Copenhagen, Denmark, 11–15 June 2012a. ASME Paper Number GT2012–68840 Google Scholar
  298. J.C. Tyacke, P.G. Tucker, R. Jefferson-Loveday, N.R. Vadlamani, R. Watson, I. Naqavi, LES of aero engine turbines, in ECCOMAS 2012, 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, 10–14 September 2012b Google Scholar
  299. M. Tyagi, S. Acharya, Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. Int. J. Numer. Methods Fluids 48(7), 691–722 (2005) zbMATHCrossRefGoogle Scholar
  300. A. Uzun, M.Y. Hussaini, C.L. Streett, Large-eddy simulation of a wing-tip vortex on overset grids. AIAA J. 44(6), 1229–1242 (2006) CrossRefGoogle Scholar
  301. N.R. Vadlamani, High fidelity large eddy simulation of turbines: current status and future outlook. PhD thesis, Engineering Department, Cambridge University (2013) Google Scholar
  302. L. Venkatakrishnan, N. Karthikeyan, K. Mejia, Experimental studies on a rudimentary four wheel landing gear. AIAA Paper Number AIAA–2011–0354 (2011) Google Scholar
  303. M.R. Visbal, Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011) MathSciNetCrossRefGoogle Scholar
  304. K. Viswanathan, Aeroacoustics of hot jets. J. Fluid Mech. 516, 39–82 (2004) zbMATHCrossRefGoogle Scholar
  305. A.K. Viswanathan, D.K. Tafti, Detached eddy simulation of turbulent flow and heat transfer in a two-pass internal cooling duct. Int. J. Heat Fluid Flow 27(1), 1–20 (2006) CrossRefGoogle Scholar
  306. Y. Wang, W.J. Devenport, Wake of a compressor cascade with tip gap, Part 2: effects of endwall motion. AIAA J. 42(11), 2332–2340 (2004) CrossRefGoogle Scholar
  307. M. Wang, P. Moin, Computation of trailing-edge flow and noise using large-eddy simulation. AIAA J. 38(12), 2201–2209 (2000) CrossRefGoogle Scholar
  308. Z.-N. Wang, X. Yuan, Unsteady mechanisms of compressor corner separation over a range of incidences based on hybrid LES/RANS, in Proc. of ASME Turbo Expo, San Antonio, Texas, USA, 3–7 June 2013 Google Scholar
  309. K. Watanabe, T. Takahashi, LES simulation and experimental measurement of fully developed ribbed channel flow and heat transfer, in Proc. of ASME Turbo. Expo. 2002, Amsterdam, The Netherlands, 3–6 June 2002. ASME Paper Number GT–2002–30203 Google Scholar
  310. S.R. Wellborn, T.H. Okiishi, B.A. Reichert, A study of the compressible flow through a diffusing S-duct. Technical Report NASA–TM–106411, NASA (1993) Google Scholar
  311. A. Wheeler, Effect of unsteady flows on compressor performance. PhD thesis, Engineering Department, Cambridge University (2007) Google Scholar
  312. J. Winkler, S. Moreau, LES of the trailing-edge flow and noise of a naca6512–63 airfoil at zero angle of attack, in Center for Turbulence Research, Proceedings of the Summer Program (2008), pp. 331–342 Google Scholar
  313. J.G. Wissink, DNS of separating, low Reynolds number flow in a turbine cascade with incoming wakes. Int. J. Heat Fluid Flow 24(4), 626–635 (2003) CrossRefGoogle Scholar
  314. J. Wissink, W. Rodi, DNS of a laminar separation bubble affected by free-stream disturbances. ERCOFTAC Ser. 9, 213–220 (2004) CrossRefGoogle Scholar
  315. J.G. Wissink, W. Rodi, H.P. Hodson, The influence of disturbances carried by periodically incoming wakes on the separating flow around a turbine blade. Int. J. Heat Fluid Flow 27(4), 721–729 (2006) CrossRefGoogle Scholar
  316. X. Wu, P.A. Durbin, Evidence of longitudinal vortices evolved from distorted wakes in a turbine passage. J. Fluid Mech. 446(1), 199–228 (2001) zbMATHGoogle Scholar
  317. X. Wu, J.P. Hickey, Visualization of continuous stream of grid turbulence past the Langston turbine cascade. AIAA J. 50(1), 215–225 (2012) CrossRefGoogle Scholar
  318. X. Wu, K.D. Squires, Prediction and investigation of the turbulent flow over a rotating disk. J. Fluid Mech. 418(1), 231–264 (2000) zbMATHCrossRefGoogle Scholar
  319. X. Wu, R.G. Jacobs, J.C.R. Hunt, P.A. Durbin, Simulation of boundary layer transition induced by periodically passing wakes. J. Fluid Mech. 398, 109–153 (1999) zbMATHCrossRefGoogle Scholar
  320. X. Wu, L.T. Li, M.S. Hilaire, Migration of a turbulent patch through a high-pressure turbine cascade. Phys. Fluids 21, 025110 (2009) CrossRefGoogle Scholar
  321. X. Yan, A preheated-wall transient method using liquid crystals for the measurement of heat transfer on external surfaces and in ducts. PhD thesis, University of California, Davis (1993) Google Scholar
  322. A. Yoshizawa, Bridging between eddy-viscosity-type and second-order models using a two-scale dia, in Ninth Symposium on Turbulent Shear Flows, vol. 18, Kyoto, Japan, 16 August 1993, pp. 1–23 Google Scholar
  323. D. You, M. Wang, R. Mittal, P. Moin, Study of rotor tip-clearance flow using large eddy simulation. AIAA J. 838 (2003) Google Scholar
  324. D. You, R. Mittal, M. Wang, P. Moin, Computational methodology for large-eddy simulation of tip-clearance flows. AIAA J. 42(2), 271–279 (2004) CrossRefGoogle Scholar
  325. D. You, M. Wang, R. Mittal, P. Moin, Large-eddy simulations of longitudinal vortices embedded in a turbulent boundary layer. AIAA J. 44(12), 3032 (2006a) CrossRefGoogle Scholar
  326. D. You, M. Wang, P. Moin, R. Mittal, Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade. Phys. Fluids 18, 105102 (2006b) CrossRefGoogle Scholar
  327. L.L. Yuan, R.L. Street, J.H. Ferziger, Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379(1), 71–104 (1999) zbMATHCrossRefGoogle Scholar
  328. T. Zaki, J. Wissink, W. Rodi, P. Durbin, Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech. 1, 1–42 (2006) Google Scholar
  329. T.A. Zaki, J.G. Wissink, P.A. Durbin, W. Rodi, Direct computations of boundary layers distorted by migrating wakes in a linear compressor cascade. Flow Turbul. Combust. 83(3), 307–322 (2009) zbMATHCrossRefGoogle Scholar
  330. X.F. Zhang, Separation and transition control on ultra-high-lift low pressure turbine blades in unsteady flow. PhD thesis, Engineering Department, Cambridge University (2005) Google Scholar
  331. M.D. Zhou, I. Wygnanski, Parameters governing the turbulent wall jet in an external stream. AIAA J. 31(5), 848–853 (1993) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • P. G. Tucker
    • 1
  1. 1.Department of Engineering, Whittle LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations