Turbulence and Its Modelling

  • P. G. Tucker
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 104)


Averaging procedures used to form the Unsteady Reynolds Averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) equations are outlined. Also, turbulence modelling hierarchies for unsteady flows are presented. These range from URANS to DNS (Direct Numerical Simulation). The grid requirements for different approaches are also discussed. The LES models that are used for results in later chapters are given, along with details of others. Different types of LES filters are outlined. Their potential strong impact on results is discussed. A hierarchy of key elements for industrial LES is proposed. Notably, for flows without transition, the actual explicit LES model comes low down. More the key element is the numerical schemes discussed in Chap. 3. Key hybrid RANS-LES approaches are given. The advantages and disadvantages of these are outlined. The discussion shows that considerable expertise is needed to safely use hybrid RANS-LES techniques. Hence, the need for best practice guidelines is proposed. Methods for generating turbulence inflow are outlined. It is shown that many of these have limited applicability to complex engineering systems and so suitable strategies proposed.


LES DNS MILES ILES DES Hybrid LES-RANS Inflow conditions Synthetic turbulence Filter 


  1. Y. Addad, R. Prosser, D. Laurence, S. Moreau, F. Mendonca, On the use of embedded meshes in the les of external flows. Flow Turbul. Combust. 80(3), 393–403 (2008) zbMATHGoogle Scholar
  2. N. Andersson, L.E. Eriksson, L. Davidson, LES prediction of flow and acoustic field of a coaxial jet, in Proceedings of 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, 23–25 May 2005. AIAA Paper Number 2005-2884 Google Scholar
  3. J. Bardina, J.H. Ferziger, W.C. Reynolds, Improved subgrid-scale models for large-eddy simulation, in Proceedings of the 13th AIAA Fluid and Plasma Dynamics Conference, vol. 1, Snowmass, Colo., 14–16 July 1980. AIAA Paper Number 80-1357 Google Scholar
  4. P. Batten, U. Goldberg, S. Chakravarthy, LNS—An approach towards embedded LES. AIAA J. 427, 2002 (2002) Google Scholar
  5. P. Batten, U. Goldberg, S. Chakravarthy, Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42(3), 485–492 (2004) Google Scholar
  6. P. Batten, P.R. Spalart, M. Terracol, Use of hybrid RANS-LES for acoustic source prediction, in Large-Eddy Simulation for Acoustics, ed. by T. Huttl, C. Wagner, P. Sagaut (2007) Google Scholar
  7. P. Batten, U. Goldberg, E. Kang, S. Chakravarthy, Smart sub-grid-scale model for LES and hybrid RANS/LES, in Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, 27–30 June 2011, pp. 326–371. AIAA Paper Number 2011-3472 Google Scholar
  8. A. Belme, S. Wornom, A. Dervieux, B. Koobus, M.V. Salvetti, Application of hybrid and VMS-LES turbulent models to aerodynamic simulations, in Proceedings of the 27th International Congress of the Aeronautical Sciences, ICAS (2010), pp. 1–8 Google Scholar
  9. J. Berland, P. Lafon, F. Daude, F. Crouzet, C. Bogey, C. Bailly, Filter shape dependence and effective scale separation in large-eddy simulations based on relaxation filtering. Comput. Fluids 47(1), 65–74 (2011) MathSciNetGoogle Scholar
  10. N.J. Bisek, D.P. Rizzetta, J. Poggie, Plasma control of a turbulent shock boundary-layer, interaction. AIAA J. (2013). doi: 10.2514/1.J052248 Google Scholar
  11. C. Bogey, C. Bailly, Decrease of the effective Reynolds number with eddy-viscosity subgrid-scale modeling. AIAA J. 43(2), 437–439 (2005) Google Scholar
  12. J.P. Boris, F.F. Grinstein, E.S. Oran, R.L. Kolbe, New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992) Google Scholar
  13. G. Bosch, W. Rodi, Simulation of vortex shedding past a square cylinder with different turbulence models. Int. J. Numer. Methods Fluids 28(4), 601–616 (1998) zbMATHGoogle Scholar
  14. T.T. Brandt, Usability of explicit filtering in large eddy simulation with a low-order numerical scheme and different subgrid-scale models. Int. J. Numer. Methods Fluids 57(7), 905–928 (2008) zbMATHGoogle Scholar
  15. M. Breuer, W. Rodi, Large-eddy simulation of turbulent flow through a straight square duct and a 180 bend, in Direct and Large-Eddy Simulation I (1994), pp. 273–285 Google Scholar
  16. J. Bridges, M.P. Wernet, Measurements of the aeroacoustic sound source in hot jets, in Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference, South Carolina, 12–14 May 2003. AIAA Paper Number 2003-3130 Google Scholar
  17. B. Chaouat, R. Schiestel, A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17, 065106 (2005) MathSciNetGoogle Scholar
  18. D.R. Chapman, Computational aerodynamics, development and outlook. AIAA J. 17, 1293–1313 (1979) zbMATHGoogle Scholar
  19. N. Chauvet, S. Deck, L. Jacquin, Zonal detached eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007) Google Scholar
  20. H. Choi, P. Moin, Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24(1), 011702 (2012) Google Scholar
  21. F.K. Chow, P. Moin, A further study of numerical errors in large-eddy simulations. J. Comput. Phys. 184(2), 366–380 (2003) zbMATHGoogle Scholar
  22. R.A. Clark, J.H. Ferziger, W.C. Reynolds, Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1), 1–16 (1979) zbMATHGoogle Scholar
  23. J.D. Coull, Wake induced transition in low pressure turbines. PhD thesis, Department of Engineering, The University of Cambridge (2009) Google Scholar
  24. Y.M. Dakhoul, K.W. Bedford, Improved averaging method for turbulent flow simulation. Part I: theoretical development and application to Burgers’ transport equation. Int. J. Numer. Methods Fluids 6(2), 49–64 (1986a) MathSciNetzbMATHGoogle Scholar
  25. Y.M. Dakhoul, K.W. Bedford, Improved averaging method for turbulent flow simulation. Part I: theoretical development and application to Burgers’ transport equation. Int. J. Numer. Methods Fluids 6(2), 65–82 (1986b) MathSciNetzbMATHGoogle Scholar
  26. L. Davidson, Hybrid LES-RANS: back scatter from a scale-similarity model used as forcing. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2905–2915 (2009) zbMATHGoogle Scholar
  27. L. Davidson, M. Billson, Hybrid LES-RANS using synthesized turbulent fluctuations for forcing in the interface region. Int. J. Heat Fluid Flow 27(6), 1028–1042 (2006) Google Scholar
  28. L. Davidson, S.H. Peng, Hybrid LES-RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows. Int. J. Numer. Methods Fluids 43(9), 1003–1018 (2003) zbMATHGoogle Scholar
  29. J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970) zbMATHGoogle Scholar
  30. J.R. DeBonis, Progress towards large-eddy simulations for prediction of realistic nozzle systems, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 9–12 January 2006. AIAA Paper Number 2006-487 Google Scholar
  31. S. Deck, Recent improvements in the zonal detached eddy simulation (ZDES) formulation. Theor. Comput. Fluid Dyn. 26, 523–550 (2012) Google Scholar
  32. S. Deck, P.É. Weiss, M. Pamiès, E. Garnier, Zonal detached eddy simulation of a spatially developing flat plate turbulent boundary layer. Comput. Fluids 48(1), 1–15 (2011) Google Scholar
  33. J.A. Domaradzki, D.D. Holm, Navier-Stokes-alpha model: LES equations with nonlinear dispersion, in Modern Simulation Strategies for Turbulent Flow, ed. by B.J. Geurts. ERCOFTAC Bulletin, vol. 107 (Edwards, Ann Arbor, 2001) Google Scholar
  34. P. Druault, S. Lardeau, J.P. Bonnet, F. Coiffet, J. Delville, E. Lamballais, J.F. Largeau, L. Perret, M.N. Glauser, B. George et al., Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J. 42(3), 447–456 (2004) Google Scholar
  35. S. Eastwood, Hybrid LES-RANS of complex geometry jets. PhD thesis, University of Cambridge (2010) Google Scholar
  36. S.J. Eastwood, P.G. Tucker, H. Xia, C. Klostermeier, Developing large eddy simulation for turbomachinery applications. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2999–3013 (2009) Google Scholar
  37. M. Farge, K. Schneider, Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets. Flow Turbul. Combust. 66(4), 393–426 (2001) MathSciNetzbMATHGoogle Scholar
  38. S. Gamard, W.K. George, Reynolds number dependence of energy spectra in the overlap region of isotropic turbulence. Flow Turbul. Combust. 63, 443–477 (1999) Google Scholar
  39. W.K. George, M. Tutkun, Mind the gap: a guideline for large eddy simulation. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2839–2847 (2009) MathSciNetzbMATHGoogle Scholar
  40. N.J. Georgiadis, D.P. Rizzetta, C. Fureby, Large-eddy simulation: current capabilities, recommended practices, and future research. AIAA J. 48(8), 1772–1784 (2010) Google Scholar
  41. B.J. Geurts, D.D. Holm, Regularization modeling for large-eddy simulation. Phys. Fluids 15(1), L13–L16 (2003) MathSciNetGoogle Scholar
  42. B.J. Geurts, D.D. Holm, Leray and LANS-α modelling of turbulent mixing. J. Turbul. 7(10), 1–33 (2006) MathSciNetGoogle Scholar
  43. S. Ghosal, An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125(1), 187–206 (1996) MathSciNetzbMATHGoogle Scholar
  44. S. Ghosal, T.S. Lund, P. Moin, K. Akselvoll, A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286(1), 229–255 (1995) MathSciNetzbMATHGoogle Scholar
  45. D.A. Gieseking, J.I. Choi, J.R. Edwards, H.A. Hassan, Compressible-flow simulations using a new large-eddy simulation/Reynolds-averaged Navier-Stokes model. AIAA J. 49(10), 2194–2209 (2011) Google Scholar
  46. S.S. Girimaji, Partially-averaged Navier-Stokes model for turbulence: a Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method. J. Appl. Mech. 73(3), 413–421 (2006) zbMATHGoogle Scholar
  47. V. Gravemeier, The variational multiscale method for laminar and turbulent flow. Arch. Comput. Methods Eng. 13(2), 249–324 (2006) MathSciNetzbMATHGoogle Scholar
  48. F. Hamba, An attempt to combine large eddy simulation with the kε model in a channel-flow calculation. Theor. Comput. Fluid Dyn. 14(5), 323–336 (2001) zbMATHGoogle Scholar
  49. F. Hamba, A hybrid RANS/LES simulation of high-Reynolds-number channel flow using additional filtering at the interface. Theor. Comput. Fluid Dyn. 20(2), 89–101 (2006) MathSciNetzbMATHGoogle Scholar
  50. F. Holzäpfel, Adjustment of subgrid-scale parameterizations to strong streamline curvature. AIAA J. 42(7), 1369–1377 (2004) Google Scholar
  51. T.J.R. Hughes, G.R. Feijóo, L. Mazzei, J.B. Quincy, The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1), 3–24 (1998) zbMATHGoogle Scholar
  52. T.J.R. Hughes, L. Mazzei, K.E. Jansen, Large eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3(1), 47–59 (2000) zbMATHGoogle Scholar
  53. N. Jarrin, R. Prosser, J.C. Uribe, S. Benhamadouche, D. Laurence, Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int. J. Heat Fluid Flow 30(3), 435–442 (2009) Google Scholar
  54. R.J. Jefferson-Loveday, P.G. Tucker, LES of impingement heat transfer on a concave surface. Numer. Heat Transf., Part A, Appl. 58(4), 247–271 (2010) Google Scholar
  55. R.J. Jefferson-Loveday, P.G. Tucker, Wall-resolved LES and zonal LES of round jet impingement heat transfer on a flat plate. Numer. Heat Transf., Part B, Fundam. 59(3), 190–208 (2011) Google Scholar
  56. J. Jewkes, An improved turbulent boundary layer inflow condition, applied to the simulation of jets in cross-flow. PhD thesis, School of Engineering, University of Warwick (2008) Google Scholar
  57. S.H. Johansson, L. Davidson, E. Olsson, Numerical simulation of vortex shedding past triangular cylinders at high Reynolds number using a kε turbulence model. Int. J. Numer. Methods Fluids 16(10), 859–878 (1993) zbMATHGoogle Scholar
  58. J. Joo, P. Durbin, Simulation of turbine blade trailing edge cooling. J. Fluids Eng. 131, 021102 (2009) Google Scholar
  59. S.A. Jordan, A large-eddy simulation methodology in generalized curvilinear coordinates. J. Comput. Phys. 148(2), 322–340 (1999) zbMATHGoogle Scholar
  60. A. Keating, U. Piomelli, E. Balaras, H.J. Kaltenbach, A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16, 4696–4712 (2004) Google Scholar
  61. W.W. Kim, S. Menon, An unsteady incompressible Navier–Stokes solver for large eddy simulation of turbulent flows. Int. J. Numer. Methods Fluids 31(6), 983–1017 (1999) zbMATHGoogle Scholar
  62. M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003) zbMATHGoogle Scholar
  63. B. Kosovic, Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J. Fluid Mech. 336(1), 151–182 (1997) zbMATHGoogle Scholar
  64. R.H. Kraichnan, Diffusion by a random velocity field. Phys. Fluids 13(1), 22–31 (1970) zbMATHGoogle Scholar
  65. E. Labourasse, P. Sagaut, Reconstruction of turbulent fluctuations using a hybrid RANS/LES approach. J. Comput. Phys. 182(1), 301–336 (2002) zbMATHGoogle Scholar
  66. R. Laraufie, S. Deck, P. Sagaut, A dynamic forcing method for unsteady turbulent inflow conditions. J. Comput. Phys. 230(23), 8647–8663 (2011) MathSciNetzbMATHGoogle Scholar
  67. S. Lardeau, M.A. Leschziner, Unsteady rans modelling of wake–blade interaction: computational requirements and limitations. Comput. Fluids 34(1), 3–21 (2005) zbMATHGoogle Scholar
  68. B.E. Launder, B.I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–137 (1974) Google Scholar
  69. A. Leonard, Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237–248 (1975) Google Scholar
  70. M. Leschziner, N. Li, F. Tessicini, M. Leschziner, N. Li, F. Tessicini, Simulating flow separation from continuous surfaces: routes to overcoming the Reynolds number barrier. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1777), 2885–2903 (2009) zbMATHGoogle Scholar
  71. J. Li, Hybrid RANS/LES modelling of OGV/prediffuser flow. PhD thesis, Department of Aeronautical and Automotive Engineering, Loughborough University (2012) Google Scholar
  72. Y. Liu, P.G. Tucker, R.M. Kerr, Linear and nonlinear model large-eddy simulations of a plane jet. Comput. Fluids 37(4), 439–449 (2008) zbMATHGoogle Scholar
  73. S. Loiodice, P.G. Tucker, J. Watson, Coupled open rotor engine intake simulations, in Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, FL, 4–7 January 2010. AIAA Paper Number 2010–840 Google Scholar
  74. T.S. Lund, X. Wu, K.D. Squires, Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998) MathSciNetzbMATHGoogle Scholar
  75. M. Mani, Hybrid turbulence models for unsteady simulation. J. Aircr. 41(1), 110–118 (2004) Google Scholar
  76. L.G. Margolin, W.J. Rider, F.F. Grinstein, Modeling turbulent flow with implicit LES. J. Turbul. 7(15), 1–27 (2006) MathSciNetGoogle Scholar
  77. A.L. Marsden, O.V. Vasilyev, P. Moin, Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175(2), 584–603 (2002) zbMATHGoogle Scholar
  78. I. Mary, P. Sagaut, Large eddy simulation of flow around an airfoil near stall. AIAA J. 40, 1139–1145 (2002) Google Scholar
  79. F. Mathey, D. Cokljat, J.P. Bertoglio, E. Sergent, Specification of LES inlet boundary condition using vortex method, in Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 12–17 October 2003 Google Scholar
  80. F.R. Menter, Zonal two equation kω turbulence models for aerodynamic flows, in Proceedings of the AIAA Fluid Dynamics Conference, 24th, Orlando, FL, USA, 6–9 July 1993. AIAA Paper Number 93-2906 Google Scholar
  81. F.R. Menter, M. Kuntz, R. Bender, A scale-adaptive simulation model for turbulent flow predictions, in Proceedings of the 41th AIAA Aerospace Sciences Meeting and Exhibit, vol. 767, Reno, NV, USA, 6–9 January 2003 Google Scholar
  82. C.J. Moore, The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80(02), 321–367 (1977) Google Scholar
  83. P.J. Morris, L.N. Long, A. Bangalore, Q. Wang, A parallel three-dimensional computational aeroacoustics method using nonlinear disturbance equations. J. Comput. Phys. 133(1), 56–74 (1997) zbMATHGoogle Scholar
  84. P.J. Morris, Y. Du, K. Kara, Jet noise simulations for realistic jet nozzle geometries, in Proceedings of the IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction, Procedia Engineering, vol. 6, 29–31 March (Elsevier, Amsterdam, 2010), pp. 28–37 Google Scholar
  85. N.J. Mullenix, D.V. Gaitonde, M.R. Visbal, A plasma-actuator-based method to generate a supersonic turbulent boundary layer inflow condition for numerical simulation, in Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, HI, USA, 27–30 June 2011. AIAA Paper Number 2011-3556 Google Scholar
  86. L. Mydlarski, Z. Warhaft, On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996) Google Scholar
  87. V. Nee, L. Kovasznay, Simple phenomenological theory of turbulent shear flows. Phys. Fluids 12, 473 (1969) zbMATHGoogle Scholar
  88. F. Nicoud, F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999) zbMATHGoogle Scholar
  89. N.V. Nikitin, F. Nicoud, B. Wasistho, K.D. Squires, P.R. Spalart, An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629 (2000) Google Scholar
  90. K. Nozawa, T. Tamura, Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J. Wind Eng. Ind. Aerodyn. 90(10), 1151–1162 (2002) Google Scholar
  91. T.S.D. O’Mahoney, Large-eddy simulation of turbine rim seals. PhD thesis, School of Engineering, Surrey University (2011) Google Scholar
  92. M. Opiela, R. Keinke, W. Schroder, LES of wake–blade interaction, in Proceedings of the 4th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Firenze, Italy, 20–23 March 2001 Google Scholar
  93. S.A. Orszag, V. Borue, W.S. Flannery, A.G. Tomboulides, Recent successes, current problems, and future prospects of CFD, in Proceedings of the 35th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. AIAA Paper Number 97-0431 Google Scholar
  94. L. Perret, J. Delville, R. Manceau, J.P. Bonnet, Turbulent inflow conditions for large-eddy simulation based on low-order empirical model. Phys. Fluids 20, 075107 (2008) Google Scholar
  95. C.D. Pierce, P. Moin, Method for generating equilibrium swirling inflow conditions. AIAA J. 36(7), 1325–1327 (1998) Google Scholar
  96. U. Piomelli, E. Balaras, Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34(1), 349–374 (2002) MathSciNetGoogle Scholar
  97. U. Piomelli, J. Ferziger, P. Moin, J. Kim, New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids 1, 1061–1068 (1989) Google Scholar
  98. U. Piomelli, E. Balaras, H. Pasinato, K.D. Squires, P.R. Spalart, The inner–outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24(4), 538–550 (2003) Google Scholar
  99. S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(1), 35 (2004) Google Scholar
  100. C.D. Pruett, Eulerian time-domain filtering for spatial large-eddy simulation. AIAA J. 38(9), 1634–1642 (2000) Google Scholar
  101. D. Razafindralandy, A. Hamdouni, C. Béghein, A class of subgrid-scale models preserving the symmetry group of Navier–Stokes equations. Commun. Nonlinear Sci. Numer. Simul. 12(3), 243–253 (2007) MathSciNetzbMATHGoogle Scholar
  102. A.J. Revell, T.J. Craft, D.R. Laurence, Turbulence modelling of unsteady turbulent flows using the stress strain lag model. Flow Turbul. Combust. 86(1), 129–151 (2011) zbMATHGoogle Scholar
  103. P. Sagaut, LES and DNS simulation of turbomachinery flows, in Recent Developments in Numerical Methods for Turbomachinery Flows, ed. by T. Arts. VKI Lecture Series (2002) Google Scholar
  104. P. Sagaut, E. Garnier, E. Tromeur, L. Larcheveque, E. Labourasse, Turbulent inflow conditions for large-eddy simulation of compressible wall-bounded flows. AIAA J. 42(3), 469–477 (2004) Google Scholar
  105. P. Sagaut, T. Hüttl, C. Wagner, Large-Eddy Simulation for Acoustics (Cambridge University Press, Cambridge, 2007) Google Scholar
  106. J.U. Schluter, X. Wu, S. Kim, S. Shankaran, J.J. Alonso, H. Pitsch, A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications. Trans. Am. Soc. Mech. Eng. J. Fluids Eng. 127(4), 806 (2005) Google Scholar
  107. U. Schumann, Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18(4), 376–404 (1975) MathSciNetzbMATHGoogle Scholar
  108. A. Scotti, C. Meneveau, D.K. Lilly, Generalized smagorinsky model for anisotropic grids. Phys. Fluids A, Fluid Dyn. 5, 2306 (1993) zbMATHGoogle Scholar
  109. J.A. Sethian, Fast marching methods. SIAM Rev. 41(2), 199–235 (1999) MathSciNetzbMATHGoogle Scholar
  110. M. Shur, P. Spalart, M. Strelets, A. Travin, Navier-Stokes simulation of shedding turbulent flow past a circular cylinder and a cylinder with backward splitter plate, in ECCOMAS Computational Fluid Dynamics Conference, Paris, 9–13 September 1996, pp. 676–682 Google Scholar
  111. M.L. Shur, P.R. Spalart, M.K. Strelets, A.V. Garbaruk, Further steps in LES-based noise prediction for complex jets, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 9–12 January 2006. AIAA Paper Number 2006-485 Google Scholar
  112. J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963) Google Scholar
  113. A. Smirnov, S. Shi, I. Celik, Random flow generation technique for large eddy simulations and particle-dynamics modeling. Trans. ASME I J. Fluids Eng. 123(2), 359–371 (2001) Google Scholar
  114. P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamic flows. Rech. Aérosp. 1, 5–21 (1994) Google Scholar
  115. P.R. Spalart, Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21(3), 252–263 (2000) Google Scholar
  116. P.R. Spalart, C.L. Rumsey, Effective inflow conditions for turbulence models in aerodynamic calculations. AIAA J. 45(10), 2544–2553 (2007) Google Scholar
  117. P.R. Spalart, S. Deck, M.L. Shur, K.D. Squires, M.K. Strelets, A. Travin, A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20(3), 181–195 (2006) zbMATHGoogle Scholar
  118. C.G. Speziale, Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 36(2), 173–184 (1998) zbMATHGoogle Scholar
  119. A. Spille-Kohoff, H.J. Kaltenbach, Generation of turbulent inflow data with a prescribed shear-stress profile, in 3rd AFOSR International Conference on DNS/LES Arlington, TX, ed. by L. Sakell, T. Beutner, C. Liu. DNS/LES Progress and Challenges, Greyden, Columbus, OH, 5–9 August 2001, pp. 326–371 Google Scholar
  120. S. Stolz, N.A. Adams, Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15(8), 2398–2412 (2003) Google Scholar
  121. M. Strelets, Detached eddy simulation of massively separated flows, in Proceedings of the 39th AIAA Aerospace Sinces Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. AIAA Paper Number 2001-0879 Google Scholar
  122. G.R. Tabor, M.H. Baba-Ahmadi, Inlet conditions for large eddy simulation: a review. Comput. Fluids 39(4), 553–567 (2010) MathSciNetzbMATHGoogle Scholar
  123. T. Talha, A numerical investigation of three-dimensional unsteady turbulent channel flow subjected to temporal acceleration. PhD thesis, University of Warwick (2012) Google Scholar
  124. K. Tatsumi, H. Iwai, E.C. Neo, K. Inaoka, K. Suzuki, Prediction of time-mean characteristics and periodical fluctuation of velocity and thermal fields of a backward-facing step, in Proceedings of the 1st Internal Symposium on Turbulence and Shear Flow, ed. by S. Banerjee, J.K. Eaton, Santa Barbara, USA, 12–15 September 1999, pp. 139–144 Google Scholar
  125. L. Temmerman, M. Leschziner, A priori studies of near wall RANS model within a hybrid LES/RANS scheme, in Engineering Turbulence Modelling and Experiments, 5, ed. by W. Rodi, N. Fueyo (2002), pp. 326–371 Google Scholar
  126. M. Terracol, P. Sagaut, C. Basdevant, A multilevel algorithm for large-eddy simulation of turbulent compressible flows. J. Comput. Phys. 167(2), 439–474 (2001) MathSciNetzbMATHGoogle Scholar
  127. P.G. Tucker, Computation of Unsteady Internal Flows: Fundamental Methods with Case Studies (Kluwer Academic, Dordrecht, 2001) Google Scholar
  128. P.G. Tucker, Differential equation-based wall distance computation for DES and RANS. J. Comput. Phys. 190(1), 229–248 (2003) zbMATHGoogle Scholar
  129. P.G. Tucker, Novel MILES computations for jet flows and noise. Int. J. Heat Fluid Flow 25(4), 625–635 (2004) Google Scholar
  130. P.G. Tucker, Computation of unsteady turbomachinery flows: Part 2—LES and hybrids. Prog. Aerosp. Sci. 47, 546–569 (2011) Google Scholar
  131. P.G. Tucker, L. Davidson, Zonal kl based large eddy simulations. Comput. Fluids 33(2), 267–287 (2004) zbMATHGoogle Scholar
  132. P.G. Tucker, Y. Liu, Turbulence modelling for flows around convex features giving rapid eddy distortion. Int. J. Heat Fluid Flow 28(5), 1073–1091 (2007) Google Scholar
  133. P.G. Tucker, Y. Liu, R.M. Kerr, Plane jet simulations using LES with linear and nonlinear models, in Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2006. AIAA Paper Number 2006-0702 Google Scholar
  134. P.G. Tucker, S. Eastwood, C. Klostermeier, R. Jefferson-Loveday, J. Tyacke, Y. Liu, Hybrid LES approach for practical turbomachinery flows—part I: hierarchy and example simulations. J. Turbomach. Trans. ASME 134(2), 021023 (2011) Google Scholar
  135. J.C. Tyacke, Low Reynolds number heat transfer prediction employing large eddy simulation for electronics geometries. PhD thesis, Swansea University (2009) Google Scholar
  136. J. Tyacke, P.G. Tucker, R.J. Jefferson-Loveday, R. Vadlamani, R. Watson, I. Naqavi, X. Yang, Les for turbines: methodologies, cost and future outlooks, in Proceedings of ASME Turbo Expo 2013 GT2013, San Antonio, TX, USA, 3–7 June 2013. ASME Paper Number GT2013-94416 Google Scholar
  137. R. Vadlamani, High fidelity large eddy simulation of turbines: current status and future outlook. PhD thesis, School of Engineering, The University of Cambridge (2013) Google Scholar
  138. H. van der Ven, A family of large eddy simulation (LES) filters with nonuniform filter widths. Phys. Fluids 7, 1171 (1995) zbMATHGoogle Scholar
  139. M.R. Visbal, Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011) MathSciNetGoogle Scholar
  140. K. Viswanathan, Jet aeroacoustic testing: issues and implications. AIAA J. 41(9), 1674–1689 (2003) Google Scholar
  141. B. Vreman, Direct and large-eddy simulation of the compressible turbulent mixing layer. PhD thesis, Twente University (1995) Google Scholar
  142. A.W. Vreman, The filtering analog of the variational multiscale method in large-eddy simulation. Phys. Fluids 15(8), L61–L64 (2003) MathSciNetGoogle Scholar
  143. A.W. Vreman, B.J. Geurts, A new treatment of commutation-errors in large-eddy simulation, in Advances in Turbulence IX, ed. by I.P. Castro, P.E. Hancock. Proceedings of the 9th European Turbulence Conference Southampton, UK, 2–5 July 2002 Google Scholar
  144. M. Wolfshtein, The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. Int. J. Heat Mass Transf. 12(3), 301–318 (1969) Google Scholar
  145. X. Wu, Establishing the generality of three phenomena using a boundary layer with free-stream passing wakes. J. Fluid Mech. 664, 193–219 (2010) zbMATHGoogle Scholar
  146. X. Wu, J.P. Hickey, Visualization of continuous stream of grid turbulence past the Langston turbine cascade. AIAA J. 50(1), 215–225 (2012) Google Scholar
  147. A. Yoshizawa, Subgrid-scale modeling with a variable length scale. Phys. Fluids A, Fluid Dyn. 1(7), 1293–1295 (1989) Google Scholar
  148. A. Yoshizawa, Bridging between eddy-viscosity-type and second-order models using a two-scale dia, in 9th International Symposium on Turbulent Shear Flows, vol. 18, Kyoto, Japan, 16–18 August 1993 Google Scholar
  149. A. Yoshizawa, K. Horiuti, A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows. J. Phys. Soc. Jpn. 54, 2834–2839 (1985) Google Scholar
  150. S. Zahrai, F.H. Bark, R.I. Karlsson, On anisotropic subgrid modeling. Eur. J. Mech. B, Fluids 14(4), 459–486 (1995) zbMATHGoogle Scholar
  151. B. Zhong, P.G. Tucker, kl based hybrid LES/RANS approach and its application to heat transfer simulation. Int. J. Numer. Methods Fluids 46, 983–1005 (2004) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • P. G. Tucker
    • 1
  1. 1.Department of Engineering, Whittle LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations