Skip to main content

Introduction

  • Chapter
  • 4157 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 104))

Abstract

The future challenges faced in aeronautical engineering to meet legislative targets to protect the environmental are outlined. The numerous sources of unsteadiness found in both propulsive systems and also airframes are discussed and the demands that these pose for traditional modelling approaches are outlined. The need to perform large scale, unsteady simulations is outlined and the computational science problems that arise from making such simulations is given. Computational costs are explored and also the way these control the manner in which simulations are used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Estimates of other workers are higher but the current figure fits in with a range of successful LES.

References

  • H.W. Allen, M.G. Kofsky, Visualization study of secondary flows in turbine tip regions. NASA Technical Note 3519 (1955)

    Google Scholar 

  • G. Ashcroft, D. Nurnberger, A computational investigation of broadband noise generation in a low-speed axial fan. AIAA Paper No. AIAA-2001-0512 (2001)

    Google Scholar 

  • N.C. Baines, Turbocharger turbine pulse flow performance and modelling—25 years on, in 9th International Conference on Turbochargers and Turbocharging, Institution of Mechanical Engineers, London, 19–20 May 2010

    Google Scholar 

  • G.R. Baker, S.J. Barker, K.K. Bofah, P.G. Saffman, Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65(2), 325–336 (1974)

    Article  Google Scholar 

  • F. Bardoux, F. Leboeuf, C. Dano, C. Toussaint, Characterization of deterministic correlations for turbine stage. Part 1: time average flow analysis, in Proceedings of the ASME Paper 99-GT-100, Indianapolis (1999), pp. 1–9

    Google Scholar 

  • R.E. Bartels, A.I. Sayma, Computational aeroelastic modelling of airframes and turbomachinery: progress and challenges. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 365(1859), 2469–2499 (2007)

    Article  Google Scholar 

  • T.R. Bladh, Q. Zhuang, J. Hu, J. Hammar, Leakage-induced compressor blade excitation due to inter-segment gaps, in Proceedings of ASME Turbo Expo 2012 (2012). GT–2012–70040

    Google Scholar 

  • M. Boileau, G. Staffelbach, B. Cuenot, T. Poinsot, C. Bérat, LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1), 2–22 (2008)

    Article  Google Scholar 

  • Y. Bousquet, X. Carbonneau, I. Trébinjac, Assessment of steady and unsteady predictions for a subsonic centrifugal compressor stage, in Proceedings of ASME Turbo Expo 2012 GT2012, Copenhagen, Denmark, 11–15 June 2012. ASME Paper No. GT2012-68567

    Google Scholar 

  • T. Brandvik, G. Pullan, Acceleration of a 3D Euler solver using commodity graphics hardware, in 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7–10 January 2008. No. AIAA-2008-605

    Google Scholar 

  • F.W. Burcham Jr., D.L. Hughes, Analysis of in-flight pressure fluctuations leading to engine compressor surge in an F-111A airplane for Mach numbers to 2.17. AIAA Paper No. AIAA-1970-624 (1970)

    Google Scholar 

  • T.L. Butler, O.P. Sharma, H.D. Joslyn, R.P. Dring, Redistribution of an inlet temperature distortion in an axial flow turbine stage. J. Propuls. Power 5(1), 64–71 (1989)

    Article  Google Scholar 

  • C. Camci, D.H. Rizzo, Secondary flow and forced convection heat transfer near endwall boundary layer fences in a 90 turning duct. Int. J. Heat Mass Transf. 45(4), 831–843 (2002)

    Article  Google Scholar 

  • T.R. Camp, I.J. Day, A study of spike and modal stall phenomena in a low-speed axial compressor. J. Turbomach. 120, 393–401 (1998)

    Article  Google Scholar 

  • N.D. Cardwell, Effects of realistic first-stage turbine endwall features. MSc Thesis, Virginia Polytechnic Institute, 2005

    Google Scholar 

  • P.W. Carpenter, K.L. Kudar, R. Ali, P.K. Sen, C. Davies, A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 365(1859), 2419–2441 (2007)

    Article  MathSciNet  Google Scholar 

  • D.R. Chapman, H. Mark, M.W. Pirtle, Computers vs. wind tunnels for aerodynamic flow simulations. Astronaut. Aeronaut. 13, 12–35 (1975)

    Article  Google Scholar 

  • H. Choi, P. Moin, Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24, 011702 (2012)

    Article  Google Scholar 

  • J.D. Coull, Wake induced transition in low pressure turbines. PhD thesis, Department of Engineering, The University of Cambridge (2009)

    Google Scholar 

  • W.T. Cousins, History, philosophy, physics, and future directions of aircraft propulsion system/inlet integration, in Proceedings of ASME Turbo Expo 2004 Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004. ASME Paper No. GT2004-54210

    Google Scholar 

  • R.M. Cummings, S.A. Morton, J.R. Forsythe, Detached-eddy simulation of slat and flap aerodynamics for a high-lift wing, in 42nd Aerospace Sciences Meeting and Exhibit (2004), p. 1

    Google Scholar 

  • N. Cumpsty, Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  • F.M. De Jongh, P.G. Morton, R. Holmes, The synchronous instability of a compressor rotor due to bearing journal differential heating. discussion. J. Eng. Gas Turbines Power 118(4), 816–824 (1996)

    Article  Google Scholar 

  • S. Deck, P. Spalart, P. Sagaut, J. Forsythe, K.D. Squires, Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43(7), 1556–1566 (2005)

    Article  Google Scholar 

  • W.J. Devenport, M.C. Rife, S.I. Liapis, G.J. Follin, The structure and development of a wing-tip vortex. J. Fluid Mech. 312(67), 106 (1996)

    MathSciNet  Google Scholar 

  • G. Dufour, N. Gourdain, F. Duchaine, O. Vermorel, L.Y.M. Gicquel, J.F. Boussuge, T. Poinsot, Large Eddy Simulation Applications. VKI Lecture Series Numerical Investigations in Turbomachinery: The State of Art, Rhodes-St-Genese, Belgique, 21–25 Sept. 2009

    Google Scholar 

  • L. Elena, R. Schiestel, Turbulence modeling of rotating confined flows. Int. J. Heat Fluid Flow 17(3), 283–289 (1996)

    Article  Google Scholar 

  • H.W. Emmons, C.E. Pearson, H.P. Grant, Compressor surge and stall propagation. Trans. Am. Soc. Mech. Eng. 77(3), 455–469 (1955)

    Google Scholar 

  • A.H. Epstein, F. Williams, E.M. Greitzer, Active suppression of aerodynamic instabilities in turbomachines. J. Propuls. Power 5(2), 204–211 (1986)

    Article  Google Scholar 

  • P.R. Farthing, C.A. Long, J.M. Owen, Rotating cavity with axial throughflow of cooling air: flow structure. J. Turbomach. 114(237) (1992a)

    Google Scholar 

  • P.R. Farthing, C.A. Long, J.M. Owen, Rotating cavity with axial throughflow of cooling air: heat transfer. J. Turbomach. 114(229) (1992b)

    Google Scholar 

  • F. Flemming, C. Olbricht, B. Wegner, A. Sadiki, J. Janicka, F. Bake, U. Michel, B. Lehmann, I. Röhle, Analysis of unsteady motion with respect to noise sources in a gas turbine combustor: isothermal flow case. Flow Turbul. Combust. 75(1), 3–27 (2005)

    Article  MATH  Google Scholar 

  • J.R. Forsythe, K.D. Squires, K.E. Wurtzler, P.R. Spalart, Detached-eddy simulation of the F-15E at high alpha. J. Aircr. 41(2), 193–200 (2004)

    Article  Google Scholar 

  • G. Fritsch, M. Giles, Second-order effects of unsteadiness on the performance of turbomachines, in 37th International Gas Turbine and Aeroengine Congress and Exposition, vol. 1 (1992)

    Google Scholar 

  • S. Fu, Z. Xiao, H. Chen, Y. Zhang, J. Huang, Simulation of wing-body junction flows with hybrid RANS/LES methods. Int. J. Heat Fluid Flow 28(6), 1379–1390 (2007)

    Article  Google Scholar 

  • M.B. Giles, An approach for multi-stage calculations incorporating unsteadiness. ASME Paper No. 92-GT-282 (1992)

    Google Scholar 

  • N. Gourdain, L.Y.M. Gicquel, E. Collado, RANS and LES for the heat transfer prediction in turbine guide vane. J. Propuls. Power 28(2), 423–433 (2012). doi:10.2514/1.57717

    Google Scholar 

  • S.I. Green, A.J. Acosta, Unsteady flow in trailing vortices. J. Fluid Mech. 227(1), 107–134 (1991)

    Article  Google Scholar 

  • J.F. Guelich, U. Bolleter, Pressure pulsations in centrifugal pumps. J. Vib. Acoust. 114(2), 272–279 (1992)

    Article  Google Scholar 

  • I. Gursul, Review of unsteady vortex flows over slender delta wings. J. Aircr. 42(2), 299–319 (2005)

    Article  Google Scholar 

  • W. Haase, M. Braza, A. Revell, DESider—A European Effort on Hybrid RANS-LES Modelling: Results of the European-Union Funded Project, 2004–2007, vol. 103 (Springer, Berlin, 2009)

    Book  Google Scholar 

  • A. Hadjadj, Large-eddy simulation of shock/boundary-layer interaction. AIAA J. 50(12), 2919–2927 (2012)

    Article  Google Scholar 

  • K. Hanjalinc, Invited talk, in 9th UK Heat Transfer Conference, 5–7 September 2005 (Manchester University Press, Manchester, 2005)

    Google Scholar 

  • R.G. Hercock, D.D. Williams, Distortion-induced engine instability. Aerodynamic response. AGARD, LS72-Paper (3) (1974)

    Google Scholar 

  • H.Z. Herzig, A.G. Hansen, G.R. Costello, A visualization study of secondary flows in cascades. NACA Rep. 1163 (Supersedes NACA TN 2947) (1954)

    Google Scholar 

  • P. Hield, Personal communication (2012)

    Google Scholar 

  • N. Hills, Achieving high parallel performance for an unstructured unsteady turbomachinery CFD code. Aeronaut. J. 111(1117), 185–193 (2007)

    Google Scholar 

  • H. Iacovides, M. Raisee, Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine blades. Int. J. Heat Fluid Flow 20(3), 320–328 (1999)

    Article  Google Scholar 

  • H.S. Im, G.C. Zha, Simulation of nonsynchronous blade vibration of an axial compressor using a fully coupled fluid/structure interaction. ASME GT2012-68150 (2012)

    Google Scholar 

  • R. Jakoby, T. Zierer, K. Lindblad, J. Larsson, D.E. Bohn, J. Funcke, A. Decker et al., Numerical simulation of the unsteady flow field in an axial gas turbine rim seal configuration. GT2004-53829, ASME Expo (2004)

    Google Scholar 

  • M. Judge, Personal communication (2012)

    Google Scholar 

  • J.L. Kerrebrock, A.A. Mikolajczak, Intra-stator transport of rotor wakes and its effect on compressor performance. ASME J. Eng. Power 92(4), 359–368 (1970)

    Article  Google Scholar 

  • C. Klostermeier, Investigation into the capability of large eddy simulation for turbomachinery design. PhD thesis, University of Cambridge (2008)

    Google Scholar 

  • U. Köller, R. Mönig, B. Kösters, H.A. Schreiber, Development of advanced compressor airfoils for heavy-duty gas turbines—Part I: design and optimization. J. Turbomach. 122(3), 397–405 (2000)

    Article  Google Scholar 

  • B. Launder, S. Poncet, E. Serre, Laminar, transitional, and turbulent flows in rotor-stator cavities. Annu. Rev. Fluid Mech. 42, 229–248 (2010)

    Article  Google Scholar 

  • F. Leboeuf, D. Charbonnier, Development of a model for the deterministic stresses in a transonic turbine stage, in Proceedings of the Fifth European Conference on Turbomachinery, Prague (2003)

    Google Scholar 

  • S. Leichtfuss, C. Biela, H.P. Schiffer, F. Heinichen, Influence of inlet guide vane wakes on the passage flow in a transonic axial compressor, in Proceedings of ASME Turbo Expo 2012 GT2012, Copenhagen, Denmark, 11–15 June 2012. ASME Paper No. GT2012-69485

    Google Scholar 

  • M. Leschziner, N. Li, F. Tessicini, M. Leschziner, N. Li, F. Tessicini, Simulating flow separation from continuous surfaces: routes to overcoming the Reynolds number barrier. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 367(1899), 2885–2903 (2009)

    Article  MATH  Google Scholar 

  • M.G. List, S.E. Gorrell, M.G. Turner, Investigation of loss generation in an embedded transonic fan at several gaps using high-fidelity, time accurate CFD, in Proceedings of the ASME Turbo Expo Power for Land, Sea and Air GT 2008, Berlin, Germany (2008). Paper No. GT2008-51220

    Google Scholar 

  • S. Loiodice, P.G. Tucker, J. Watson, Coupled open rotor engine intake simulations, in Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, Jan. 2010. Paper No. AIAA–2010–840

    Google Scholar 

  • K. Matsuura, C. Kato, Large-eddy simulation of compressible transitional cascade flows with and without incoming free-stream turbulence. JSME Int. J. Ser. B 49(3), 660–669 (2006)

    Article  Google Scholar 

  • M. May, Reduced order modeling for the flutter stability analysis of a highly loaded transonic fan, in Proceedings of ASME Turbo Expo 2012 GT2012, Copenhagen, Denmark, 11–15 June 2012. ASME Paper No. GT2012-69775

    Google Scholar 

  • R. Mayle, The role of laminar-turbulent transition in gas turbine engines. ASME Trans. J. Turbomach. 113, 509–537 (1991). ASME, International Gas Turbine and Aeroengine Congress and Exposition, 36th, Orlando, FL, 3–6 June 1991

    Article  Google Scholar 

  • J.J. McGuirk, A. Taylor, Numerical simulation of gas turbine combustion processes-present status and future trends. J. Gas Turbine Soc. Jpn. 30(5), 347–361 (2002)

    Google Scholar 

  • C. Meneveau, J. Katz, A deterministic stress model for rotor-stator interactions in simulations of average-passage flow. J. Fluids Eng. 124(2), 550–554 (2002)

    Article  Google Scholar 

  • V. Michelassi, J.G. Wissink, W. Rodi, Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier–Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: a comparison. Proc. Inst. Mech. Eng. A, J. Power Energy 217(4), 403–411 (2003)

    Article  Google Scholar 

  • F. Montomoli, H.P. Hodson, L. Lapworth, RANS–URANS in axial compressor, a design methodology. Proc. Inst. Mech. Eng. A, J. Power Energy 225(3), 363–374 (2011)

    Article  Google Scholar 

  • Y.J. Moon, S.R. Koh, Counter-rotating streamwise vortex formation in the turbine cascade with endwall fence. Comput. Fluids 30(4), 473–490 (2001)

    Article  MATH  Google Scholar 

  • C.J. Moore, The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80(02), 321–367 (1977)

    Article  Google Scholar 

  • W.E.I. Ning, L.I. He, Some modeling issues on trailing-edge vortex shedding. AIAA J. 39(5), 787–793 (2001)

    Article  Google Scholar 

  • T.S.D. O’Mahoney, N.J. Hills, J.W. Chew, T. Scanlon, Large-eddy simulation of rim seal ingestion. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 225(12), 2881–2891 (2011)

    Article  Google Scholar 

  • J.M. Owen, J.R. Pincombe, Vortex breakdown in a rotating cylindrical cavity. J. Fluid Mech. 90(01), 109–127 (1979)

    Article  Google Scholar 

  • J.M. Owen, R.H. Rogers, Flow and Heat Transfer in Rotating-Disc Systems. Rotor–Stator Systems, vol. 1 (Research Studies Press Ltd., Baldock, 1989)

    Google Scholar 

  • K. Paschal, L. Jenkins, C. Yao, Unsteady slat-wake characteristics of a high-lift configuration. AIAA Paper No. AIAA-2000-0139 (2000)

    Google Scholar 

  • A. Pfau, M. Treiber, M. Sell, G. Gyarmathy, Flow interaction from the exit cavity of an axial turbine blade row labyrinth seal. J. Turbomach. 123(2), 342–352 (2001)

    Article  Google Scholar 

  • U. Piomelli, Wall-layer models for large-eddy simulations, in Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7–10 January 2008. AIAA Paper No. AIAA-2008-0603

    Google Scholar 

  • U. Piomelli, E. Balaras, Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34(1), 349–374 (2002)

    Article  MathSciNet  Google Scholar 

  • J.M.M. Place, Three-dimensional flow in core compressors. PhD thesis, University of Cambridge (1997)

    Google Scholar 

  • S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(1), 35 (2004)

    Article  Google Scholar 

  • B. Raverdy, I. Mary, P. Sagaut, N. Liamis, High-resolution large-eddy simulation of flow around low-pressure turbine blade. AIAA J. 41(3), 390–397 (2003)

    Article  Google Scholar 

  • H.J. Rehder, A. Dannhauer, Experimental investigation of turbine leakage flows on the three-dimensional flow field and endwall heat transfer. J. Turbomach. 129(3), 608–618 (2007)

    Article  Google Scholar 

  • K. Reid, J. Denton, G. Pullan, E. Curtis, J. Longley, The interaction of turbine inter-platform leakage flow with the mainstream flow. J. Turbomach. 129(2), 303–310 (2007)

    Article  Google Scholar 

  • C.M. Rhie, A.J. Gleixner, D.A. Spear, C.J. Fischberg, R.M. Zacharias, Development and application of a multistage Navier–Stokes solver. Part I: multistage modeling using bodyforces and deterministic stresses. ASME Trans. J. Turbomach. 120, 205–214 (1995)

    Article  Google Scholar 

  • M. Rosenlund, N. Berglind, G. Pershagen, L. Järup, G. Bluhm, Increased prevalence of hypertension in a population exposed to aircraft noise. Occup. Environ. Med. 58(12), 769–773 (2001)

    Article  Google Scholar 

  • V. Saxena, H. Nasir, S.V. Ekkad, Effect of blade tip geometry on tip flow and heat transfer for a blade in a low-speed cascade. J. Turbomach. 126(1), 130–138 (2004)

    Article  Google Scholar 

  • J.U. Schluter, X. Wu, S. Kim, S. Shankaran, J.J. Alonso, H. Pitsch, A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications. Trans. Am. Soc. Mech. Eng. J. Fluids Eng. 127(4), 806 (2005)

    Article  Google Scholar 

  • T. Shang, A.H. Epstein, M.B. Giles, Blade row interaction effects on compressor measurements, in Proceedings of the AGARD 74th Specialist Meeting on Unsteady Aerodynamic Phenomena in Turbomachines, Luxembourg (1989). AGARD Conference Proceedings No. 468

    Google Scholar 

  • D. Sims-Williams, F. Forster, G. Ingram, Reconstruction of the unsteady pressure field in a low speed linear cascade, in Proceedings of ASME Turbo Expo 2012 GT2012, Copenhagen, Denmark, 11–15 June 2012. ASME Paper No. GT2012-69156

    Google Scholar 

  • D.G. Sloan, P.J. Smith, L.D. Smoot, Modeling of swirl in turbulent flow systems. Prog. Energy Combust. Sci. 12(3), 163–250 (1986)

    Article  Google Scholar 

  • P.R. Spalart, D.R. Bogue, The role of CFD in aerodynamics, off-design. Aeronaut. J. 107(1072), 323–329 (2003)

    Google Scholar 

  • N. Suryavamshi, B. Lakshminarayana, J. Prato, J.R. Fagan, Unsteady total pressure field downstream of an embedded stator in a multistage axial flow compressor. J. Fluids Eng. 119(4), 985–994 (1997)

    Article  Google Scholar 

  • K. Takeda, G.B. Ashcroft, X. Zhang, P.A. Nelson, Unsteady aerodynamics of slat cove flow in a high-lift device configuration. AIAA paper 706, 2001 (2001)

    Google Scholar 

  • S. Trapier, S. Deck, P. Duveau, Delayed detached-eddy simulation and analysis of supersonic inlet buzz. AIAA J. 46(1), 118–131 (2008)

    Article  Google Scholar 

  • P.G. Tucker, Computation of Unsteady Internal Flows (Kluwer Academic, Norwell, 2001)

    Book  Google Scholar 

  • P.G. Tucker, Computation of unsteady turbomachinery flows: Part 1—hierarchy and example simulations. ASME J. Turbomach. 134(2), 021023 (2011a), 10 pp.

    Article  Google Scholar 

  • P.G. Tucker, Computation of unsteady turbomachinery flows: Part 2—LES and hybrids. Prog. Aerosp. Sci. 47, 546–569 (2011b)

    Article  Google Scholar 

  • P. Tucker, Y. Liu, Turbulence modelling for flows around convex features giving rapid eddy distortion. Int. J. Heat Fluid Flow 28(5), 1073–1091 (2007)

    Article  Google Scholar 

  • J.M. Tyler, Axial flow compressor noise studies. SAE Transact. 70, 309–332 (1962)

    Google Scholar 

  • E.A. Van Deusen, V.R. Mardoc, Distortion and turbulence interaction—a method of evaluating engine inlet compatibility. J. Aircr. 9(1), 16–22 (1972)

    Article  Google Scholar 

  • M.R. Visbal, Numerical investigation of deep dynamic stall of a plunging airfoil. AIAA J. 49(10), 2152–2170 (2011)

    Article  MathSciNet  Google Scholar 

  • A.M. Wallis, J.D. Denton, A. Demargne The control of shroud leakage flows to reduce aerodynamic losses in a low aspect ratio, shrouded axial flow turbine. ASME Turbo. Expo. 2000, Munich, Germany (2000)

    Google Scholar 

  • J.E.F. Williams, D.L. Hawkings, Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 264(1151), 321–342 (1969)

    Article  MATH  Google Scholar 

  • D.E. Winterbone, B. Nikpour, H. Frost, A contribution to the understanding of turbocharger turbine performance in pulsating flow, in International Conference on Internal Combustion Research, Paper No. C433/011 (1991), pp. 19–28

    Google Scholar 

  • H. Xia, P.G. Tucker, W.N. Dawes, Level sets for CFD in aerospace engineering. Prog. Aerosp. Sci. 46(7), 274–283 (2010)

    Article  Google Scholar 

  • A. Young, Personal communication (April 2012)

    Google Scholar 

  • L. Zhao, W.-Y. Qiao, Z.-Q. Mu, P.P. Chen, Tip clearance effects on unsteady behavior of the tip leakage vortex and stator/rotor interaction tonal noise, in Proceedings of ASME Turbo Expo 2012 GT2012, Copenhagen, Denmark, 11–15 June 2012. ASME Paper No. GT2012-68549

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tucker, P.G. (2014). Introduction. In: Unsteady Computational Fluid Dynamics in Aeronautics. Fluid Mechanics and Its Applications, vol 104. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7049-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7049-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7048-5

  • Online ISBN: 978-94-007-7049-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics