# Deontic Logics Based on Boolean Algebra

Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 1)

## Abstract

Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known mathematical framework to study the properties of the classic deontic operators when applied to actions. In his seminal work, Segerberg uses constructions coming from boolean algebras to formalize the usual deontic notions. Segerberg’s work provided the initial step to understand logical properties of deontic operators when they are applied to actions. In the last years, other authors have proposed related logics. In this chapter we introduce Segerberg’s work, study related formalisms and investigate further challenges in this area.

## References

1. 1.
Anglberger, A. J. J. (2008). Dynamic deontic logic and its paradoxes. Studia Logica, 89, 427–435.
2. 2.
Aquist, L. (1963). Postulate sets and decision procedures for some systems of deontic logic. Theoria, 29, 154–175.
3. 3.
Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: Agents and choices in our indeterminist world. Oxford: Oxford University Press.Google Scholar
4. 4.
Blackburn, P., Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in, theoretical computer science (vol. 53). Cambridge: Cambridge University Press.Google Scholar
5. 5.
Boole, G. (1854). An investigation on the laws of though, on which are founded the mathematical theories of logic and probability. London: Walton & Maberly.Google Scholar
6. 6.
Broersen, J. (2003). Modal action logics for reasoning about reactive systems. Ph.D. thesis, Vrije University.Google Scholar
7. 7.
Castro, P. F., & Maibaum, T. (2009). Deontic action logic, atomic boolean algebra and fault-tolerance. Journal of Applied Logic, 7(4), 441–466.
8. 8.
Castro, P.F., & Maibaum, T. (2010). Towards a first-order deontic action logic. In 20th International Workshop in Recent Trends in Algebraic Development Techniques, Lectures Notes in Computer Science. Heidelberg: Springer.Google Scholar
9. 9.
Fiadeiro, J. L., & Maibaum, T. S. E. (1991). Temporal reasoning over deontic specifications. Journal of Logic and Computation, 1, 357–395.
10. 10.
Fisher, M. (1961). A three-valued calculus for deontic logic. Theoria, 27, 107–118.
11. 11.
Gargov, G., & Passy, S. (1990). A note on boolean logic. In P. P. Petkov (Ed.) Proceedings of the Heyting Summerschool. New York: Plenum Press.Google Scholar
12. 12.
Givant, S., & Halmos, P. (2010). Introduction to Boolean Algebras. Heidelberg: Springer.Google Scholar
13. 13.
Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Massachusetts: MIT Press.Google Scholar
14. 14.
Hintikka, J. (1957). Quantifiers in deontic logic. In: Societas Scientiarum Fennica, Commentationes Humanarum Litterarum.Google Scholar
15. 15.
Jipsen, P. (1992). Computer aided investigations of relational algebras. Ph.D. thesis, Vanderbilt University.Google Scholar
16. 16.
Jonsson, B., & Tarski, A. (1951). Boolean algebras with operators i. American Journal of Mathematics, 73, 891–939.
17. 17.
Jonsson, B., & Tarski, A. (1952). Boolean algebras with operators ii. American Journal of Mathematics, 74, 127–162.
18. 18.
Kalinowski, J. (1953). Theorie des propositions normativess. Studia Logica, 1, 147–182.
19. 19.
Kalinowski, J. (1972). La logique des normes. Presses Universitaires de France.Google Scholar
20. 20.
Kanger, S. (1957). New foundations for ethical theory. Tech. rep., Stockholm University.Google Scholar
21. 21.
Kanger, S. (1971). New foundations for ethical theory. In R. Hilpinen (Ed.) Deontic logic: Introductory and systematic readings. Reidel: Dordrecht.Google Scholar
22. 22.
Kouznetsov, A. (2004). Quasi-matrix deontic logic. In A. Lomuscio, & D. Nute (Eds.) Deontic logic in computer science, Lecture Notes in Computer Science (vol. 3065, pp. 191–208). Berlin: Springer.Google Scholar
23. 23.
Kulicki, P., & Trypuz, R. (2012). A deontic action logic with sequential composition of actions. In T. Ågotnes, J. Broersen, & D. Elgesem (Eds.) Deontic logic in computer science, Lecture Notes in Computer Science (vol. 7393/2012, pp. 184–198). Berlin: Springer.Google Scholar
24. 24.
Kulicki, P., & Trypuz, R. (2012). How to build a deontic action logic. In The Logica Yearbook 2011 (pp. 107–120). Upper Saddle River: College Publications.Google Scholar
25. 25.
Lokhorst, G. J. C. (1996). Reasoning about actions and obligations in first-order logic. Studia Logica, 57, 221–237.
26. 26.
27. 27.
Meyer, J. (1987). A different approach to deontic logic: Deontic logic viewed as variant of dynamic logic. Notre Dame Journal of Formal Logic, 29(1), 109–136.
28. 28.
Prisacariu, C. (2009). Synchronous kleene algebra. The Journal of Logic and Algebraic Programming, 78, 608–635.Google Scholar
29. 29.
Prisacariu, C., & Schneider, G. (2012). A dynamic deontic logic for complex contracts. The Journal of Logic and Algebraic Programming, 81, 458–490.Google Scholar
30. 30.
Segerberg, K. (1977). A completeness theorem in the modal logic of programs. Notices of the American Mathematical Society, 24(6), A-552.Google Scholar
31. 31.
Segerberg, K. (1982). A deontic logic of action. Studia Logica, 41, 269–282.
32. 32.
Segerberg, K. (1984). A topological logic of action. Studia Logica, 43(4), 415–419.
33. 33.
Segerberg, K. (1992). Getting started: Beginnings in the logic of action. Studia Logica, 51, 347–378.
34. 34.
Sikorski, R. (1969). Boolean algebras. Heidelberg: Springer.Google Scholar
35. 35.
Trypuz, R. (2011). Simple theory of norm and action. In A. Brożek, J. Jadacki, & B. Žarnić (Eds.) Theory of imperatives from different points of view, logic, methodology and philosophy of science at Warsaw University (vol. 6, pp. 120–136). Wydawnictwo Naukowe Semper.Google Scholar
36. 36.
Trypuz, R., & Kulicki, P. (2009). A systematics of deontic action logics based on boolean algebra. Logic and Logical Philosophy, 18, 263–279.Google Scholar
37. 37.
Trypuz, R., & Kulicki, P. (2010). Towards metalogical systematisation of deontic action logics based on boolean algebra. In Proceedings of the 10th International Conference Deontic Logic in Computer Science, Lecture Notes in Computer Science (vol. 6181). Heidelberg: Springer.Google Scholar
38. 38.
Trypuz, R., & Kulicki, P. (2011). A norm-giver meets deontic action logic. Logic and Logical Philosophy, 20, 59–72.Google Scholar
39. 39.
van der Meyden, R. (1996). The dynamic logic of permission. Journal of Logic and Computation, 6(3), 465–479.
40. 40.
von Wright, G. H. (1951). Deontic logic. Mind, LX(237), 1–15.Google Scholar
41. 41.
von Wright, G. H. (1963). Norm and action: A logical inquiry. London: Routledge & Kegan Paul.Google Scholar
42. 42.
von Wright, G. H. (1980). Problems and prospects of deontie logic: A survey. In Modern logic—a survey (pp. 399–423). Dordrecht: Reidel.Google Scholar