Deontic Logics Based on Boolean Algebra

Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 1)

Abstract

Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known mathematical framework to study the properties of the classic deontic operators when applied to actions. In his seminal work, Segerberg uses constructions coming from boolean algebras to formalize the usual deontic notions. Segerberg’s work provided the initial step to understand logical properties of deontic operators when they are applied to actions. In the last years, other authors have proposed related logics. In this chapter we introduce Segerberg’s work, study related formalisms and investigate further challenges in this area.

References

  1. 1.
    Anglberger, A. J. J. (2008). Dynamic deontic logic and its paradoxes. Studia Logica, 89, 427–435.CrossRefGoogle Scholar
  2. 2.
    Aquist, L. (1963). Postulate sets and decision procedures for some systems of deontic logic. Theoria, 29, 154–175.CrossRefGoogle Scholar
  3. 3.
    Belnap, N., Perloff, M., & Xu, M. (2001). Facing the future: Agents and choices in our indeterminist world. Oxford: Oxford University Press.Google Scholar
  4. 4.
    Blackburn, P., Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge tracts in, theoretical computer science (vol. 53). Cambridge: Cambridge University Press.Google Scholar
  5. 5.
    Boole, G. (1854). An investigation on the laws of though, on which are founded the mathematical theories of logic and probability. London: Walton & Maberly.Google Scholar
  6. 6.
    Broersen, J. (2003). Modal action logics for reasoning about reactive systems. Ph.D. thesis, Vrije University.Google Scholar
  7. 7.
    Castro, P. F., & Maibaum, T. (2009). Deontic action logic, atomic boolean algebra and fault-tolerance. Journal of Applied Logic, 7(4), 441–466.CrossRefGoogle Scholar
  8. 8.
    Castro, P.F., & Maibaum, T. (2010). Towards a first-order deontic action logic. In 20th International Workshop in Recent Trends in Algebraic Development Techniques, Lectures Notes in Computer Science. Heidelberg: Springer.Google Scholar
  9. 9.
    Fiadeiro, J. L., & Maibaum, T. S. E. (1991). Temporal reasoning over deontic specifications. Journal of Logic and Computation, 1, 357–395.CrossRefGoogle Scholar
  10. 10.
    Fisher, M. (1961). A three-valued calculus for deontic logic. Theoria, 27, 107–118.CrossRefGoogle Scholar
  11. 11.
    Gargov, G., & Passy, S. (1990). A note on boolean logic. In P. P. Petkov (Ed.) Proceedings of the Heyting Summerschool. New York: Plenum Press.Google Scholar
  12. 12.
    Givant, S., & Halmos, P. (2010). Introduction to Boolean Algebras. Heidelberg: Springer.Google Scholar
  13. 13.
    Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. Massachusetts: MIT Press.Google Scholar
  14. 14.
    Hintikka, J. (1957). Quantifiers in deontic logic. In: Societas Scientiarum Fennica, Commentationes Humanarum Litterarum.Google Scholar
  15. 15.
    Jipsen, P. (1992). Computer aided investigations of relational algebras. Ph.D. thesis, Vanderbilt University.Google Scholar
  16. 16.
    Jonsson, B., & Tarski, A. (1951). Boolean algebras with operators i. American Journal of Mathematics, 73, 891–939.CrossRefGoogle Scholar
  17. 17.
    Jonsson, B., & Tarski, A. (1952). Boolean algebras with operators ii. American Journal of Mathematics, 74, 127–162.CrossRefGoogle Scholar
  18. 18.
    Kalinowski, J. (1953). Theorie des propositions normativess. Studia Logica, 1, 147–182.CrossRefGoogle Scholar
  19. 19.
    Kalinowski, J. (1972). La logique des normes. Presses Universitaires de France.Google Scholar
  20. 20.
    Kanger, S. (1957). New foundations for ethical theory. Tech. rep., Stockholm University.Google Scholar
  21. 21.
    Kanger, S. (1971). New foundations for ethical theory. In R. Hilpinen (Ed.) Deontic logic: Introductory and systematic readings. Reidel: Dordrecht.Google Scholar
  22. 22.
    Kouznetsov, A. (2004). Quasi-matrix deontic logic. In A. Lomuscio, & D. Nute (Eds.) Deontic logic in computer science, Lecture Notes in Computer Science (vol. 3065, pp. 191–208). Berlin: Springer.Google Scholar
  23. 23.
    Kulicki, P., & Trypuz, R. (2012). A deontic action logic with sequential composition of actions. In T. Ågotnes, J. Broersen, & D. Elgesem (Eds.) Deontic logic in computer science, Lecture Notes in Computer Science (vol. 7393/2012, pp. 184–198). Berlin: Springer.Google Scholar
  24. 24.
    Kulicki, P., & Trypuz, R. (2012). How to build a deontic action logic. In The Logica Yearbook 2011 (pp. 107–120). Upper Saddle River: College Publications.Google Scholar
  25. 25.
    Lokhorst, G. J. C. (1996). Reasoning about actions and obligations in first-order logic. Studia Logica, 57, 221–237.CrossRefGoogle Scholar
  26. 26.
    Maddux, R. (2006). Relation algebras. North-Holland: Elsevier Science.Google Scholar
  27. 27.
    Meyer, J. (1987). A different approach to deontic logic: Deontic logic viewed as variant of dynamic logic. Notre Dame Journal of Formal Logic, 29(1), 109–136.CrossRefGoogle Scholar
  28. 28.
    Prisacariu, C. (2009). Synchronous kleene algebra. The Journal of Logic and Algebraic Programming, 78, 608–635.Google Scholar
  29. 29.
    Prisacariu, C., & Schneider, G. (2012). A dynamic deontic logic for complex contracts. The Journal of Logic and Algebraic Programming, 81, 458–490.Google Scholar
  30. 30.
    Segerberg, K. (1977). A completeness theorem in the modal logic of programs. Notices of the American Mathematical Society, 24(6), A-552.Google Scholar
  31. 31.
    Segerberg, K. (1982). A deontic logic of action. Studia Logica, 41, 269–282.CrossRefGoogle Scholar
  32. 32.
    Segerberg, K. (1984). A topological logic of action. Studia Logica, 43(4), 415–419.CrossRefGoogle Scholar
  33. 33.
    Segerberg, K. (1992). Getting started: Beginnings in the logic of action. Studia Logica, 51, 347–378.CrossRefGoogle Scholar
  34. 34.
    Sikorski, R. (1969). Boolean algebras. Heidelberg: Springer.Google Scholar
  35. 35.
    Trypuz, R. (2011). Simple theory of norm and action. In A. Brożek, J. Jadacki, & B. Žarnić (Eds.) Theory of imperatives from different points of view, logic, methodology and philosophy of science at Warsaw University (vol. 6, pp. 120–136). Wydawnictwo Naukowe Semper.Google Scholar
  36. 36.
    Trypuz, R., & Kulicki, P. (2009). A systematics of deontic action logics based on boolean algebra. Logic and Logical Philosophy, 18, 263–279.Google Scholar
  37. 37.
    Trypuz, R., & Kulicki, P. (2010). Towards metalogical systematisation of deontic action logics based on boolean algebra. In Proceedings of the 10th International Conference Deontic Logic in Computer Science, Lecture Notes in Computer Science (vol. 6181). Heidelberg: Springer.Google Scholar
  38. 38.
    Trypuz, R., & Kulicki, P. (2011). A norm-giver meets deontic action logic. Logic and Logical Philosophy, 20, 59–72.Google Scholar
  39. 39.
    van der Meyden, R. (1996). The dynamic logic of permission. Journal of Logic and Computation, 6(3), 465–479.CrossRefGoogle Scholar
  40. 40.
    von Wright, G. H. (1951). Deontic logic. Mind, LX(237), 1–15.Google Scholar
  41. 41.
    von Wright, G. H. (1963). Norm and action: A logical inquiry. London: Routledge & Kegan Paul.Google Scholar
  42. 42.
    von Wright, G. H. (1980). Problems and prospects of deontie logic: A survey. In Modern logic—a survey (pp. 399–423). Dordrecht: Reidel.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Universidad Nacional de Río CuartoCordobaArgentina
  2. 2.John Paul II Catholic University of LublinLublinPoland

Personalised recommendations