DDL as an “Internalization” of Dynamic Belief Revision

  • Alexandru Baltag
  • Virginie Fiutek
  • Sonja Smets
Part of the Outstanding Contributions to Logic book series (OCTR, volume 1)


In this chapter we re-evaluate Segerberg’s “full DDL” (Dynamic Doxastic Logic) from the perspective of Dynamic Epistemic Logic (DEL), in its belief-revision-friendly incarnation. We argue that a correct version of full DDL must give up the Success Postulate for dynamic revision. Next, we present (an appropriately generalized and simplified version of) full DDL, showing that it is a generalization of the so-called Topo-logic of Moss and Parikh. We construct AGM-friendly versions of full DDL, corresponding to various revising/contracting operations considered in the Belief Revision literature. We show that DDL can internalize inside one model the “external” doxastic dynamics of DEL, as well as the evidential dynamics investigated by van Benthem and Pacuit. In our Conclusions section, we compare three styles of modeling doxastic dynamics: DDL, DEL and PDL/ETL (the Propositional Dynamic Logic approach, with its Epistemic Temporal Logic variant).


Belief Revision Doxastic State Conditional Belief Propositional Dynamic Logic Dynamic Epistemic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Sonja Smets’ contribution to this paper was funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013) / ERC Grant agreement nr 283963.


  1. 1.
    Alchourron, C. E., Gardenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. The Journal of Symbolic Logic, 50(2), 510–530.CrossRefGoogle Scholar
  2. 2.
    Baltag, A., Moss, L. S., & van Ditmarsch, H. P. (2008). Epistemic logic and information update. In P. Adriaans & J. van Benthem (Eds.), Philosophy of information, part of handbook of the philosophy of science (Vol. 8, pp. 361–465). New York: Elsevier.Google Scholar
  3. 3.
    Baltag, A., & Smets, S. (2006). Conditional doxastic models: A qualitative approach to dynamic belief revision. In G. Mints & R. de Queiroz (Eds.), Proceedings of WOLLIC 2006. Electronic Notes in Theoretical Computer Science, 165, 5–21.Google Scholar
  4. 4.
    Baltag, A., & Smets, S. (2006). Dynamic belief revision over multi-agent plausibility models. In G. Bonanno, W. van der Hoek, & M. Woolridge (Eds.), Proceedings of LOFT 2006 (pp. 11–24). Liverpool: University of Liverpool.Google Scholar
  5. 5.
    Baltag, A., & Smets, S. (2008). A Qualitative Theory of Dynamic Interactive Belief Revision. In (eds.) G. Bonanno, W. van der Hoek, and M. Wooldridge, Texts in Logic and Games, Amsterdam University Press, 3, 13–60.Google Scholar
  6. 6.
    van Benthem, J. (2007). Dynamic logic for belief change. Journal of Applied Non-Classical Logics, 17(2), 129–155.CrossRefGoogle Scholar
  7. 7.
    van Benthem, J. (2011). Logical Dynamics of Information and Interaction. Cambridge University Press.Google Scholar
  8. 8.
    van Benthem, J., & Pacuit, E. (2011). Dynamic logics of evidence-based belief. Studia Logica, 99(1), 61–92.CrossRefGoogle Scholar
  9. 9.
    van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2008). Dynamic epistemic logic, Springer coll (p. 337). Dordrecht: Synthese Library: Studies in Epistemology, Logic, Methodology, and Philosophy of Science.Google Scholar
  10. 10.
    Ferme, E., & Rodriguez, R. (1998). A brief note about rott contraction. Logic Journal of the IGPL, 6, 835842.Google Scholar
  11. 11.
    Hintikka, J. (1962). Knowledge and belief. Ithaca, NY: Cornell University Press.Google Scholar
  12. 12.
    Levi, I. (2004). Mild Contraction: Evaluating loss of information due to loss of belief. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. 13.
    Lindström, S., & Rabinowicz, W. (1999). DDL unlimited: Dynamic doxastic logic for introspective agents. Erkenntnis, 50, 353–385.CrossRefGoogle Scholar
  14. 14.
    Lindström, S., & Rabinowicz, W. (1999). Belief change for introspective agents. In Spinning Ideas, Electronic Essays Dedicated to Peter Gärdenfors on His Fiftieth Birthday.Google Scholar
  15. 15.
    Moss, L. S., & Parikh, R. (1992). Topological reasoning and the logic of knowledge. In Moses, Y.(Ed.), Theoretical aspects of reasoning about knowledge (pp. 95–105). Los Altos: Morgan Kaufmann.Google Scholar
  16. 16.
    Pagnucco, M., Rott, H. (1999). Severe withdrawal—and recovery. Journal of Philosophical Logic, 28, 501–547. (Corrected reprint in issue February 2000).Google Scholar
  17. 17.
    Parikh, R., Moss, L. S., & Steinsvold, C. (2007), Topology and Epistemic Logic. In M. Aiello, I. Pratt-Hartmann, & J. van Benthem (Eds.), Handbook of Spatial Logics. Netherlands: Springer.Google Scholar
  18. 18.
    Rott, H. (2006). Shifting priorities: Simple representations for twenty-seven iterated theory change operators. In D. Makinson, J. Malinowski & H. Wansing (Eds.), Towards mathematical philosophy (Trends in Logic) (Vol. 4, pp. 269–296). Dordrecht: Springer.Google Scholar
  19. 19.
    Segerberg, K. (1995). Belief revision from the point of view of doxastic logic. Bulletin of the IGPL, 3, 535–553.CrossRefGoogle Scholar
  20. 20.
    Segerberg, K. (1996). A general framework for the logic of theory change. Bulletin of the section of logic, 25, 2–8.Google Scholar
  21. 21.
    Segerberg, K. (1997). Proposal for a theory of belief revision along the lines of Lindström and Rabinowicz. Fundamenta Informaticae, 32, 183–191.Google Scholar
  22. 22.
    Segerberg, K. (1998). Irrevocable belief revision in dynamic doxastic logic. Notre Dame Journal of Formal Logic, 39(3), 287–306.Google Scholar
  23. 23.
    Segerberg, K. (1999). Two traditions in the logic of belief: bringing them together, In H. J. Ohlbach, & U. Reyle (Eds.), Logic, language and reasoning: Essays in honour of Dov Gabbay (pp. 135–147), Dordrecht: Kluwer.Google Scholar
  24. 24.
    Segerberg, K. (2001a). A completeness proof in full DDL. Logic and Logical Philosophy, 9, 77–90.Google Scholar
  25. 25.
    Segerberg, K. (2001b). The basic dynamic doxastic logic of AGM. In M.A. Williams & H. Rott, Frontiers in belief revision (pp. 57–84), Dordrecht: Kluwer.Google Scholar
  26. 26.
    Segerberg, K., & Leitgeib, H. (2007). Dynamic doxastic logic—why, how and where to? Synthese, 155, 167–190.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alexandru Baltag
    • 1
  • Virginie Fiutek
    • 1
  • Sonja Smets
    • 1
  1. 1.University of Amsterdam, ILLCAmsterdamNetherlands

Personalised recommendations