On Revocable and Irrevocable Belief Revision

Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 1)

Abstract

Krister Segerberg proposed irrevocable belief revision, to be contrasted with ‘standard’ belief revision, in a setting wherein belief of propositional formulas is modelled explicitly. In standard belief revision one can unmake (‘revoke’) belief in any formula, given yet further information that contradicts it. But irrevocable formulas remain believed forever. We compare traditional AGM belief revision with Segerberg’s dynamic doxastic logic, and with dynamic epistemic logical approaches to belief revision. Our work falls in the latter category. In that context with explicit belief operators and dynamic modal operators \([* \varphi ]\) for belief revision with \(\varphi \), we define revocable belief revision as belief revision satisfying that \(\psi \leftrightarrow [* \varphi ] [* \lnot \varphi ] \psi \) is valid; such that irrevocable means not revocable. Segerberg’s irrevocable belief revision is indeed irrevocable in that sense. We give semantic constraints (on multi-agent Kripke models) for revocable belief revision. In order for belief revision to be revocable: (i) the agents should consider the same states possible before and after revision, (ii) states that are non-bisimilar before revision may not be bisimilar after revision (if states are non-bisimilar, they can be distinguished from one another in the logical language), and (iii) it should be possible that states that are not equally plausible before revision become equally plausible after revision. We reformulate four well-known belief revision operators (hard update, soft update, conservative revision, severe revision) as qualitative dynamic belief revision operators. They are irrevocable in the (strong) sense above, because they violate one or more of these three requirements. However, single-agent severe revision is revocable in a weaker sense that following a revision \(*\varphi \) there is a sequence of further revisions recovering the initial state of belief. The work may be relevant for restricted-memory or other bounded rationality approaches to belief revision, e.g., when only a finite number of plausibility distinctions may be stored in memory. Therefore, it may be relevant for the study of logic and cognition.

References

  1. 1.
    Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–530.Google Scholar
  2. 2.
    Asheim, G. B., & Søvik, Y. (2005). Preference-based belief operators. Mathematical Social Sciences, 50(1), 61–82.CrossRefGoogle Scholar
  3. 3.
    Aucher, G. (2003). A combined system for update logic and belief revision. (Master’s thesis, ILLC, University of Amsterdam, Amsterdam, The Netherlands), ILLC report MoL-2003-03.Google Scholar
  4. 4.
    Aucher, G. (2005). A combined system for update logic and belief revision. In M.W. Barley & N. Kasabov (Eds.), Intelligent agents and multi-agent systems: 7th pacific rim international workshop on multi-agents (PRIMA 2004), (pp. 1–17). Berlin: Springer, LNAI 3371.Google Scholar
  5. 5.
    Aucher, G. (2008). Perspectives on belief and change. (PhD thesis, University of Otago and Institut de Recherche en Informatique de Toulouse, New Zealand and France).Google Scholar
  6. 6.
    Baltag, A., Moss, L. S. & Solecki, S. (1998). The logic of public announcements, common knowledge, and private suspicions. In I. Gilboa (Ed.), Proceedings of the 7th conference on theoretical aspects of rationality and knowledge (TARK 98), (pp. 43–56).Google Scholar
  7. 7.
    Baltag, A., & Smets, S. (2006). Dynamic belief revision over multi-agent plausibility models. In Proceedings of 7th conference on logic and the foundations of game and decision theory (LOFT 2006).Google Scholar
  8. 8.
    Baltag. A., & Smets, S. (2008). The logic of conditional doxastic actions. In K. R. Apt & R. van Rooij (Eds.), New perspectives on games and interaction, Texts in Logic and Games 4. Amsterdam: University Press.Google Scholar
  9. 9.
    Board, O. (2004). Dynamic interactive epistemology. Games and Economic Behaviour, 49, 49–80.CrossRefGoogle Scholar
  10. 10.
    Bonanno, G. (2005). A simple modal logic for belief revision. Synthese Knowledge, Rationality and Action, 147(2), 193–228.Google Scholar
  11. 11.
    Boutilier, C. (1993). Revision sequences and nested conditionals. In Proceedings of the 13th IJCAI (Vol. 1, pp. 519–525). Burlington: Morgan Kaufmann.Google Scholar
  12. 12.
    de Rijke, M. (1994). Meeting some neighbours. In J. van Eijck & A. Visser (Eds.), Logic and information flow, (pp. 170–195). Cambridge: MIT Press.Google Scholar
  13. 13.
    Dégremont, C. (2011). The Temporal Mind. Observations on the logic of belief change in interactive systems. (PhD thesis, University of Amsterdam, ILLC Dissertation Series DS-2010-03).Google Scholar
  14. 14.
    Ferguson, D., & Labuschagne, W. A. (2002). Information-theoretic semantics for epistemic logic. In Proceedings of LOFT 5, Turin: ICER.Google Scholar
  15. 15.
    Gärdenfors, P. (1988). Knowledge in Flux: Modeling the dynamics of epistemic states. Bradford Books, Cambridge: MIT Press.Google Scholar
  16. 16.
    Gerbrandy, J. D. (1999). Bisimulations on planet kripke. (PhD thesis, University of Amsterdam, ILLC Dissertation Series DS-1999-01).Google Scholar
  17. 17.
    Gerbrandy, J. D., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic, Language, and Information, 6, 147–169.CrossRefGoogle Scholar
  18. 18.
    Girard, P. (2008). Modal logic for belief and preference change. (PhD thesis, ILLC Dissertation Series DS-2008-04). Palo Alto: Stanford University.Google Scholar
  19. 19.
    Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.CrossRefGoogle Scholar
  20. 20.
    Konieczny, S., & Pino Pérez, R. (2002). Merging information under constraints: A logical framework. Journal of Logic and Computation, 12(5), 773–808.CrossRefGoogle Scholar
  21. 21.
    Kooi, B. (2007). Expressivity and completeness for public update logics via reduction axioms. Journal of Applied Non-Classical Logics, 17(2), 231–254.CrossRefGoogle Scholar
  22. 22.
    Kraus, S., Lehmann, D., & Magidor, M. (1990). Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44, 167–207.CrossRefGoogle Scholar
  23. 23.
    Laverny, N. (2006). Révision, mises à jour et planification en logique doxastique graduelle. PhD thesis, Toulouse: Institut de Recherche en Informatique de Toulouse (IRIT).Google Scholar
  24. 24.
    Lewis, D. K. (1973). Counterfactuals. Cambridge: Harvard University Press.Google Scholar
  25. 25.
    Lindström, S., & Rabinowicz, W. (1999). DDL unlimited: Dynamic doxastic logic for introspective agents. Erkenntnis, 50, 353–385.CrossRefGoogle Scholar
  26. 26.
    Meyer, T. A. (2001). Basic infobase change. Studia Logica, 67, 215–242.CrossRefGoogle Scholar
  27. 27.
    Meyer, T. A., Labuschagne, W. A., & Heidema, J. (2000). Refined epistemic entrenchment. Journal of Logic, Language, and Information, 9, 237–259.CrossRefGoogle Scholar
  28. 28.
    Moses, Y. O., Dolev, D., & Halpern, J. Y. (1986). Cheating husbands and other stories: A case study in knowledge, action, and communication. Distributed Computing, 1(3), 167–176.CrossRefGoogle Scholar
  29. 29.
    Parikh, R., Ramanujam, R., & Distributed processing and the logic of knowledge. In Logic of programs, volume 193 of Lecture Notes in Computer Science, (pp. 256–268). Springer. A newer version appeared in Journal of Logic, Language and Information, (Vol. 12, 453–467), (2003).Google Scholar
  30. 30.
    Plaza, J. A. (1989). Logics of public communications. In M. L. Emrich, M. S. Pfeifer, M. Hadzikadic, & Z. W. Ras (Eds.), Proceedings of the 4th international symposium on methodologies for intelligent systems: Poster session program, (pp. 201–216). Oak Ridge: Oak Ridge National Laboratory.Google Scholar
  31. 31.
    Rott, H. (2003). Coherence and conservatism in the dynamics of belief ii: Iterated belief change without dispositional coherence. Journal of Logic and Computation, 13(1), 111–145.CrossRefGoogle Scholar
  32. 32.
    Rott, H. (2006). Shifting priorities: Simple representations for twenty-seven iterated theory change operators. In H. Lagerlund, S. Lindström, & R. Sliwinski (Eds.), Modality matters: Twenty-Five essays in honour of krister segerberg, (Vol. 53, pp. 359–384). Uppsala: Uppsala Philosophical Studies, Uppsala Universitet.Google Scholar
  33. 33.
    Sack, J. (2007). Adding temporal logic to dynamic epistemic logic. PhD thesis, Bloomington: Indiana University.Google Scholar
  34. 34.
    Segerberg, K. (1998). Irrevocable belief revision in dynamic doxastic logic. Notre Dame Journal of Formal Logic, 39(3), 287–306.CrossRefGoogle Scholar
  35. 35.
    Segerberg, K. (1999). Default logic as dynamic doxastic logic. Erkenntnis, 50, 333–352.CrossRefGoogle Scholar
  36. 36.
    Segerberg, K. (1999). Two traditions in the logic of belief: Bringing them together. In H. J. Ohlbach & U. Reyle (Eds.), Logic language, and reasoning (pp. 135–147). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  37. 37.
    Spohn, W. (988). Ordinal conditional functions: A dynamic theory of epistemic states. In W. L. Harper & B. Skyrms (Eds.), Causation in decision, belief change, and statistics, (Vol. 2, pp. 105–134).Google Scholar
  38. 38.
    van Benthem, J. (1989). Semantic parallels in natural language and computation. In Logic colloquium ’87, Amsterdam: North-Holland.Google Scholar
  39. 39.
    van Benthem, J. (1996). Exploring logical dynamics. Stanford: CSLI Publications.Google Scholar
  40. 40.
    van Benthem, J. (2007). Dynamic logic of belief revision. Journal of Applied Non-Classical Logics, 17(2), 129–155.CrossRefGoogle Scholar
  41. 41.
    van Benthem, J. (2011). Logical dynamics of information and interaction. Cambridge: Cambridge University Press.Google Scholar
  42. 42.
    van Benthem, J., Gerbrandy, J. D., Hoshi, T., & Pacuit, E. (2009). Merging frameworks for interaction. Journal of Philosophical Logic, 38, 491–526.CrossRefGoogle Scholar
  43. 43.
    van Benthem, J., van Eijck, J., & Kooi, B. (2006). Logics of communication and change. Information and Computation, 204(11), 1620–1662.CrossRefGoogle Scholar
  44. 44.
    van Ditmarsch, H. (2002). Descriptions of game actions. Journal of Logic, Language and Information, 11, 349–365.CrossRefGoogle Scholar
  45. 45.
    van Ditmarsch, H. (2005). Prolegomena to dynamic logic for belief revision. Synthese Knowledge, Rationality and Action, 147, 229–275.Google Scholar
  46. 46.
    van Ditmarsch, H. (2008). Comments on ‘the logic of conditional doxastic actions’. In K. R. Apt & R. van Rooij (Eds.), New perspectives on games and interaction, Texts in Logic and Games 4, (pp. 33–44). Amsterdam: Amsterdam University Press.Google Scholar
  47. 47.
    van Ditmarsch, H. & Labuschagne, W. A. (2003). A multimodal language for revising defeasible beliefs. In E. Álvarez, R. Bosch, & L. Villamil (Eds.), Proceedings of the 12th international congress of logic, methodology, and philosophy of science (LMPS), (pp. 140–141). Oxford: Oviedo University Press.Google Scholar
  48. 48.
    Velazquez-Quesada, F. R. (2011). Small steps in dynamics of information. (PhD thesis, ILLC Dissertation Series DS-2011-02), Amsterdam: University of Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of SevilleSevilleSpain

Personalised recommendations