Advertisement

On the Roof of Europe: High-Altitude Morphodynamics in the Mont Blanc Massif

  • Philip DelineEmail author
  • Ludovic Ravanel
Chapter
Part of the World Geomorphological Landscapes book series (WGLC)

Abstract

The Mont Blanc Massif, the highest of the main external crystalline massifs of the Western Alps, is renowned for its extensive glacier cover, steep granite rockwalls and vertiginous peaks.

Bordered by populated French, Italian and Swiss valleys, the massif has attracted both tourists and scientists over several centuries. Numerous sites are remarkable associations of landforms, for example, (a) the Aiguilles de Chamonix, a superb alignment of arêtes and peaks reaching 3,500 m a.s.l. which dominates the valley of Chamonix; (b) the Mer de Glace, the largest French glacier, which has been a major centre for tourism and glaciology since the eighteenth century; and (c) the Glacier du Miage, one of the largest debris-covered glaciers in the Alps.

Since the Last Glacial Maximum, the landscape of the massif has changed significantly and its morphodynamics is evidently still very active. Glacier retreat accelerates, and permafrost degradation has triggered more rockfalls. Nevertheless two million people are still attracted each year by the ‘top of Europe’.

Keywords

Western European Alps High-mountain morphodynamics Glacier Permafrost Rockfall 

Notes

Acknowledgements

M. Fort and M.-F. André are warmly acknowledged for their encouragement to write this chapter. Many thanks are due to P. Migon for his suggestions and to P. Walsh and Y. Battiau-Queney for their careful proofreading of the English language.

References

  1. Berthier E, Vincent C (2012) Relative contribution of surface mass-balance and ice-flux changes to the accelerated thinning of Mer de Glace, French Alps, over 1979–2008. J Glaciol 58(209):501–512CrossRefGoogle Scholar
  2. Coutterand S (2010) Etude géomorphologique des flux glaciaires dans les Alpes nord-occidentales au Pléistocène récent. Du maximum de la dernière glaciation aux premières étapes de la déglaciation. PhD thesis, Université de SavoieGoogle Scholar
  3. Deline P (2009) Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene. Quat Sci Rev 28(11–12):1070–1083CrossRefGoogle Scholar
  4. Deline P, Orombelli G (2005) Glacier fluctuations in the western Alps during the Neoglacial as indicated by the Miage morainic amphitheatre (Mont Blanc massif, Italy). Boreas 34(4):456–467Google Scholar
  5. Deline P, Gardent M, Magnin F, Ravanel L (2012) The morphodynamics of the Mont Blanc massif in a changing cryosphere: a comprehensive review. Geografiska Annaler Ser A Phys Geogr 94:265–283CrossRefGoogle Scholar
  6. Glotzbach C, van der Beek PA, Spiegel C (2011) Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data. Earth Planet Sci Lett 304:417–430CrossRefGoogle Scholar
  7. Le Roy M (2012) Reconstitution des fluctuations glaciaires holocènes dans les Alpes occidentales. Apports de la dendrochronologie et des datations par isotopes cosmogéniques produits in situ. PhD thesis, Université de SavoieGoogle Scholar
  8. Nussbaumer SU, Zumbühl HJ, Steiner D (2007) Fluctuations of the Mer de Glace (Mont Blanc area, France) AD 1500–2050. Part I: The history of the Mer de Glace AD 1570–2003 according to pictorial and written documents. Z Gletsch Glazialgeol 40(2005/2006):5–140Google Scholar
  9. Ravanel L (2010) Caractérisation, facteurs et dynamiques des écroulements rocheux dans les parois à permafrost du massif du Mont Blanc. PhD thesis, Université de SavoieGoogle Scholar
  10. Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc): évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du petit âge glaciaire. Géomorphol Relief Processus Environ 4:261–272Google Scholar
  11. Ravanel L, Deline P (2011) Climate influence on rockfalls in high-Alpine steep rockwalls: the North side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the Little Ice Age. Holocene 21(2):357–365CrossRefGoogle Scholar
  12. Ravanel L, Allignol F, Deline P, Bruno G (2011) Les écroulements rocheux dans le massif du Mont-Blanc pendant l’été caniculaire de 2003. In: Lambiel C, Reynard E, Scapozza C (eds) La géomorphologie alpine: entre patrimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie. Géovisions 36:245–261Google Scholar
  13. Vincent C (2002) Influence of climate change over the 20th century on four French glacier mass balances. J Geophys Res 107:D19. doi: 10.1029/2001JD000832 CrossRefGoogle Scholar
  14. Zemp M, Hoelzle M, Haeberli W (2007) Distributed modelling of the regional climatic equilibrium line altitude of glaciers in the European Alps. Glob Planet Change 56:83–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.EDYTEM LabUniversité de Savoie, CNRSLe Bourget-du-LacFrance

Personalised recommendations