What Are Jellyfishes and Thaliaceans and Why Do They Bloom?

  • Cathy H. LucasEmail author
  • Michael N. Dawson


The jellyfishes and thaliaceans comprise primarily planktonic species of cnidarians, ctenophores (jellyfishes) and chordates (thaliaceans or pelagic tunicates). Grouped together because of their gelatinous bodies, these diverse species nonetheless differ in their evolutionary histories and may have distinct morphologies, life histories, ecologies and other traits. Subsets of these species occur at some times and places in highly elevated concentrations, i.e. they accumulate, aggregate, bloom or swarm. Why jellyfishes and thaliaceans occur in such masses is, however, somewhat unclear; the reasons obscured in part by a tendency to treat many gelatinous zooplankton, including jellyfishes and thaliaceans, as a single functional group. Here we summarize the evolutionary relationships among gelatinous zooplankton and review the characteristics of blooms, before focusing on comparing and contrasting medusae, ctenophores and thaliaceans. We highlight some substantial knowledge gaps, emphasize biological factors that likely contribute to blooms and outline a population genetic framework for investigating the ecological causes of boom and bust population dynamics in the plankton.


Jellyfish blooms Cnidarians Ctenophores Thaliaceans Macroevolution Microevolution Phylogenetic analysis Life histories Body composition Phenotypic plasticity Growth rates 



The metazoan phylogeny in Fig. 2.1 was kindly provided by, and is used with permission from, Gonzalo Giribet. MND’s research on this topic has been supported by US NSF grant DEB-0717078.


  1. Acuña JL (2001) Pelagic tunicates: why gelatinous? Am Nat 158:100–107PubMedGoogle Scholar
  2. Acuña JL, López-Urrutia A, Colin S (2011) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–1629PubMedGoogle Scholar
  3. Aksnes DL, Giske J (1990) Habitat profitability in pelagic habitats. Mar Ecol Prog Ser 64:209–215Google Scholar
  4. Aleyev YG (1977) Nekton. Jung, The HagueGoogle Scholar
  5. Alldredge A, Madin LP (1982) Pelagic tunicates: unique herbivores in the marine plankton. BioScience 32:655–663Google Scholar
  6. Andersen V (1998) Salp and pyrosomid blooms and their importance in biogeochemical cycles. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 125–137Google Scholar
  7. Appeltans W, and 120 other authors (2012) The magnitude of global marine species diversity. Curr Biol. doi: 10.1016/j.cub.2012.09.036#doilink
  8. Arai MN (1997) A functional biology of Scyphozoa. Chapman and Hall, LondonGoogle Scholar
  9. Arai MN (2009) The potential importance of podocysts to the formation of scyphozoan blooms: a review. Hydrobiologia 616:241–246Google Scholar
  10. Bailey KM, Batty RS (1984) Laboratory study of predation by Aurelia aurita on larvae of cod, flounder, plaice and herring: development and vulnerability to capture. Mar Biol 83:287–291Google Scholar
  11. Baker LD, Reeve MR (1974) Laboratory culture of the lobate ctenophore Mnemiopsis mccradyi with notes on feeding and fecundity. Mar Biol 26:57–62Google Scholar
  12. Båmstedt U (1990) Trophodynamics of the scyphomedusae Aurelia aurita. Predation rate in relation to abundance, size and type of prey organism. J Plankton Res 12:215–229Google Scholar
  13. Bayha KM, Dawson MN (2010) A new family of allomorphic jellyfish, Drymonematidae (Scyphozoa, Discomedusae), emphasizes evolution in the functional morphology and trophic ecology of gelatinous zooplankton. Biol Bull 219:249–267PubMedGoogle Scholar
  14. Bayha KM, Dawson MN, Collins AG, Barbeitos MS, Haddock SHD (2010) Evolutionary relationships among scyphozoan jellyfish families based on complete taxon sampling and phylogenetic analyses of 18S and 28S ribosomal DNA. Integr Comp Biol 50:436–455PubMedGoogle Scholar
  15. Benović A, Dubravko J, Bender A (1987) Enigmatic changes in the hydromedusan fauna of the northern Adriatic Sea. Nature 326:597–600Google Scholar
  16. Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S (1978) Relationships between body size and some life history parameters. Oecologia 37:257–272Google Scholar
  17. Bone Q (2005) Gelatinous animals and physiology. J Mar Biol Assoc UK 85:641–653Google Scholar
  18. Bone Q, Carré C, Chang P (2003) Tunicate feeding filters. J Mar Biol Assoc UK 83:907–919Google Scholar
  19. Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238Google Scholar
  20. Breitburg DL, Loher T, Pacey CA, Gerstein A (1997) Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol Monogr 67:489–507Google Scholar
  21. Brodeur RD, Mills CE, Overland JE, Walters GE, Schumacher JD (1999) Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish Oceanogr 8:296–306Google Scholar
  22. Brodeur RD, Decker MB, Ciannelli L, Purcell JE, Bond NA, Stabeno PJ, Acuna E, jr Hunt GL (2008) Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Progr Oceanogr 77:103–111Google Scholar
  23. Brotz L, Cheung WWL, Kleisner K, Pakhomov E, Pauly D (2012) Increasing jellyfish populations: trends in large marine ecosystems. Hydrobiologia 690:3–20Google Scholar
  24. Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer, SunderlandGoogle Scholar
  25. Cargo DG, Schultz LP (1966) Notes on the biology of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Chesapeake Sci 7:95–100Google Scholar
  26. Cargo DG, Schultz LP (1967) Further observations on the biology of the sea nettle and other jellyfishes in Chesapeake Bay. Chesapeake Sci 8:209–220Google Scholar
  27. Castro P, Huber ME (2003) Marine biology, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  28. Cole LC (1954) The population consequences of life history phenomena. Quart Rev Biol 29:103–137PubMedGoogle Scholar
  29. Colgan DJ, Ponder WF, Beacham E, Macaranas J (2007) Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Mol Phylogenet Evol 42:717–737PubMedGoogle Scholar
  30. Collins AG (2002) Phylogeny of medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15:418–432Google Scholar
  31. Collins AG, Daly M (2005) A new deepwater species of stauromedusae, Lucernaria janetae (Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan phylogeny based on nuclear and mitochondrial rDNA data. Biol Bull 208:221–230PubMedGoogle Scholar
  32. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115PubMedGoogle Scholar
  33. Condon RH, Decker MB, Purcell JE (2001) Effects of low dissolved oxygen on survival and reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451:89–95Google Scholar
  34. Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, Uye S-I, Gelcich S (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 62:160–169Google Scholar
  35. Costello JH, Colin SP (1995) Flow and feeding by swimming scyphomedusae. Mar Biol 124:399–406Google Scholar
  36. Costello JH, Bayha KM, Mianzan HW, Shiganova TA, Purcell JE (2012) The ctenophore Mnemiopsis leidyi: transitions from a native to an exotic species. Hydrobiologia 690:21–46Google Scholar
  37. Crow JF (1994) Advantages of asexual reproduction. Dev Gen 15:205–213Google Scholar
  38. Cushing DH (1984) The gadoid outburst in the North Sea. ICES J Mar Sci 41:159–166Google Scholar
  39. Daryanabard R, Dawson MN (2008) Jellyfish blooms: Crambionella orsini (Scyphozoa, Rhizostomeae) in the Gulf of Oman, Iran, 2002–2003. J Mar Biol Assoc UK 88:477–483Google Scholar
  40. Dawson MN (2004) Some implications of molecular phylogenetics for understanding biodiversity in jellyfishes, with an emphasis on Scyphozoa. Hydrobiologia 530(531):249–260Google Scholar
  41. Dawson MN (2005) Five new subspecies of Mastigias (Scyphozoa: Rhizostomeae: Mastigiidae) from marine lakes, Palau, Micronesia. J Mar Biol Assoc UK 85:679–694Google Scholar
  42. Dawson MN, Hamner WM (2009) A character-based analysis of the evolution of jellyfish blooms: adaptation and exaptation. Hydrobiologia 616:193–215Google Scholar
  43. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria: Scyphozoa). Biol Bull 200:92–96PubMedGoogle Scholar
  44. Dawson MN, Martin LE (2001) Geographic variation and ecological adaptation in Aurelia (Scyphozoa, Semaeostomeae): some implications from molecular phylogenetics. Hydrobiologia 451:259–273Google Scholar
  45. Dawson MN, Martin LE, Penland LK (2001) Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia 451:131–144Google Scholar
  46. Decker MB, Breitburg DL, Purcell JE (2004) Effects of low dissolved oxygen on predation by the ctenophore, Mnemiopsis leidyi, on zooplankton. Mar Ecol Prog Ser 280:163–172Google Scholar
  47. Deibel D (1982) Laboratory determined mortality, fecundity and growth rates of Thalia democratica Forskal and Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 4:143–153Google Scholar
  48. Deibel D, Lowen B (2012) A review of the life cycles and life-history adaptations of pelagic tunicates to environmental conditions. ICES J Mar Sci 69:358–369Google Scholar
  49. Deibel D, Paffenhöfer G-A (2009) Predictability of patches of neritic salps and doliolids (Tunicata, Thaliacea). J Plankton Res 31:1571–1579Google Scholar
  50. Deibel D, Cavaletto JF, Riehl M, Gardner WS (1992) Lipid and lipid class content of the pelagic tunicate Oikopleura vanhoeffeni. Mar Ecol Prog Ser 88:297–302Google Scholar
  51. Dobzhansky T (1964) Biology, molecular and organismic. Am Zool 4:443–452PubMedGoogle Scholar
  52. Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129Google Scholar
  53. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172Google Scholar
  54. Finenko GA, Abolmasova GI, Romanova ZA (1995) Intensity of the nutrition, respiration and growth of Mnemiopsis mccradyi in relation to grazing conditions. Biologia Morya 21:315–320 (in Russian)Google Scholar
  55. Foxton P (1966) The distribution and life history of Salpa thompsoni Foxton, with observations on a related species, Salpa gerlachei Foxton. Discov Rep 34:1–116Google Scholar
  56. Fuentes V, Angel DL, Bayha KM, Atienza D, Edelist D, Bordehore C, Gili J-M, Purcell JE (2010) Blooms of the invasive ctenophore, Mnemiopsis leidyi, span the Mediterranean Sea in 2009. Hydrobiologia 645:23–37Google Scholar
  57. Gerritsen J, Strickler JR (1997) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Bd Can 34:73–82Google Scholar
  58. Ghiselin MT (1969) The evolution among hermaphroditism among animals. Quart Rev Biol 44:189–208PubMedGoogle Scholar
  59. Gibson DM, Paffenhöfer G-A (2000) Feeding and growth rates of the doliolid, Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 22:1485–1500Google Scholar
  60. Gibson DM, Paffenhöfer G-A (2002) Asexual reproduction of the doliolid Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 24:703–712Google Scholar
  61. Godeaux J, Bone Q, Braconnot J-C (1998) Anatomy of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 1–24Google Scholar
  62. Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222Google Scholar
  63. Govindarajan AF, Bucklin A, Madin LP (2011) A molecular phylogeny of the Thaliacea. J Plankton Res 33:843–853Google Scholar
  64. Graham WM, Bahya KM (2007) Biological invasions by marine jellyfish. Biol Inv 193:239–255Google Scholar
  65. Graham WM, Pagès F, Hamner WM (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451:199–212Google Scholar
  66. Greene CH, Landry MR, Monger BC (1986) Foraging behaviour and prey selection by the ambush entangling predator Pleurobrachia bachei. Ecology 67:1493–1501Google Scholar
  67. Haddock SHD (2004) A golden age of gelata: past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530(531):549–556Google Scholar
  68. Hadfield MG, Strathmann MF (1996) Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanol Acta 19:323–334Google Scholar
  69. Hagadorn JW, Dott RH, jr Damrow D (2002) Stranded on a Late Cambrian shoreline: medusa from central Wisconsin. Geology 30:147–150Google Scholar
  70. Hamner WM (1985) The importance of ethology for investigations of marine zooplankton. Bull Mar Sci 37:414–424Google Scholar
  71. Hamner WM, Dawson MN (2009) A review and synthesis on the systematics and evolution of jellyfish blooms: advantageous aggregations and adaptive assemblages. Hydrobiologia 616:161–191Google Scholar
  72. Hamner WM, Jensen RM (1974) Growth, degrowth, and irreversible cell differentiation in Aurelia aurita. Am Zool 14:833–849Google Scholar
  73. Hamner WM, Madin LP, Alldredge AL, Gilmer RW, Hamner PP (1975) Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol Oceanogr 20:907–917Google Scholar
  74. Hamner WM, Hamner PP, Strand SW (1994) Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Mar Biol 119:347–356Google Scholar
  75. Han C-M, Uye S-I (2010) Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankt Benth Res 5:98–105Google Scholar
  76. Hansson LJ, Kiørboe T (2006) Effects of large gut volume in gelatinous zooplankton: ingestion rate, bolus production and food patch utilization by the jellyfish Sarsia tubulosa. J Plankton Res 28:937–942Google Scholar
  77. Hamner WM (1975) Underwater observations of blue-water plankton: logistics, techniques, and safety procedures for divers at sea. Limnol Oceanogr 20:1045–1051Google Scholar
  78. Harbison GR (1992) The gelatinous inhabitants of the ocean interior. Oceanus 35:18–23Google Scholar
  79. Harbison GR, Miller RL (1986) Not all ctenophores are hermaphrodites. Studies on the systematics, distribution, sexuality and development of two species of Ocyropsis. Mar Biol 90:413–424Google Scholar
  80. Hensen V (1887) Über die Bestimmung des Planktons oder des im Meer treibenden Materials an Pflanzen und Thieren. Bericht der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere 5:1–109Google Scholar
  81. Heron AC (1972) Population ecology of colonizing species: the pelagic tunicate Thalia democratica I. Individual growth rate and generation time. Oecologia 10:269–293Google Scholar
  82. Heron AC, Benham EE (1985) Life history parameters as indicators of growth rate in three salp populations. J Plankton Res 7:365–379Google Scholar
  83. Hirota J (1974) Quantitative natural history of Pleurobrachia bachei in La Jolla Bight. Fish Bull 72:295–335Google Scholar
  84. Holst S (2012) Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690:127–140Google Scholar
  85. Holst S, Sotje I, Tiemann H, Jarms G (2007) Life cycle of the rhizostome jellyfish Rhizostoma octopus (L.) (Scyphozoa, Rhizostomeae), with studies on cnidocysts and statoliths. Mar Biol 151:1695–1710Google Scholar
  86. Hopcroft RR, Roff JC (1995) Zooplankton growth rates: extraordinary production by the larvacean Oikopleura dioica in tropical waters. J Plankton Res 17:205–220Google Scholar
  87. Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213PubMedGoogle Scholar
  88. Ishii H, Katsukoshi K (2010) Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J Oceanogr 66:329–336Google Scholar
  89. Ishii H, Takagi A (2003) Development time of planula larvae on the oral arms of the scyphomedusa Aurelia aurita. J Plankton Res 25:1447–1450Google Scholar
  90. Ishii H, Ohba T, Kobayashi T (2008) Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankt Benth Res 3(Suppl):107–113Google Scholar
  91. Jackson JBC (2008) Ecological extinction and evolution in the brave new ocean. Proc Natl Acad Sci U S A 105:11458–11465PubMedGoogle Scholar
  92. Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS One 8(8):e72683Google Scholar
  93. Jarms G, Tiemann H, Båmstedt U (2002) Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar Biol 141:647–657Google Scholar
  94. Jörger KM, Stöger I, Kano Y, Fukuda H, Knebelsberger T, Schrödl M (2010) On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol Biol 10:323PubMedGoogle Scholar
  95. Kakinuma Y (1975) An experimental study of the life cycle and organ differentiation of Aurelia aurita Lamarck. Bull Mar Biol Statn Asamushi 15:101–113 (plus Plates III to VI)Google Scholar
  96. Kawahara M, Uye S, Ohtsu K, Iizumi H (2006) Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar Ecol Prog Ser 307:161–173Google Scholar
  97. Kawahara M, Ohtsu K, Uye S (2012) Bloom or non-bloom in the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae): roles of dormant podocysts. J Plankton Res 307:161–173Google Scholar
  98. Klussmann-Kolb A, Dinapoli A (2006) Systematic position of the pelagic Thecosomata and Gymnosomata within Opisthobranchia (Mollusca, Gastropoda) – revival of the Pteropoda. J Zool Syst Evol Res 44:118–129Google Scholar
  99. Klussmann-Kolb A, Dinapoli A, Kuhn K, Streit B, Albrecht C (2008) From sea to land and beyond – new insights into the evolution of euthyneuran Gastropoda (Mollusca). BMC Evol Biol 8:57PubMedGoogle Scholar
  100. Kremer P, Reeve MR (1989) Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. II. Carbon budgets and growth model. J Plankton Res 11:553–574Google Scholar
  101. Larson RJ (1986) Water content, organic content, and carbon and nitrogen composition of medusa from the northeast Pacific. J Exp Mar Biol Ecol 99:107–120Google Scholar
  102. Lee PLM, Dawson MN, Neill SP, Robins PE, Houghton JDR, Doyle TK, Hays GC (2013) Identification of genetically and oceanographically distinct blooms of jellyfish. J Roy Soc Inter 10(80):20120920Google Scholar
  103. Lehtiniemi M, Lehmann A, Javidpour J, Myrberg K (2012) Spreading and physico-biological reproduction limitations of the invasive American comb jelly Mnemiopsis leidyi in the Baltic Sea. Biol Inv 14:341–354Google Scholar
  104. Loeb VJ, Santora JA (2011) Population dynamics of Salpa thompsoni near the Antarctic Peninsula: growth rates and interannual variations in reproductive activity (1993–2009). Prog Oceanogr 96:93–107Google Scholar
  105. Lotan A, Ben-Hillel R, Loya Y (1992) Life cycle of Rhopilema nomadica: a new immigrant scyphomedusan in the Mediterranean. Mar Biol 112:237–242Google Scholar
  106. Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246Google Scholar
  107. Lucas CH, Lawes S (1998) Sexual reproduction of the scyphomedusa Aurelia aurita in relation to variable food supply. Mar Biol 131:629–638Google Scholar
  108. Lucas CH, Pitt KA, Purcell JE, Lebrato M, Condon RH (2011) What’s in a jellyfish? Proximate and elemental composition and biometric relationships for use in biogeochemical studies. Ecology 92:1704Google Scholar
  109. Lucas CH, Graham WM, Widmer C (2012) Jellyfish life histories: role of polyps in forming and maintaining scyphomedusa populations. Adv Mar Biol 63:133–196PubMedGoogle Scholar
  110. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis, Version 2.75.
  111. Madin LP, Deibel D (1998) Feeding and energetics of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 81–104Google Scholar
  112. Madin LP, Cetta CM, McAlister VL (1981) Elemental and biochemical composition of salps (Tunicata: Thaliacea). Mar Biol 63:217–226Google Scholar
  113. Martin LE (1999) The population biology and ecology of Aurelia sp. (Scyphozoa: Semaeostomeae) in a tropical meromictic marine lake in Palau, Micronesia. Ph.D. thesis, University of California, Los AngelesGoogle Scholar
  114. Martindale MQ (1987) Larval reproduction in the ctenophore Mnemiopsis mccradyi (order Lobata). Mar Biol 94:409–414Google Scholar
  115. Miller JE, Pawson DL (1990) Swimming sea cucumbers (Echinodermata: Holothuroidea): a survey, with analysis of swimming behavior in four bathyal species. Smithson Contrib Mar Sci 35:1–18Google Scholar
  116. Miller RL, Harbison GR, Hilfer SR (2000) Evidence of dioecy in the mesopelagic ctenophore Bathocyroe fosteri (Lobata Ctenophora). Invert Reprod Dev 37(2):171–183Google Scholar
  117. Mills CE (1993) Natural mortality in NE Pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bull Mar Sci 53:194–203Google Scholar
  118. Mills CE (1995) Medusae, siphonophores, and ctenophores as planktivorous predators in changing global ecosystems. ICES J Mar Sci 52:575–581Google Scholar
  119. Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68Google Scholar
  120. Miranda LS, Morandini AC, Marques AC (2012) Do Staurozoa bloom? A review of stauromedusan population biology. Hydrobiologia 690:57–67Google Scholar
  121. Miyake H, Terazaki M, Kakinuma Y (2002) On the polyps of the common jellyfish Aurelia aurita in Kagoshima Bay. J Oceanogr 58:451–459Google Scholar
  122. Møller LF, Riisgård HU (2007) Feeding, bioenergetics and growth in the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Mar Ecol Prog Ser 346:167–177Google Scholar
  123. Møller LF, Canon JM, Tiselius P (2010) Bioenergetics and growth in the ctenophore Pleurobrachia pileus. Hydrobiologia 645:167–178Google Scholar
  124. Ottersen G, Loeng H (2000) Covariability in early growth and year-class strength of Barents Sea cod, haddock, and herring: the environmental link. ICES J Mar Sci 57:339–348Google Scholar
  125. Paffenhöfer G-A, Gibson DM (1999) Determination of generation time and asexual fecundity of doliolids (Tunicata, Thaliacea). J Plankton Res 21:1183–1189Google Scholar
  126. Paffenhöfer G-A, Köster M (2011) From one to many: on the life cycle of Dolioletta gegenbauri Uljanin (Tunicata, Thaliacea). J Plankton Res 33:1139–1145Google Scholar
  127. Pagès F, González HE, Ramón M, Sobarzo M, Gili JM (2001) Gelatinous zooplankton assemblages associated with water masses in the Humboldt Current System, and potential predatory impact by Bassia bassensis (Siphonophora: Calycophorae). Mar Ecol Prog Ser 210:13–24Google Scholar
  128. Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297Google Scholar
  129. Pianka HD (1974) Ctenophora. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates, vol I, Acoelomate and pseudocoelomate metazoans. Academic Press, New York/London, pp 201–265Google Scholar
  130. Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, Purcell JE, Robinson KL, Uye S-I (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS One 8(8):e72683Google Scholar
  131. Pitt KA, Kingsford MJ (2003) Temporal and spatial variation in recruitment and growth of medusae of the jellyfish, Catostylus mosaicus (Scyphozoa: Rhizostomeae). Mar Freshwat Res 54:117–125Google Scholar
  132. Pitt KA, Welsh DT, Condon RH (2009) Influence of jellyfish blooms on carbon, nitrogen and phosphorous cycling and plankton production. Hydrobiologia 616:133–149Google Scholar
  133. Podar M, Haddock SHD, Sogin ML, Harbison GR (2001) A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol Phylogenet Evol 21:218–230PubMedGoogle Scholar
  134. Prieto L, Astorga D, Navarro G, Ruiz J (2010) Environmental control of phase transition and polyp survival of a massive-outbreaker jellyfish. PLoS One 5(11):e13793PubMedGoogle Scholar
  135. Purcell JE (1997) Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates and effects on prey populations. Ann l’Instit Oceanogr Paris 73:125–137Google Scholar
  136. Purcell JE (2003) Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Mar Ecol Prog Ser 246:137–152Google Scholar
  137. Purcell JE (2005) Climate effects on formation of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc UK 85:461–476Google Scholar
  138. Purcell JE (2007) Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Mar Ecol Prog Ser 348:183–196Google Scholar
  139. Purcell JE (2009) Extension of methods for jellyfish and ctenophore trophic ecology to large-scale research. Hydrobiologia 616:23–50Google Scholar
  140. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44Google Scholar
  141. Purcell JE, Madin LP (1991) Diel patterns of migration, feeding and spawning by salps in the subarctic Pacific. Mar Ecol Prog Ser 73:211–217Google Scholar
  142. Purcell JE, Breitburg DL, Decker MB, Graham WM, Youngbluth MJ, Raskoff KA (2001a) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: a review. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems, coastal and estuarine studies. American Geophysical Union, Washington, DC, pp 77–100Google Scholar
  143. Purcell JE, Shiganova TA, Decker MB, Houde ED (2001b) The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451:145–176Google Scholar
  144. Purcell JE, Graham WM, Dumont HJ (eds) (2001c) Jellyfish blooms: ecological and societal importance. In: Proceedings of the international conference on jellyfish blooms, Gulf Shores, 12–14 Jan 2000. Hydrobiologia 451Google Scholar
  145. Purcell JE, Atienza D, Fuentes V, Olariaga A, Tilves U, Colahan C, Gili J-M (2012) Temperature effects on asexual reproduction rates of scyphozoan species from the northwest Mediterranean Sea. Hydrobiologia 690:169–180Google Scholar
  146. Ramirez-Llodra E (2002) Fecundity and life-history strategies in marine invertebrates. Adv Mar Biol 43:87–170PubMedGoogle Scholar
  147. Raskoff KA, Sommer FA, Hamner WH, Cross KM (2003) Collection and culture techniques for gelatinous zooplankton. Biol Bull 204:68–80PubMedGoogle Scholar
  148. Rauschert E (2010) Survivorship Curves. Nat Educ Knowl 3:18Google Scholar
  149. Reeve MR, Walter MA (1978) Nutritional ecology of ctenophores – a review of recent research. Adv Mar Biol 15:249–287Google Scholar
  150. Reeve MR, Syms MA, Kremer P (1989) Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. I. Carbon biomass, feeding, egg production, growth and assimilation efficiency. J Plankton Res 11:535–552Google Scholar
  151. Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24:312–322PubMedGoogle Scholar
  152. Roughgarden J (2009) Is there a general theory of community ecology? Biol Philos 24:521–529Google Scholar
  153. Rutherford LD, Thuesen EV (2005) Metabolic performance and survival of medusae in estuarine hypoxia. Mar Ecol Prog Ser 294:189–200Google Scholar
  154. Schiariti A, Kawahara S, Uye S-I, Mianzan HW (2008) Life cycle of the jellyfish Lychnorhiza lucerna (Scyphozoa: Rhizostomeae). Mar Biol 156:1–12Google Scholar
  155. Schneider G (1992) A comparison of carbon-specific respiration rates in gelatinous and non-gelatinous zooplankton – a search for general rules in zooplankton. Helgol Meeresunters 46:377–388Google Scholar
  156. Sen Gupta BK, Machain-Castillo ML (1993) Benthic foraminifera in oxygen-poor habitats. Mar Micropaleont 20:183–201Google Scholar
  157. Shine R (1988) The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. Am Nat 131:124–131Google Scholar
  158. Smayda T (1997) Harmful algal blooms: their ecophysiology and general relevance to blooms in the sea. Limnol Oceanogr 42:1137–1153Google Scholar
  159. Sørnes TA, Aksnes DL (2004) Predation efficiency in visual and tactile zooplanktivores. Limnol Oceanogr 49:69–75Google Scholar
  160. Stearns SC (2000) Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87:476–486PubMedGoogle Scholar
  161. Stenseth NC, MysterudA OG, Hurrell JW, Chan KS, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296PubMedGoogle Scholar
  162. Strathmann RR (1990) Why life histories evolve differently in the sea. Am Zool 30:197–207Google Scholar
  163. Sutherland KR, Madin LP (2010) A comparison of filtration rates among pelagic tunicates using kinematic measurements. Mar Biol 157:755–764Google Scholar
  164. Sutherland KR, Madin LP, Stocker R (2010) Filtration of submicrometer particles by pelagic tunicates. Proc Natl Acad Sci U S A 107:15129–15134PubMedGoogle Scholar
  165. Thein H, Ikeda H, Uye S-I (2012) The potential role of podocysts in perpetuation of the common jellyfish Aurelia aurita s.l. (Cnidaria: Scyphozoa) in anthropogenically perturbed coastal waters. Hydrobiologia 690:157–167Google Scholar
  166. Thuesen EV, Rutherford LD, Brommer PL, Garrison K, Gutowska MA, Towanda T (2005a) Intragel oxygen promotes hypoxia tolerance of scyphomedusae. J Exp Biol 208:2475–2482PubMedGoogle Scholar
  167. Thuesen EV, Rutherford LD, Brommer PL (2005b) The role of aerobic metabolism and intragel oxygen in hypoxia tolerance of three ctenophores: Pleurobrachia bachei, Bolinopsis infundibulum and Mnemiopsis leidyi. J Mar Biol Assoc UK 85:627–633Google Scholar
  168. Titelman J, Hansson LJ (2006) Feeding rates of the jellyfish Aurelia aurita on fish larvae. Mar Biol 149:297–306Google Scholar
  169. Tomlinson J (1966) The advantages of hermaphroditism and parthenogenesis. J Theoret Biol 11:54–58Google Scholar
  170. Troedsson C, Bouquet J-M, Aksnes DL, Thompson EM (2002) Resource allocation between somatic growth and reproductive output in the pelagic chordate Oikopleura dioica allows opportunistic response to nutritional variation. Mar Ecol Prog Ser 243:83–91Google Scholar
  171. Tsuda A, Nemoto T (1992) Distribution and growth of salps in a Kuroshio warm-core ring during summer 1982. Deep-Sea Res 39(Suppl 1):S219–S229Google Scholar
  172. Underwood AJ, Keough MJ (2001) Supply-side ecology: the nature and consequences of variations in recruitment of intertidal organisms. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer, Sunderland, pp 183–200Google Scholar
  173. Urban MC (2008) Ecological genetics. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi: 10.1002/9780470015902.a0021214 Google Scholar
  174. Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–244Google Scholar
  175. Valiella I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118Google Scholar
  176. Vargas CA, Madin LP (2004) Zooplankton feeding ecology: clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight. J Plankton Res 26:827–833Google Scholar
  177. Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206PubMedGoogle Scholar
  178. Vellend M, Geber MA (2005) Connections between species diversity and genetic diversity. Ecol Lett 8:767–781Google Scholar
  179. Verity PG, Purcell JE, Frischer ME (2011) Seasonal patterns in size and abundance of Phyllorhiza punctata: an invasive scyphomedusa in coastal Georgia (USA). Mar Biol 158:2219–2226Google Scholar
  180. Vinogradof AP (1953) The elementary chemical composition of marine organisms. Yale University Press, New HavenGoogle Scholar
  181. Wrobel D, Mills CE (1998) Pacific coast pelagic invertebrates, a guide to the common gelatinous animals. Sea Challengers and Monterey Bay Aquarium, MontereyGoogle Scholar
  182. Young GA, Hagadorn JW (2010) The fossil record of cnidarian medusa. Paleoworld 19:212–221Google Scholar
  183. Zavolokin AV (2010) Distribution and abundance dynamics of jellyfish in the Sea of Okhotsk. Russ J Mar Biol 36:157–166Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
  2. 2.School of Natural SciencesUniversity of CaliforniaMercedUSA

Personalised recommendations