Chrysaora plocamia: A Poorly Understood Jellyfish from South American Waters



Blooms and strandings of Chrysaora plocamia are reported to occur along both Atlantic and Pacific South American coasts. First described in Peruvian waters by Lesson (1830) almost two centuries ago as Cyanea plocamia, there is surprisingly little ecological information about this conspicuous animal. This chapter reviews current knowledge about C. plocamia biology and ecology, its relationship with pelagic fisheries and climate and the problems blooms cause in the Humboldt Current and Patagonian shelf ecosystems. Chrysaora plocamia has important ecological roles, including trophic and symbiotic interactions with fish and sea turtles. Population variability has a clear relationship with climate where phases of high C. plocamia biomass were associated with El Niño events occurring during warm “El Viejo” regimes. Interestingly, their estimated biomass occasionally approached those of sardines or anchovies. This large jellyfish negatively affects human industries in the region when abundant, including fisheries, aquaculture, desalination plants and tourism. Understanding relationships between jellyfish blooms and environmental drivers (e.g. ENSO, regime shifts) should allow forecasting of the jellyfish abundance and potential vulnerabilities such that resource managers and industrial fisheries owners may prepare for costly outbreaks.


Jellyfish blooms Chrysaora plocamia Humboldt Current Patagonia shelf ENSO Climate variability Biological productivity Commensalism Feeding ecology Socio-economic impacts Fisheries 



 We deeply thank Mike Dawson and Liza Gomez Daglio (University of California at Merced, USA), Stefan Gelcich (PUC, Chile), Andre Morandini (USP, Brazil), Ricardo “Bebote” Vera (CENPAT-CONICET, Argentina) and Sara Purca (IMARPE), for literature suggestions and for constructive comments on particular sections of this chapter. Photographic material was provided by Mario Rosina, Yuri Hooker (Peru), José Luis Esteves (CENPAT-CONICET, Argentina), José Adrián Acosta Fabio (Argentina), John (Jack) Costello (Providence College, USA). We also thank as well the Peruvian Research Institute (IMARPE) for providing valuable information on jellyfish by-catch. This chapter was supported by CONICET PIP 0152 and by a grant from the Inter American Institute for Global Change Research (IAI) CRN 3070 sponsored by the US National Science Foundation (Grant GEO-1128040) to H.M. and E.M.A. This chapter is INIDEP contribution Nº 1793.


  1. Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America. Physical and ecological processes. J Mar Syst 44:83–105CrossRefGoogle Scholar
  2. Alfaro-Shigueto J, Mangel JC, Pajuelo M, Dutton PH, Seminoff JA, Godley BJ (2010) Where small can have a large impact: structure and characterization of small-scale fisheries in Peru. Fish Res 106:8–17CrossRefGoogle Scholar
  3. Alvial A, Fuenzalida R, Herrera G, Prado L, Soto D, Zapata B (1984) Presencia del fenómeno “El Niño” en la zona costera de Iquique, con especial referencia al período 1982–1983. Ambiente y Desarrollo 1:133–136Google Scholar
  4. Arai MN (1988) Interactions of fish and pelagic coelenterates. Can J Zool 66:1913–1927CrossRefGoogle Scholar
  5. Arai MN (1997) A functional biology of Scyphozoa. Chapman & Hall, LondonGoogle Scholar
  6. Arntz WE, Valdivia J (1985) Visión integral del problema “El Niño”: Introducción. In: Arntz W, Landa A, Tarazona J (eds) “El Niño” su impacto en la fauna marina. BolInst Mar Perú. Vol. Extraordinario: 5–10Google Scholar
  7. Bakun A (1996) Patterns in the ocean. Ocean processes and marine population dynamics. California Sea Grant, National Oceanic and Atmospheric Administration and Centro de Investigaciones Biológicas del Noroeste, La Paz, BCS México, 323 ppGoogle Scholar
  8. Baxter EJ, Sturt MM, Ruane NM, Doyle TK, McAllen R, Harman L, Rodger HD (2011) Gill damage to Atlantic Salmon (Salmo salar) caused by the common jellyfish (Aurelia aurita) under experimental challenge. PLoS One 6:1–6Google Scholar
  9. Bravo V, Palma S, Silva N (2011) Seasonal and vertical distribution of medusae in Aysén region, southern Chile. Lat Am J Aquat Res 39:359–377CrossRefGoogle Scholar
  10. Brodeur RD, Decker MB, Ciannelli L, Purcell JE, Bond NA, Stabeno PJ, Acuna E, Hunt GL Jr (2008) Rise and fall of jellyfish in the eastern Bering Sea in relation to climate regime shifts. Prog Oceanogr 77:103–111CrossRefGoogle Scholar
  11. Chavez FP, Ryan J, Lluch-Cota SE, Ñiquen MC (2003) From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299:217–221PubMedCrossRefGoogle Scholar
  12. Chavez FP, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J (2008) The northern Humboldt Current System: brief history, present status and a view towards the future. Prog Oceanogr 792–794:95–105CrossRefGoogle Scholar
  13. Dong Z, Liu D, Keesing JK (2010) Jellyfish blooms in China: dominant species, causes and consequences. Mar Pollut Bull 60:954–963PubMedCrossRefGoogle Scholar
  14. Doyle TK, De Haas H, Cotton D, Dorschel B, Cummins V, Houghton JDR, Davenport J, Hays GC (2008) Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters. J Plankton Res 30:963–968CrossRefGoogle Scholar
  15. Elliot W, Gonzáles R, Becerra W, Ramírez A (1999) Biología y pesquería del pampanito pintado Stromateus stellatus Cuvier en la zona de Huacho (Perú) durante enero a setiembre 1999. InformeProgresivo, Institutodel Mar del Perú (Ene 2000) no 112, 23 ppGoogle Scholar
  16. Flynn BA, Richardson AJ, Brierley AS, Boyer DC, Axelsen BE, Scott L, Moroff NE, Kainge PI, Tjizoo BM, Gibbons MJ (2012) Temporal and spatial patterns in the abundance of jellyfish in the northern Benguela upwelling ecosystem and their link to thwarted pelagic fishery recovery. Afr J Mar Sci 34:131–146CrossRefGoogle Scholar
  17. Fréon P, Bouchon M, Mullon C, García C, Ñiquen C (2008) Interdecadal variability of anchoveta abundance and overcapacity of the fishery in Peru. Prog Oceanogr 79:401–412CrossRefGoogle Scholar
  18. Gasca R, Haddock SHD (2004) Associations between gelatinous zooplankton and hyperiid amphipods (Crustacea: Peracarida) in the Gulf of California. Hydrobiologia 530/531:529–535CrossRefGoogle Scholar
  19. Goya E, Quiñones J, de Paz N (2011) Informe Nacional sobre la Situación de las Tortugas Marinas en el Perú. Comisión Permanente del Pacifico Sur (CPPS), Lima, 72 ppGoogle Scholar
  20. Graham WM, Martin DL, Felder DL, Asper VL (2003) Ecological and economical implications of a tropical jellyfish invader in the Gulf of Mexico. Biol Invasions 5:53–69CrossRefGoogle Scholar
  21. Hays GC, Farquhar MR, Luschi P, Teo SLH, Thys TM (2009) Vertical niche overlap by two ocean giants with similar diets: ocean sunfish and leatherback turtles. J Exp Mar Biol Ecol 370:134–143CrossRefGoogle Scholar
  22. Heileman S (2009) Patagonian Shelf LME. In: Sherman K, Hempel G (eds) The UNEP Large marine ecosystem report: a perspective on changing conditions in LMEs of the world’s regional seas. UNEP Regional Seas Report and Studies Nº 182, United Nations Environment Programme, Nairobi, pp 735–746Google Scholar
  23. Heileman S, Guevara R, Chávez F, Bertrand A, Soldi H (2009) XVII-56 Humboldt Current LME. In: Sherman K, Hempel G (eds) The UNEP large marine ecosystems report: a perspective on changing conditions in LMEs of the world’s regional seas. UNEP Regional Seas Report and Studies Nº 182, United Nations Environment Programme, Nairobi, 14 ppGoogle Scholar
  24. Kawahara M, Uye S, Ohtsu K, Iizumi H (2006) Unusual population explosion of the giant jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) in East Asian waters. Mar Ecol Prog Ser 307:161–173CrossRefGoogle Scholar
  25. Laval P (1980) Hyperiid amphipods as crustacean parasitoids associated with gelatinous zooplankton. Oceanogr Mar Biol Ann Rev 18:11–56Google Scholar
  26. Lesson RP (1830) Voyage autour du monde, exècutè par ordre du roi sur la corvette La Coquille, pendant les annes 1822–1825. Zoologie 2(2):135Google Scholar
  27. Lynam CP, Gibbons MJ, Axelsen BE, Sparks CAJ, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:492–493CrossRefGoogle Scholar
  28. Mianzan HW (1986) Estudio sistemático y bioecológico de algunas medusas Scyphozoa de la región Subantártica. Ph.D. thesis, Universidad Nacional de La Plata, La PlataGoogle Scholar
  29. Mianzan HW (1989) Sistemática y zoogeografía de scyphomedusae en aguas neríticas argentinas. Invest Mar CICIMAR 4:15–34Google Scholar
  30. Mianzan HW, Cornelius PFS (1999) Cubomedusae and Scyphomedusae. In: Boltovskoy D (ed) South Atlantic zooplankton, vol 1. Blackuys Publishers, Leyden, pp 513–559Google Scholar
  31. Mianzan HW, Marí N, Prenski B, Sanchez F (1996) Fish predation on neritic ctenophores from the Argentine continental shelf: a neglected food resource? Fish Res 27:69–79CrossRefGoogle Scholar
  32. Mianzan HW, Ramirez F, Costello J, Chiaverano L (2005) Un Mar de gelatina? Ciencia Hoy 15(86):48–55Google Scholar
  33. Miloslavich P, Klein E, Díaz JM, Hernández CE, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh PE, Neill PE, Carranza A, Retana MV, Díaz de Astarloa JM, Lewis M, Yorio P, Piriz ML, Rodríguez D, Yoneshigue-Valentin Y, Gamboa L, Martín A (2011) Marine biodiversity in the Atlantic and Pacific Coasts of South America: knowledge and gaps. PLoS One 6:e14631PubMedCrossRefGoogle Scholar
  34. Möller H (1984) Effects of jellyfish predation on fishes. Workshop on jellyfish blooms in the Mediterranean. UNEP, Athens, pp 45–59Google Scholar
  35. Morandini AC, Marques AC (2010) Revision of the genus Chrysaora Péron & Lesueur, 1810 (Cnidaria: Scyphozoa). Zootaxa 2464:1–97Google Scholar
  36. Nagata RM, Haddad MA, Nogueira MJ (2009) The nuisance of medusae (Cnidaria, Medusozoa) to shrimp trawls in central part of southern Brazilian Bight, from the perspective of artisanal fishermen. Pan Am J Aquat Sci 4:312–325Google Scholar
  37. Oliva ME, Maffet A, Laudien J (2010) Association between Chrysaora plocamia (Cnidaria, Scyphozoa) and Hyperia curticephala (Peracarida: Amphipoda) in Mejillones Bay, Northern Chile. Rev Biol Mar Oceanogr 45:127–130CrossRefGoogle Scholar
  38. Palma S, Apablaza P, Silva N (2007) Hydromedusae (Cnidaria) of the Chilean southern channels (from Corcovado Gulf to Pulluche-Chacabuco Channels). Sci Mar 71(1):65–74CrossRefGoogle Scholar
  39. Palma S, Silva N, Retamal MC, Castro L (2011) Seasonal and vertical distributional patterns of siphonophores and medusae in the Chiloé inland sea, Chile. Cont Shelf Res 31:260–271CrossRefGoogle Scholar
  40. Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Ann Rev Mar Sci 4:209–235PubMedCrossRefGoogle Scholar
  41. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44CrossRefGoogle Scholar
  42. Purcell JE, Uye SI, Lo WT (2007) Anthropogenic causes of jellyfish blooms and direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174CrossRefGoogle Scholar
  43. Quiñones J (2010) Chrysaora plocamia Lesson, 1830 (Cnidaria, Scyphozoa), frente a Pisco, Perú. Informe Instit Mar Peru 35:221–230Google Scholar
  44. Quiñones J, González Carman V, Zeballos J, Purca S, Mianzan HW (2010) Effects of El Niño-driven environmental variability on black turtle migration to Peruvian foraging grounds. Hydrobiologia 645:69–79CrossRefGoogle Scholar
  45. Quiñones J, Monroy A, Acha EM, Mianzan HW (2013) Jellyfish bycatch diminishes profit in an anchovy fishery off Peru. Fish Res 139:47–50CrossRefGoogle Scholar
  46. Riascos JM, Vergara M, Fajardo J, Villegas V, Pacheco AS (2012a) The role of hyperiid parasites as a trophic link between jellyfish and fishes. J Fish Biol 81(5):1686–1695PubMedCrossRefGoogle Scholar
  47. Riascos JM, Villegas V, Cáceres I, González JE, Pacheco AS (2012b) Patterns of a novel association between the scyphomedusa Chrysaora plocamia and the parasitic anemone Peachia chilensis. J Mar Biol Assoc UK 1(1):1–5Google Scholar
  48. Robinson KL, Graham WM (2013) Long-term change in the abundances of northern Gulf of Mexico scyphomedusae Aurelia spp. and Chrysaora sp. in the northern Gulf of Mexico with links to climate variability. Limnol Oceanogr 58(1):235–253CrossRefGoogle Scholar
  49. Servicio Nacional de Pesca (SERNAPESCA) (2012) Anuarios estadísticos de pesca. Reviewed: 30 July 2012
  50. Soto MR (1985) Efectos del fenómeno El Niño 1982–83 en ecosistemas de la I Region. Invest Pesq (Chile) 32:199–206Google Scholar
  51. Soto D, Jara F, Moreno C (2001) Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol Appl 11:1750–1762CrossRefGoogle Scholar
  52. Suchman C, Brodeur RD, Daly EA, Emmett RL (2012) Large medusae in surface waters of the Northern California Current: variability in relation to environmental conditions. Hydrobiologia 690:113–125CrossRefGoogle Scholar
  53. Towanda T, Thuesen EV (2006) Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum. Mar Ecol Prog Ser 315:221–236CrossRefGoogle Scholar
  54. Uye S (2008) Blooms of the giant jellyfish Nemopilema nomurai: a threat to the fisheries sustainability of the East Asian Marginal Seas. Plank Benth Res 3:125–131CrossRefGoogle Scholar
  55. Uye S, Ueta U (2004) Recent increase of jellyfish populations and their nuisance to fisheries in the Inland Sea of Japan. Bull Jap Soc Fish Oceanogr 68:9–19Google Scholar
  56. Vanhöffen E (1888) Untersuchungenübersemiostome und rhizostomemedusen. Bibliotheca Zoolog, Stuttgart, Bd. 1, heft 3, 52 pp. 6 plsGoogle Scholar
  57. Vannucci M, Tundisi J (1962) Las medusas existentes en los museos de La Plata y Buenos Aires. Comunicaciones del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Ciencias Zoológicas 3(8):203–215Google Scholar
  58. Vega MA, Ogalde JP (2008) First results on qualitative characteristics and biological activity of nematocyst extracts from Chrysaora plocamia (Cnidaria, Scyphozoa). Lat Am J Aquat Res 36:83–86CrossRefGoogle Scholar
  59. Vera C, Kolbach M, Zegpi MS, Vera F, Lonza JP (2004) Picaduras de medusas: actualización. Rev Med Chil 132:223–241CrossRefGoogle Scholar
  60. Vera C, Kolbach M, Lonza JP, Zegpi MS, Vera F (2005) Medusas en Chile: a Propósito de un Caso. Rev Chilena Dermatol 21:96–101Google Scholar
  61. Verner B (1984) Jellyfish flotation by means of bubble barriers to prevent blockage of cooling water supply and a proposal for a semi-mechanical barrier to protect bathing beaches from jellyfish. Workshop on jellyfish blooms in the Mediterranean. UNEP, Athens, pp 205–210Google Scholar
  62. Williamson JAH, Fenner PJ, Burnett JW, Rifkin JF (1996) Venomous and poisonous marine animals: a medical and biological handbook. University of New South Wales Press, BrisbaneGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)e IIMyC (CONICET-Universidad Nacional de Mar del Plata)Mar del PlataArgentina
  2. 2.Laboratorio Costero de PiscoInstituto del Mar del Perú (IMARPE)IcaPeru
  3. 3.Pontificia Universidad Católica de ValparaísoValparaísoChile
  4. 4.University of Southern MississippiHattiesburgUSA

Personalised recommendations