Skip to main content

Small Carbon Molecules and Quasi-Fullerenes as Products of New Method of Hydrocarbons Pyrolysis

  • Conference paper
  • First Online:
Advanced Sensors for Safety and Security

Abstract

Previously small carbon molecules C2–C13 were detected only in hot carbon plasma as cations and anions. From clusters, smaller than C60, revealed in mass spectra of carbon vapor only C20 and C36 were synthesized. Therefore the problem of establishment of methods for synthesis of carbon molecules is considered extremely important. Our new method of pyrolysis of hydrocarbons, particularly benzene, created the products which contain small carbon molecules, quasi-fullerenes and their hydrides. A distinctive feature of this method is the opportunity of separate localization of condensed products and soot. Firstly the substances are synthesized which mass spectra of toluene solutions contain intensive peaks with m/z values appropriate to anions of small molecules (C3–C20), their hydrides (C5H2, C10Н4, C14H4, C16H8, C18Н2) and cations of C6, C7, C15, C17, C7H, C8H, C9H, C11H, C18H. Firstly, quasi-fullerenes C21, C23, C33, C40, C48, C52 and C54 are found out in products of pyrolysis. Thus, small carbon molecules, quasi-fullerenes and C60 can be formed in reactionary conditions excluding carbon evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358

    Article  Google Scholar 

  3. Kroto HW (1990) C60: fullerenes, giant fullerenes and soot. Pure Appl Chem 62:407–415

    Article  CAS  Google Scholar 

  4. Rohlfing C, Kaldor J (1984) Production and characterization of supersonic carbon cluster beams. Chem Phys 81:3322–3330

    CAS  Google Scholar 

  5. Prinzbach H, Weiler A, Landenberger P et al (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature 407:60–63

    Article  CAS  Google Scholar 

  6. Kietzmann H, Rochow R, Ganteför G, Eberhardt W (1998) Electronic structure of small fullerenes: evidence for the high stability of C32. Phys Rev Lett 81:5378–5381

    Article  CAS  Google Scholar 

  7. Kroto HW (1987) The stability of the fullerenes Cn (n = 24, 28, 32, 50, 60 & 70). Nature 329:529–531

    Article  CAS  Google Scholar 

  8. Guo T, Diener MD, Chai Y et al (1992) Uranium stabilization of С28: a tetravalent fullerene. Science 257:1661–1664

    Article  CAS  Google Scholar 

  9. Xie SY, Gao F, Lu X et al (2004) Capturing the labile fullerene [50] as C50Cl10. Science 304:699

    Article  CAS  Google Scholar 

  10. Piskoti C, Yarger J, Zettl A (1998) A new carbon solid, C36. Nature 393:771–774

    Article  CAS  Google Scholar 

  11. Koshio A, Inakuma M, Sugai T, Shinohara H (2000) A preparative scale synthesis of C36 by high temperature laser vaporization: purification and identification of C36H6 and C36H6O. J Am Chem Soc 122:398–399

    Article  CAS  Google Scholar 

  12. Cataldo F (2004) Cyanopolyynes: carbon chains formation in a carbon arc mimicking the formation of carbon chains in the circumstellar medium. Int J Astrobiol 3:237–246

    Article  CAS  Google Scholar 

  13. Weltner WJ, Walsh PN, Angell CL (1964) Spectroscopy of carbon vapor condensed in rare-gas matrices at 4° and 20°K. I. J Chem Phys 40:1299–1305

    Article  CAS  Google Scholar 

  14. Maier JP (1997) Electronic spectroscopy of carbon chains. Chem Soc Rev 26:21–28

    Article  CAS  Google Scholar 

  15. Wakabayashi T, Krätschmer W (2006) Chapter 1: Carbon chain molecules in cryogenic matrices. In: Cataldo F (ed) Polyynes synthesis, properties, and applications. Taylor & Francis Group, New York, pp 1–15

    Google Scholar 

  16. Presilla-Márquez JD, Sheehy JA, Mills JD et al (1997) Vibrational spectra of cyclic C60 in solid argon. Chem Phys Lett 274:439–444

    Article  Google Scholar 

  17. Cermak I, Förderer M, Kalhofer S et al (1998) Laser–induced emission spectroscopy of matrix–isolated carbon molecules: experimental setup and new results on C3. J Chem Phys 108:10129–10142

    Article  CAS  Google Scholar 

  18. Cataldo F (2003) Simple generation and detection of polyynes in an arc discharge between graphite electrodes submerged in various solvents. Carbon 41:2653–2689

    Article  Google Scholar 

  19. Zavitsanos PD, Carlson GA (1973) Experimental study of the sublimation of graphite at high temperatures. J Chem Phys 59:2966–2973

    Article  CAS  Google Scholar 

  20. Heath JR, Zhang Q, O’Brien SC et al (1987) The formation of long carbon chain molecules during laser vaporization of graphite. J Am Chem Soc 109:359–363

    Article  CAS  Google Scholar 

  21. Howard JB, McKinnon JT, Makarovsky Y et al (1991) Fullerenes C60 and C70 in flames. Nature 352:139–141

    Article  CAS  Google Scholar 

  22. Taylor R, Langley GJ, Kroto HW, Walton DRM (1993) Formation of C60 by pyrolysis of naphthalene. Nature 366:728–731

    Article  CAS  Google Scholar 

  23. Crowley CJ, Taylor R, Kroto HW et al (1996) Pyrolytic production of fullerenes. Synth Met 77:17–22

    Article  CAS  Google Scholar 

  24. Osterodt J, Zett A, Vögtle F (1996) Fullerenes by pyrolysis of hydrocarbons and synthesis of isomeric methanofullerenes. Tetrahedron 52:4949–4962

    Article  CAS  Google Scholar 

  25. Jenkins GM, Holland LR, Maleki H, Fisher J (1998) Continuous production of fullerenes by pyrolysis of acetylene at a glassy carbon surface. Carbon 36:1725–1727

    Article  CAS  Google Scholar 

  26. Conley NR, Lagowski JJ (2002) On an improved pyrolytic synthesis of [60]- and [70]-fullerene. Carbon 40:949–953

    Article  CAS  Google Scholar 

  27. Kharlamov AI, Loythenko SV, Кirillova NV et al (2004) Toroidal nanostructures of carbon. Single-walled 4, 5 and 6 hedrons and nanorings. Rep Natl Acad Sci Ukraine 1:95–100

    Google Scholar 

  28. Kharlamov AI, Ushkalov LN, Кirillova NV et al (2006) Synthesis of onion nanostructures of carbon at pyrolysis of aromatic hydrocarbons. Rep Natl Acad Sci Ukraine 3:97–103

    Google Scholar 

  29. Kharlamova G, Kharlamov A, Kirillova N, Skripnichenko A (2008) Novel transparent molecular crystals of carbon. In: Vaseashta A, Mihailescu I (eds) Functionalized nanoscale materials, devices, and systems. Springer, Dordrecht, pp 373–379

    Chapter  Google Scholar 

  30. Kharlamov AI, Kirillova NV (2009) Fullerenes and hydrides of fullerenes as products transformation (polycondensation) of molecules of aromatic hydrocarbons. Rep Natl Acad Sci Ukraine 5:110–118

    Google Scholar 

  31. Brown RFC (1980) Pyrolytic methods in organic chemistry: application of flow and flash vacuum pyrolytic techniques. Academic, New York

    Google Scholar 

  32. Plater MJ, Praveen M, Schmidt DM (1997) Buckybowlsynthesis: a novel application of flash vacuum pyrolysis. Fuller Sci Technol 5:781–800

    Article  CAS  Google Scholar 

  33. Kharlamov A, Kharlamova G, Khyzhun O, Kirillova N (2011) New substances: red carbon suboxide, red N-doped fullerene (C50N10)O3H10 and red carbon. In: Zaginaichenko S, Schur D, Skorokhod V (eds) Carbon nanomaterials in clean – energy hydrogen systems. Springer, Dordrecht, pp 257–268

    Google Scholar 

  34. Kharlamov O, Kharlamova G, Kirillova N et al (2012) Synthesis of new carbon compounds: N-doped fullerene (C50N10)O3H10 and “Pyridine” nanocarbon. In: Vaseashta A, Braman E, Susmann P (eds) Technological innovations in sensing and detection of chemical, biological, radiological, nuclear threats and ecological terrorism. Springer, Dordrecht, pp 245–253

    Chapter  Google Scholar 

  35. Kharlamov АI, Bondarenko ME, Kirillova NV (2012) New method for synthesis of fullerenes and fullerene hydrides from benzene. Russ J Appl Chem 85:233–239

    Article  CAS  Google Scholar 

  36. Whetten RL, Alvarez MM, Anz SJ et al (1991) Spectroscopic and photophysical properties of the soluble Cn molecules, n = 60, 70, 76/78, 84. Mater Res Soc Symp Proc 206:639–650

    Article  CAS  Google Scholar 

  37. Jones RO (1999) Density functional study of carbon clusters C2n 2 < n < 16. I. Structure and bonding in the neutral clusters. J Chem Phys 110:5189–5200

    Article  CAS  Google Scholar 

  38. Yang S, Taylor KJ, Craycraft MJJ et al (1988) UPS of 2-30-atom carbon clusters: chains and rings. Chem Phys Lett 144:431–436

    Article  CAS  Google Scholar 

  39. Cataldo F (2004) Synthesis of polyynes in a submerged electric arc in organic solvents. Carbon 42:129–142

    Article  CAS  Google Scholar 

  40. Beynon JH (1960) Mass spectrometry and its applications to organic chemistry. Elsevier, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksii Kharlamov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kharlamov, O., Kharlamova, G., Bondarenko, M., Fomenko, V. (2013). Small Carbon Molecules and Quasi-Fullerenes as Products of New Method of Hydrocarbons Pyrolysis. In: Vaseashta, A., Khudaverdyan, S. (eds) Advanced Sensors for Safety and Security. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7003-4_30

Download citation

Publish with us

Policies and ethics