Optimization of Biomass Transport and Logistics

  • Erin Searcy
  • J. Richard Hess
  • JayaShankar Tumuluru
  • Leslie Ovard
  • David J. Muth
  • Erik Trømborg
  • Michael Wild
  • Michael Deutmeyer
  • Lars Nikolaisen
  • Tapio Ranta
  • Ric Hoefnagels
Part of the Lecture Notes in Energy book series (LNEN, volume 17)


Global demand for lignocellulosic biomass is growing, driven by a desire to increase the contribution of renewable energy to the world energy mix. A barrier to the expansion of this industry is that biomass is not always geographically where it needs to be, nor does it have the characteristics required for efficient handling, storage, and conversion, due to low energy density compared to fossil fuels. Technologies exist that can create a more standardized feedstock for conversion processes and decrease handling and transport costs; however, the cost associated with those operations often results in a feedstock that is too expensive. The disconnect between quantity of feedstock needed to meet bioenergy production goals, the quality required by the conversion processes, and the cost bioenergy producers are able to pay creates a need for new and improved technologies that potentially remove barriers associated with biomass use.

Because of their impact on feedstock cost, feedstock location and raw physical format are key barriers to industry expansion and intercontinental trade. One approach to reducing biomass cost is to emulate the commodity fossil-fuel-based feedstocks that biomass must compete with in terms of logistics, quality, and market characteristics. This requires preprocessing the biomass to improve density, flowability, stability, consistency, and conversion performance. Making the biomass format compatible with existing high-capacity transportation and handling infrastructure will reduce the need for new infrastructure. Producing biomass with these characteristics at costs conducive to energy production requires the development of new technologies or improvements to existing ones.


Corn Stover International Energy Agency Bioenergy Production Ammonia Fiber Explosion Logistics Challenge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amosson, S., Girase, J., Bean, B., Rooney, W., & Becker, J. (2011). Economic analysis of biomass sorghum for biofuels production in the Texas high planes. Agrilife Research. Available at: Accessed 30 Jan 2013.
  2. Bauen, A., Berndes, G., Junginger, M., Londo, M., & Vuille F. (2009). Bioenergy – A sustainable and reliable energy source. A review of status and prospects. IEA Bioenergy: ExCo:2009:06.Google Scholar
  3. Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25, 1–28.CrossRefGoogle Scholar
  4. Bradley, D., Diesenreiter, F., Wild, M., & Tromborg, E. (2009). World biofuel maritime shipping study. IEA Task 40.
  5. Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). The global potential of bioenergy on abandoned agriculture lands. Environmental Science and Technology, 42, 5791–5794.CrossRefGoogle Scholar
  6. Cronon, W. (1991). Nature’s metropolis: Chicago and the great west. New York: Norton.Google Scholar
  7. Cuff, D. J., & Young, W. J. (1980). U.S. energy atlas. New York: Free Press/McMillan Publishing Co.Google Scholar
  8. Danbom, D. B. (2003). Flour power: The significance of flour milling at the falls. Minnesota History, 58, 270–285.Google Scholar
  9. Deutmeyer, M., Bradley, D., Hektor, B., Hess, J. R., Nikolaisen, L., Tumuluru, J., & Wild, M. (2012). Possible effect of torrefaction on biomass trade (Prepared for the International Energy Agency bioenergy task 40). IEA Bioenergy Task 40. Available at:
  10. English, B. C., Yu, T. H. E., Larson, J. A., Menard, R. J., & Gao, Y. (2013). Economic impacts of using switchgrass as a feedstock for ethanol production: A case study located in east Tennessee. Economics Research International 2013, 1–14.Google Scholar
  11. Geiver, L. (2012, December 12). Georgia wood pellet export terminal will be largest in Southeast. Biomass Magazine.
  12. Gustafson, C. R., Maung, T. A., Saxowsky, D., Nowatzki, J., & Milijkovic, T. (2011). Economics of sourcing cellulosic feedstock for energy production. Agriculture & Applied Economics Association’s 2011AAEA &NAREA Joint Annual Meeting. Pittsburgh, Pennsylvania.Google Scholar
  13. Hamelinck, C. N., Suurs, R. A., & Faaij, A. P. C. (2005). International bioenergy transport costs and energy balance. Biomass and Bioenergy, 29, 114–134.CrossRefGoogle Scholar
  14. Hess, J. R., Kenney, K. L., Ovard, L., Searcy, E. M., & Wright, C. T. (2009). Uniform-format solid feedstock supply system: A commodity-scale design to produce an infrastructure-compatible bulk solid from lignocellulosic biomass, INL/EXT-08-14752. Available at
  15. IEA. (2008). International Energy Agency, energy technology perspectives 2008—scenarios and strategies to 2050 (pp. 307–338). Paris: International Energy Agency.Google Scholar
  16. Kenney, K. L., Smith, W. A., Gresham, G. L., & Westover, T. L. (2013). Understanding biomass feedstock variability. Biofuels, 4(1), 111–127.CrossRefGoogle Scholar
  17. Lamers, P., Junginger, M., Hamelinck, C., & Faaij, A. (2012). Developments in international solid biofuel trade: An analysis of volumes, policies, and market factors. Renewable Sustainable Energy Reviews, 16, 3179–3199.CrossRefGoogle Scholar
  18. Laser, M., Larson, E., Dale, B., Wang, M., Greene, N., & Lynd, L. R. (2009). Comparative analysis of efficiency, environmental impact, and process economics for mature biomass refining scenarios. Biofuels Bioproducts & Biorefining, 3, 247–270.CrossRefGoogle Scholar
  19. Lass, W. E. (1998). Minnesota: A history. New York: WW Norton.Google Scholar
  20. Muth D. J., Jacobson, J. J., Cafferty, K., & Jeffers, R. (2013) Define feedstock baseline scenario and assumptions for the $80/DT target based on INL design report and feedstock logistics projects. Idaho National Laboratory Joule Milestone ID#: Scholar
  21. Nolan, A., McDonnell, K., Devlin, G. J., Carroll, J. P., & Finnan, J. (2010). Economic analysis of manufacturing costs of pellet production in the Republic of Ireland using non-woody biomass. The Open Renewable Energy Journal, 3, 1–11.CrossRefGoogle Scholar
  22. Pami. (2012). Logistics of Agricultural based biomass feedstock for Saskatchewan: For ABC Steering Committee, SaskPower, NRCan. Research report (Project No. E7810), Humboldt.Google Scholar
  23. Peng, J. H., Bi, H. T., Sokhansanj, S., Lim, J. C., & Melin, S. (2010). An economical and market analysis of Canadian wood pellets. International Journal of Green energy, 7, 128–142.Google Scholar
  24. Ray, A. E., Hoover, A. N., Nagle, N., Chen, X., & Gresham, G. L. (2013). Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover under low- and high-solids conditions. Biofuels, 4, 271–284.CrossRefGoogle Scholar
  25. Rijal, B., Igathinathane, C., Karki, B., Yu, M., & Pryor, S. W. (2012). Combined effect of pelleting and pretreatment on enzymatic hydrolysis of switchgrass. Bioresource Technology, 116, 36–41.CrossRefGoogle Scholar
  26. Roos, J. A., & Brackley, A. M. (2012). The Asian wood pellet markets. General technical report (PNW-GTR0861, 25 p.). Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.Google Scholar
  27. Saskatchewan Forage Council. (2011). Saskatchewan forage market report. Available at: Accessed 30 Jan 2013.
  28. Searcy, E. M., & Hess, J. R. (2010). Uniform-format feedstock supply system design for lignocellulosic biomass: A commodity-scale design to produce an infrastructure-compatible biocrude from lignocellulosic biomass. INL/EXT-10-20372. INL. Available at: Scholar
  29. Shi, J., Thompson, V. S., Yancey, N. A., Stavila, V., Simmons, B. A., & Singh, S. (2013). Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels, 4(1), 63–72.CrossRefGoogle Scholar
  30. Shinners, K. J., Binversie, B. N., Muck, R. E., & Weimer, P. J. (2007). Comparison of wet and dry corn stover harvest and storage. Biomass and Bionergy, 31, 211–221.CrossRefGoogle Scholar
  31. Sikkema, R., Junginger, M., Pickler, W., Hayes, S., & Faaij, A. P. C. (2010). The international logistics of wood pellets for heating and power production in Europe: Costs, energy input and greenhouse gas balances of pellet consumption in Italy, Sweden, and the Netherlands. Biofuels, Bioproducts and Biorefining, 4, 132–153.CrossRefGoogle Scholar
  32. Simet, A. (2013, January 25). European port to expand wood pellet infrastructure. Biomass Magazine. Available at:
  33. Smeets, E. M., Faaij, A. P. C., Lewandowski, I. M., & Turkenburg, W. C. (2007). A bottom-up assessment and review of global bio-energy potentials to 2050. Progress in Energy and Combustion Science, 33, 56–106.CrossRefGoogle Scholar
  34. Storck, J., & Teague, W. D. (1952). Flour for man’s bread. Minneapolis: University of Minnesota Press.Google Scholar
  35. Theerarattananoon, K., Xu, F., Wilson, J., et al. (2012). Effects of the pelleting conditions on chemical composition and sugar yield of corn stover, big bluestem, wheat straw, and sorghum stalk pellets. Bioprocess and Biosystems Engineering, 35(4), 615–623.CrossRefGoogle Scholar
  36. Tumuluru, J. S., Sokhansanj, S., Hess, J. R., Wright, C. T., & Boardman, R. D. (2011a). A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology, 7, 384–401.Google Scholar
  37. Tumuluru, J. S., Wright, C. T., Hess, J. R., & Kenney, K. L. (2011b) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy applications. Biofuels, Bioproducts, and Biorefining, 5, 683–707.Google Scholar
  38. United Nations Conference on Trade and Development (UNCTAD) (2011) Review of maritime transport. UNCTAD/RMT/2011. United Nations Publication E.11.II.D.4.Google Scholar
  39. U.S. Energy Information Administration (EIA). (2013). International Energy Statistics: Renewables. Available at:
  40. van Vactor, S. A. (2004). Flipping the switch: The transformation of energy markets. PhD dissertation, University of Cambridge.Google Scholar
  41. Velkar, A. (2010). Deep integration of 19th century grain markets: Coordination and standardisation in a global value chain (Working Papers No. 145/10). London: Department of Economic History, London School of Economics. Houghton Street, London.Google Scholar
  42. Westover, T. L., Searcy, E. M., & Wright, C. T. (2011). Correlate fundamental bulk rheological properties with mechanical feeding and conveying systems. Idaho National Laboratory E Milestone ID#: Scholar
  43. Wild, M. (2012, February 23, 24). 3rd biomass power and trade, Brussels.Google Scholar
  44. Wilmsmeier, G., Hoffmann, J., & Sanchez, R. J. (2006). The impact of port characteristics on international martitime transport costs. Research in Transportation Economics, 16, 117–140.CrossRefGoogle Scholar
  45. Wood Resources International LLC. (2011, June). North American wood fiber review. Bothell, WA, USA.Google Scholar
  46. Wright, C. T., Kenney, K. L., & Jacobson, J. J. (2012). Integrated model analysis using field- and PDU-scale data to demonstrate feedstock logistics cost of $35.00 per dry ton for corn stover. INL TM2012-003-0. INL/MIS-13-28680. INL.Google Scholar
  47. Zhang, Y., Mckechnie, J., Cormier, D., Lyng, R., Mabee, W., Ogino, A., & Maclean, H. L. (2010). Life cycle analysis and costs of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada. Environmental Science & Technology, 44, 538–544.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Erin Searcy
    • 1
  • J. Richard Hess
    • 2
  • JayaShankar Tumuluru
    • 1
  • Leslie Ovard
    • 1
  • David J. Muth
    • 3
  • Erik Trømborg
    • 4
  • Michael Wild
    • 5
  • Michael Deutmeyer
    • 6
  • Lars Nikolaisen
    • 7
  • Tapio Ranta
    • 8
  • Ric Hoefnagels
    • 9
  1. 1.Biofuels and Renewable Energy TechnologiesIdaho National LaboratoryIdaho FallsUSA
  2. 2.Energy Systems and TechnologiesIdaho National LaboratoryIdaho FallsIdaho
  3. 3.Praxik, LLCLowaLowa
  4. 4.Department of Ecology and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
  5. 5.Wild & Partner KGViennaAustria
  6. 6.Biomass & Bioenergy, Green Resources ASLondonUK
  7. 7.Danish Technological InstituteTaastrupDenmark
  8. 8.Department of Energy and Environmental TechnologyLappeenranta University of TechnologyLappeenrantaFinland
  9. 9.Energy & Resources, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations