Skip to main content

Biomolecular NMR

  • Chapter
  • First Online:
NMR for Chemists and Biologists

Part of the book series: SpringerBriefs in Biochemistry and Molecular Biology ((BRIEFSBIOCHEM))

  • 4196 Accesses

Abstract

One of the most relevant applications of NMR is in the study of biomolecules, which are at the heart of Biochemistry and Biomedicine. We shall describe in this chapter the use of NMR in the biomolecular field, especially its contribution to the structural elucidation of proteins and nucleic acids. An introduction to the analysis of biomolecular dynamics by NMR will also be described, as well as NMR applications in drug discovery and biomolecule-ligand interactions in general. Finally, the basic concepts behind solid-state NMR and metabolomics-by-NMR will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen M, Varani L, Varani G (2001) Nuclear Magnetic Resonance methods to study structure and dynamics of RNA-protein complexes. Methods Enzymol 339:357–376

    Article  PubMed  CAS  Google Scholar 

  • Arrondo JLR, Goñi FM (1999) Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Prog Biophys Mol Biol 72:367–405

    Article  PubMed  CAS  Google Scholar 

  • Carlomagno T (2005) Ligand-target interactions: what can we learn from NMR? Ann Rev Biophys Biomol Struct 34:245–266

    Article  CAS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy: theory and practice. Academic Press, New York

    Google Scholar 

  • Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti A, Sundstrom M (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68

    Article  PubMed  CAS  Google Scholar 

  • Dalvit C (2007) Ligand- and substrate-based F-19 NMR screening: principles and applications to drug discovery. Prog Nucl Magn Reson Spectrosc 51:243–271

    Article  CAS  Google Scholar 

  • Duer MJ (2004) Introduction to solid state NMR spectroscopy. Blackwell, London

    Google Scholar 

  • Englander SW, Kallenbach NR (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16:521–655

    Article  PubMed  CAS  Google Scholar 

  • Esfandiary R, Hunjan JS, Lushington GH, Joshi SB, Middaugh CR (2009) Temperature dependent 2nd derivative absorbance spectroscopy of aromatic amino acids as a probe of protein dynamics. Protein Sci 18:2603–2614

    Article  PubMed  CAS  Google Scholar 

  • Fielding L (2007) NMR methods for the determination of protein-ligand dissociation constants. Prog Nucl Magn Reson Spectrosc 51:219–242

    Article  CAS  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2H, 13C and 15N multidimensional NMR to study the structure and dynamics of proteins. Annual Rev Biophys Biomol Struct 27:357–406

    Article  CAS  Google Scholar 

  • Goldbourt A, Day LA, McDermott AE (2010) Intersubunit hydrophobic interactions in Pf1 filamentous phage. J Biol Chem 285:37051–37059

    Article  PubMed  CAS  Google Scholar 

  • Graslund S, Nördlund P et al (2008) Protein production and purification. Nat Methods 5:135–146

    Article  PubMed  Google Scholar 

  • Grzesiek S, Bax A (1992) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson 96:432–440

    CAS  Google Scholar 

  • Hajduk PJ, Meadows RP, Fesik SW (1999) NMR-based screening in drug discovery. Q Rev Biophys 32:211–240

    Article  PubMed  CAS  Google Scholar 

  • Huyghues-Despointes BMP, Pace CN, Englander SW, Scholtz JM (2000) Measuring the conformational stability of a protein by hydrogen exchange. In: Murphy KE (ed) Protein structure, stability and folding. Methods in molecular biology, Vol. 168. Humana Press, Totowa

    Google Scholar 

  • Ikura M, Kay LE, Bax A (1991) Improved three-dimensional 1H–13C-1H correlation spectroscopy of a 13C-labeled protein using constant-time evolution. J Biomol NMR 1:299–304

    Article  PubMed  CAS  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    CAS  Google Scholar 

  • Kay LE (2011a) Solution NMR spectroscopy of supramolecular systems, why bother? A methyl-TROSY NMR view. J Magn Reson 210:159–170

    Article  PubMed  CAS  Google Scholar 

  • Kay LE (2011b) NMR studies of protein structure and dynamics. J Magn Reson 213:492–494

    Article  PubMed  CAS  Google Scholar 

  • Kime MJ (1984) Assignment of resonances in the Escherichia coli 5 S RNA fragment proton NMR spectrum using uniform nitrogen-15 enrichment. FEBS Lett 173:342–346

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2010) Principles of fluorescence spectroscopy, 3rd edn., corrected Springer, New York

    Google Scholar 

  • Lindon JC, Nicholson JK and Holmes E. Elsevier B.V (eds) (2007) The Handbook of Metabonomics, Netherlands

    Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  • Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in NMR structure analysis. Annual Rev Biophys Biomol Struct 33:387–413

    Article  CAS  Google Scholar 

  • Lundström P, Vallurupalli P, Hansen DF, Kay LE (2009) Isotopic labelling methods for the studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protocols 4:1641–1648

    Article  Google Scholar 

  • Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38:1784–1788

    Article  CAS  Google Scholar 

  • Mossakowska DE, Smith RAG (1997) Production and characterization of recombinant proteins for NMR structural studies. In: Reid DG (ed) Protein NMR techniques methods in molecular biology, Vol 60. Humana Press, Totowa

    Google Scholar 

  • Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J Magn Reson 103:203–216

    Article  CAS  Google Scholar 

  • Neuhaus D, Williamson MP (1999) The nuclear Overhauser effect in structural and conformational analysis (2nd Ed). VCH Publishers, New York

    Google Scholar 

  • Olejniczak ET, Xu RX, Fesik SW (1992) A 4D HCCH-TOCSY experiment for assigning the side chain 1H and 13C resonances of proteins. J Biomol NMR 2:655–659

    Article  PubMed  CAS  Google Scholar 

  • Olsen JI, Schweizer MP et al (1982) Carbon-13 NMR relaxation studies of pre-melt structural dynamics in [4-13C-uracil] labeled E. coli transfer RNA1 Val* Nucl Acid Res 10:4449–4464

    Google Scholar 

  • Otting G, Liepinsh E, Wüthrich K (1991) Protein hydration in aqueous solution. Science 254:974–980

    Article  PubMed  CAS  Google Scholar 

  • Park SH, Marassi FM, Black D, Opella SJ (2010) Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangements for virus assembly. Biophys J 99:1465–1474

    Article  PubMed  CAS  Google Scholar 

  • Patel DJ, Shapiro L, Hare D (1987) DNA and RNA: NMR studies of conformations and dynamics. Q Rev Biophys 20:35–112

    Article  PubMed  CAS  Google Scholar 

  • Petsko GA, Ringe D (1984) Fluctuations in protein structure from X-ray diffraction. Ann Rev Biophys Bioeng 13:331–371

    Article  CAS  Google Scholar 

  • Price WS (1999) Water signal suppression in NMR spectroscopy. Annual Rep NMR Spectrosc 38:289–354

    Article  CAS  Google Scholar 

  • Religa TL, Kay LE (2010) Optimal methyl labeling for studies of supra-macromolecular systems. J Biomol NMR 47:163–169

    Article  PubMed  CAS  Google Scholar 

  • Riek R, Pervushin K, Wüthrich K (2000) TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem Sci 25:462–468

    Article  PubMed  CAS  Google Scholar 

  • Ringe D, Petsko GA (1985) Mapping protein dynamics by X-ray diffraction. Prog Biophys Mol Biol 45:197–235

    Article  PubMed  CAS  Google Scholar 

  • Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for ¹³C, ¹H labeling at the Ile-γ2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135

    Article  PubMed  CAS  Google Scholar 

  • Sivaraman T, Robertson AD (2001) Kinetics of conformational fluctuations by EX1 hydrogen exchange in native proteins. Methods Mol Biol 168:193–214

    PubMed  CAS  Google Scholar 

  • Tinoco I Jr, Sauer K, Wang JC (2002) Physical chemistry: principles and applications in biological sciences, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecular weight complexes. Ann Rev Biochem 73:107–146

    Article  PubMed  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley and Sons, New York

    Google Scholar 

  • Xu J, Plaxco KW, Allen SJ (2006) Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci 15:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Zerbe O (ed) (2003) BioNMR in Drug Research. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo J. Carbajo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Carbajo, R.J., Neira, J.L. (2013). Biomolecular NMR. In: NMR for Chemists and Biologists. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6976-2_4

Download citation

Publish with us

Policies and ethics