Advertisement

Mind the Gap: Transitions Between Concepts of Information in Varied Domains

  • Lyn Robinson
  • David Bawden
Chapter
Part of the Studies in History and Philosophy of Science book series (AUST, volume 34)

Abstract

The concept of ‘information’ in five different realms – technological, physical, biological, social and philosophical – is briefly examined. The ‘gaps’ between these conceptions are discussed, and unifying frameworks of diverse nature, including those of Shannon/Wiener, Landauer, Stonier, Bates and Floridi, are examined. The value of attempting to bridge the gaps, while avoiding shallow analogies, is explained. With information physics gaining general acceptance, and biology gaining the status of an information science, it seems rational to look for links, relationships, analogies and even helpful metaphors between them and the library/information sciences. Prospects for doing so, involving concepts of complexity and emergence, are suggested.

Keywords

Meaningful Information Living Thing Information Concept Information Term Physical Realm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler, J. 2010. Epistemological problems of testimony. In Stanford encyclopedia of philosophy, ed. E.N. Zalta (Winter 2010 edition) [online]. http://plato.stanford.edu/archives/win2010/entries/testimony-episprob. Accessed 6 Aug 2012.
  2. Atkins, P. 2007. Four laws that drive the universe. Oxford: Oxford University Press.Google Scholar
  3. Audi, R. 1997. The place of testimony in the fabric of knowledge and justification. American Philosophical Quarterly 34(4): 405–422.Google Scholar
  4. Auletta, G. 2011. Cognitive biology: Dealing with information from bacteria to minds. Oxford: Oxford University Press.Google Scholar
  5. Avramescu, A. 1980. Coherent information energy and entropy. Journal of Documentation 36(4): 293–312.CrossRefGoogle Scholar
  6. Baltimore, D. 2002. How biology became an information science. In The invisible future, ed. P.J. Denning, 43–55. New York: McGraw Hill.Google Scholar
  7. Barrow, J.D. 2007. New theories of everything. Oxford: Oxford University Press.Google Scholar
  8. Barrow, J.D., P.C.W. Davies, and C.L. Harper. 2004. Science and ultimate reality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Barwise, J., and J. Seligman. 1997. Information flow: The logic of distributed systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  10. Bates, M. J. 2005. Information and knowledge: An evolutionary framework for information. Information Research 10(4): paper 239 [online]. http://informationr.net/ir/10-4/paper239.html. Accessed 9 Sept 2012.
  11. Bates, M.J. 2006. Fundamental forms of information. Journal of the American Society for Information Science and Technology 57(8): 1033–1045.CrossRefGoogle Scholar
  12. Bawden, D. 2001. The shifting terminologies of information. ASLIB Proceedings 53(3): 93–98.CrossRefGoogle Scholar
  13. Bawden, D. 2007a. Information as self-organised complexity: A unifying viewpoint. Information Research 12(4): paper colis31 [online]. http://informationr.net/ir/12-4/colis/colis31.html. Accessed 9 Sept 2012.
  14. Bawden, D. 2007b. Organised complexity, meaning and understanding: An approach to a unified view of information for information science. ASLIB Proceedings 59(4/5): 307–327.CrossRefGoogle Scholar
  15. Bawden, D. 2012. On the gaining of understanding; syntheses, themes and information analysis. Library and Information Research 36(112): 147–162.Google Scholar
  16. Bawden, D., and L. Robinson. 2012. Introduction to information science. London: Facet Publishing.Google Scholar
  17. Belkin, N.J. 1978. Information concepts for information science. Journal of Documentation 34(1): 55–85.CrossRefGoogle Scholar
  18. Belkin, N.J., and S.E. Robertson. 1976. Information science and the phenomenon of information. Journal of the American Society for Information Science 27(4): 197–204.CrossRefGoogle Scholar
  19. Berners-Lee, T., and L. Kagal. 2008. The fractal nature of the semantic web. AI Magazine 29(3): 29–34.Google Scholar
  20. Brillouin, L. 1962. Science and information theory, 2nd ed. New York: Academic.Google Scholar
  21. Brookes, B.C. 1980. The foundations of information science. Part III. Quantitative aspects: Objective maps and subjective landscapes. Journal of Information Science 2(6): 269–275.CrossRefGoogle Scholar
  22. Buckland, M. 1991. Information as thing. Journal of the American Society for Information Science 42(5): 351–360.CrossRefGoogle Scholar
  23. Budd, J. 2013. Re-conceiving information studies: A quantum approach. Journal of Documentation 69(4), in press.Google Scholar
  24. Byrne, P. 2010. The many worlds of Hugh Everett III. Oxford: Oxford University Press.Google Scholar
  25. Capurro, R., and B. Hjørland. 2003. The concept of information. Annual Review of Information Science and Technology 37: 343–411.CrossRefGoogle Scholar
  26. Checkland, P., and S. Holwell. 1998. Information, systems and information systems: Making sense of the field. Chichester: Wiley.Google Scholar
  27. Cole, C. 1994. Operationalizing the notion of information as a subjective construct. Journal of the American Society for Information Science 45(7): 465–476.CrossRefGoogle Scholar
  28. Cornelius, I. 2002. Theorising information for information science. Annual Review of Information Science and Technology 36: 393–425.Google Scholar
  29. Dartnell, L. 2007. Life in the universe: A beginner’s guide. Oxford: Oneworld.Google Scholar
  30. Davies, P., and N.H. Gregersen. 2010. Information and the nature of reality: From physics to metaphysics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Day, R.E. 2005. Clearing up “implicit knowledge”: Implications for knowledge management, information science, psychology, and social epistemology. Journal of the American Society for Information Science and Technology 56(6): 630–635.CrossRefGoogle Scholar
  32. Denbigh, K. 1981. How subjective is entropy? Chemistry in Britain 17(4): 168–185.Google Scholar
  33. Deutsch, D. 2011. The beginning of infinity: Explanations that transform the world. London: Allen Lane.Google Scholar
  34. Dretske, F.I. 1981. Knowledge and the flow of information. Oxford: Basil Blackwell.Google Scholar
  35. Duncan, T.L., and J.S. Semura. 2007. Information loss as a foundational principle for the second law of thermodynamics. Foundations of Physics 37(12): 1767–1773.CrossRefGoogle Scholar
  36. Egghe, L. 2005. Power laws in the information production process: Lotkaian informetrics. Amsterdam: Elsevier.Google Scholar
  37. Floridi, L. 2010a. Information: A very short introduction. Oxford: Oxford University Press.Google Scholar
  38. Floridi, L. 2010b. The philosophy of information: Ten years later. Metaphilosophy 41(3): 402–419.CrossRefGoogle Scholar
  39. Floridi, L. 2011a. Semantic conceptions of information. In Stanford encyclopedia of philosophy, ed. E.N. Zalta (Spring 2011 edition) [online]. http://plato.stanford.edu/archives/spr2011/entries/information-semantic. Accessed 6 Aug 2012.
  40. Floridi, L. 2011b. The philosophy of information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  41. Frické, M. 2009. The knowledge pyramid: A critique of the DIKW hierarchy. Journal of Information Science 35(2): 131–142.CrossRefGoogle Scholar
  42. Frieden, B.R. 1999. Physics from Fisher information: A unification. Cambridge: Cambridge University Press.Google Scholar
  43. Furner, J. 2010. Philosophy and information studies. Annual Review of Information Science and Technology 44: 161–200.CrossRefGoogle Scholar
  44. Gatlin, L.L. 1972. Information theory and the living system. New York: Columbia University Press.Google Scholar
  45. Gell-Mann, M. 1995. The quark and the jaguar, revised ed. London: Abacus.Google Scholar
  46. Gell-Mann, M., and S. Lloyd. 1998. Information measures, effective complexity and total information. Complexity 2(1): 44–52.CrossRefGoogle Scholar
  47. Gleick, J. 2011. The information: A history, a theory, a flood. London: Fourth Estate.Google Scholar
  48. Goonatilake, S. 1991. The evolution of information: Lineages in gene, culture and artefact. London: Pinter Publishers.Google Scholar
  49. Greene, B. 2011. The hidden reality: Parallel universes and the deep laws of the cosmos. New York: Knopf.Google Scholar
  50. Hargatti, I. 2006. The Martians of science: Five physicists who changed the twentieth century. Oxford: Oxford University Press.Google Scholar
  51. Hartley, R.V.L. 1928. Transmission of information. Bell System Technical Journal 7(3): 535–563.CrossRefGoogle Scholar
  52. Hazen, R.M., P.L. Griffin, J.M. Carothers, and J.W. Szostak. 2007. Functional information and the emergence of biocomplexity. Proceedings of the National Academy of Sciences 104(suppl. 1): 8574–8581.CrossRefGoogle Scholar
  53. Hjørland, B. 2007. Information: Objective or subjective/situational? Journal of the American Society for Information Science and Technology 58(10): 1448–1456.CrossRefGoogle Scholar
  54. Hjørland, B. 2008. The controversy over the concept of “information”: A rejoinder to Professor Bates. Journal of the American Society for Information Science and Technology 60(3): 643.CrossRefGoogle Scholar
  55. Jaffe, K. 1984. Negentropy and the evolution of chemical recruitment in ants (Hymenoptera: Formicidae). Journal of Theoretical Biology 106(4): 587–604.CrossRefGoogle Scholar
  56. Karnani, M., K. Pääkkönen, and A. Annila. 2009. The physical character of information. Proceedings of the Royal Society A 465(2107): 2155–2175.CrossRefGoogle Scholar
  57. Kier, L.B. 1980. Use of molecular negentropy to encode structure governing biological activity. Journal of Pharmaceutical Sciences 69(7): 807–810.CrossRefGoogle Scholar
  58. Kvanvig, J.L. 2003. The value of knowledge and the pursuit of understanding. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  59. Landauer, R. 1991. Information is physical. Physics Today 44(5): 23–29.CrossRefGoogle Scholar
  60. Le Coadic, Y.F. 1987. Modelling the communication, distribution, transmission or transfer of scientific information. Journal of Information Science 13(3): 143–148.CrossRefGoogle Scholar
  61. Leff, H.S., and A.F. Rex. 1990. Maxwell’s Demon: Entropy, information, computing. Bristol: IOP Publishing.Google Scholar
  62. Leff, H.S., and A.F. Rex. 2002. Maxwell’s Demon 2: Entropy, classical and quantum information, computing. Bristol: IOP Publishing.Google Scholar
  63. Liu, Y., and R. Rousseau. 2012. Towards a representation of diffusion and interaction of scientific ideas: The case of fiber optics communication. Information Processing and Management 48(4): 791–801.CrossRefGoogle Scholar
  64. Lloyd, S. 2001. Measures of complexity: A nonexhaustive list. IEEE Control Systems Magazine 21(4): 7–8.CrossRefGoogle Scholar
  65. Lloyd, S. 2006. Programming the universe. London: Jonathan Cape.Google Scholar
  66. Lloyd, S. 2010. The computation universe. In Information and the nature of reality: From physics to metaphysics, ed. P. Davies and N.H. Gregersen, 92–103. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  67. Ma, L. 2012. Meanings of information: The assumptions and research consequences of three foundational LIS theories. Journal of the American Society for Information Science and Technology 63(4): 716–723.CrossRefGoogle Scholar
  68. Machlup, F., and U. Mansfield. 1983. The study of information; Interdisciplinary messages. New York: Wiley.Google Scholar
  69. MacPherson, K. 2008. Leading physicist John Wheeler dies at age 96 [obituary]. Princeton University News Archive. http://www.princeton.edu/main/news/archive/S20/82/08G77. Accessed 15 May 2012.
  70. Madden, D. 2004. Evolution and information. Journal of Documentation 60(1): 9–23.CrossRefGoogle Scholar
  71. Maynard Smith, J. 2010. The concept of information in biology. In Information and the nature of reality: From physics to metaphysics, ed. P. Davies and N.H. Gregersen, 123–145. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  72. Müller, I. 2007. A history of thermodynamics: The doctrine of energy and entropy. Berlin: Springer.Google Scholar
  73. Nyquist, H. 1924. Certain factors affecting telegraph speed. Bell System Technical Journal 3(2): 324–346.CrossRefGoogle Scholar
  74. Ottaviani, J.S. 1994. The fractal nature of relevance: A hypothesis. Journal of the American Society for Information Science 45(4): 263–272.CrossRefGoogle Scholar
  75. Parker, E.B. 1974. Information and society. In Library and information service needs of the nation: Proceedings of a conference on the needs of occupational, ethnic and other groups in the United States, ed. C.A. Cuadra and M.J. Bates, 9–50. Washington, DC: U.S.G.P.O.Google Scholar
  76. Patten, B.C. 1961. Negentropy flow in communities of plankton. Limnology and Oceanography 6(1): 26–30.CrossRefGoogle Scholar
  77. Pickover, C.A. 2008. Archimedes to Hawking: Laws of science and the great minds behind them. Oxford: Oxford University Press.Google Scholar
  78. Piwowarski, B., L. Frommholz, M. Lalmas, and van K. Rijsbergen. 2010. What can quantum theory bring to information retrieval? In Proceedings of 19th ACM conference on information and knowledge management, 59–68. New York: ACM Press.Google Scholar
  79. Piwowarski, B., M.R. Amini, and M. Lalmas. 2012. On using a quantum physics formalism for multidocument summarization. Journal of the American Society for Information Science and Technology 63(5): 865–888.CrossRefGoogle Scholar
  80. Polanyi, M. 1962. Personal knowledge. Chicago: University of Chicago Press.Google Scholar
  81. Qvortrup, L. 1993. The controversy over the concept of information. An overview and a selected and annotated bibliography. Cybernetics and Human Knowing 1(4): 3–24.Google Scholar
  82. Reading, A. 2011. Meaningful information: The bridge between biology, brain and behavior. Berlin: Springer.Google Scholar
  83. Rowley, J. 2011. The wisdom hierarchy: Representations of the DIKW hierarchy. Journal of Information Science 33(2): 163–180.CrossRefGoogle Scholar
  84. Salthe, S.N. 2011. Naturalizing information. Information 2: 417–425 [online]. http://www.mdpi.com/2078-2489/2/3/417. Accessed 9 Sept 2012.
  85. Saunders, S., J. Barrett, A. Kent, and D. Wallace (eds.). 2010. Many worlds? Everett, quantum theory and reality. Oxford: Oxford University Press.Google Scholar
  86. Schrödinger, E. 1944. What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.Google Scholar
  87. Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27(3): 379–423.CrossRefGoogle Scholar
  88. Shannon, C.E., and W. Weaver. 1949. The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
  89. Shaw, D., and C.H. Davis. 1983. Entropy and information: A multidisciplinary overview. Journal of the American Society for Information Science 34(1): 67–74.CrossRefGoogle Scholar
  90. Smolin, L. 2000. Three roads to quantum gravity: A new understanding of space, time and the universe. London: Weidenfeld and Nicolson.Google Scholar
  91. Stonier, T. 1990. Information and the internal structure of the universe. Berlin: Springer.CrossRefGoogle Scholar
  92. Stonier, T. 1992. Beyond information: The natural history of intelligence. Berlin: Springer.CrossRefGoogle Scholar
  93. Stonier, T. 1997. Information and meaning: An evolutionary perspective. Berlin: Springer.CrossRefGoogle Scholar
  94. Szilard, L. 1929. Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. [On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings.] Zeitschrift für Physik 53(6): 840–856. [Translated into English by A. Rapoport and M. Knoller, and reproduced in Leff and Rex (1990), pp 124–133.]Google Scholar
  95. Terzis, G., and R. Arp (eds.). 2011. Information and living systems: Philosophical and scientific perspectives. Cambridge: MIT Press.Google Scholar
  96. Tonioni, G. 2008. Consciousness as integrated information: A provisional manifesto. The Biological Bulletin 215(3): 216–242.CrossRefGoogle Scholar
  97. Tribus, M. 1964. Information theory and thermodynamics. In Heat transfer, thermodynamics and education: Boelter anniversary volume, ed. H.A. Johnson, 348–368. New York: McGraw Hill.Google Scholar
  98. Vedral, V. 2010. Decoding reality: The universe as quantum information. Oxford: Oxford University Press.Google Scholar
  99. Vedral, V. 2012. Information and physics. Information 3(2): 219–223.CrossRefGoogle Scholar
  100. Von Baeyer, C. 2004. Information: The new language of science. Cambridge: Harvard University Press.Google Scholar
  101. Wallace, D. 2012. The emergent multiverse: Quantum theory according to the Everett interpretation. Oxford: Oxford University Press.CrossRefGoogle Scholar
  102. Weart, S.R., and G.W. Szilard (eds.). 1978. Leo Szilard: His version of the facts. Selected recollections and correspondence. Cambridge: MIT Press.Google Scholar
  103. Wiener, N. 1948. Cybernetics, or control and communication in the animal and the machine. New York: Wiley.Google Scholar
  104. Wiener, N. 1956. I am a mathematician. London: Victor Gollancz.Google Scholar
  105. Zins, C. 2007. Conceptual approaches for defining data, information and knowledge. Journal of the American Society for Information Science and Technology 58(4): 479–493.CrossRefGoogle Scholar
  106. Zurek, W.H. 1989. Algorithmic randomness and physical entropy. Physical Review A 40(8): 4731–4751.CrossRefGoogle Scholar
  107. Zurek, W.H. (ed.). 1990. Complexity, entropy and the physics of information, Santa Fe institute series. Boulder: Westview Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  • Lyn Robinson
    • 1
  • David Bawden
    • 1
  1. 1.Centre for Information ScienceCity University LondonLondonUK

Personalised recommendations