Skip to main content

Statistics of Scatterer Property Estimates

  • Chapter
  • First Online:
Quantitative Ultrasound in Soft Tissues

Abstract

Quantitative ultrasound (QUS) techniques are based on providing parameter estimates from ultrasound backscattered signals that can be related to different properties of the tissue. Parameter estimates based on analyzing the spectrum of the ultrasound backscattered signal or the amplitude distribution of the envelope require a certain number of samples to produce meaningful estimates in terms of bias and variance of estimates. For example, calculation of the periodogram is used to approximate the true backscattered power spectrum of the ultrasound signal. Typically, the larger the samples size the better the periodogram represents the backscattered power spectrum and the better the bias and variance of QUS estimates. Analysis of the statistics of parameter estimation for spectral-based parameters and envelope statistics will allow the tradeoff between sample size and estimate bias and variance to be quantified. This chapter discusses the statistics of QUS property estimation, the effects of estimate bias and variance on the resolution of QUS parameter imaging, and techniques to reduce the variance of different QUS property estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chaturvedi P, Insana MF (1996) Error bounds on ultrasonic scatterer size estimates. J Acoust Soc Am, 100:392–399

    Google Scholar 

  • Destrempes F, Cloutier G (2010) A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope. Ultrasound Med Biol, 36:1037–1051

    Google Scholar 

  • Dutt V, Greenleaf JF (1994) Ultrasound echo envelope analysis using a homodyne K distribution signal model. Ultrason Imaging, 16:265–287

    Google Scholar 

  • Dutt V, Greenleaf JF (1995) Speckle analysis using signal to noise ratios based on fractional order moments. Ultrason Imaging, 17:251–268

    Google Scholar 

  • Faran JJ (1951) Sounds scattering by solid cylinders and spheres. J Acoust Soc Am, 23:405–418

    Google Scholar 

  • Gerig A, Zagzebski J, Varchese T (2003) Statistics of ultrasonic scatterer size estimation with a reference phantom. J Acoust Soc Am, 113:3430–3437

    Google Scholar 

  • Gerig AL, Varghese T, Zagzebski JA (2004) Improved parametric imaging of scatterer size estimates using angular compounding. IEEE Trans Ultrason, Ferroelect, Freq Contr, 51:708–715

    Google Scholar 

  • Herd MT, Hall TJ, Jiang J, Zagzebski JA (2011) Improving the statistics of quantitative ultrasound techniques with deformation compounding: an experimental study. Ultrasound Med Biol, 37:2066–2074

    Google Scholar 

  • Hruska DP (2009a) Improved techniques for statistical analysis of the envelope of backscattered ultrasound using the homodyne K distribution. M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  • Hruska DP, Oelze ML (2009b) Improved parameter estimates based on the homodyne K distribution. IEEE Trans Ultrason, Ferroelect, Freq Contr, 56:2471–2481

    Google Scholar 

  • Huisman HJ, Thijssen JM (1996) Precision and accuracy of acoustospectographic parameters. Ultrasound Med Biol, 22:855–871

    Google Scholar 

  • Insana MF (1995) Modeling acoustic backscatter from kidney microstructure using and anisotropic correlation function. J Acoust Soc Am, 97:649–655

    Google Scholar 

  • Insana MF, Hall TJ (1990a) Parametric ultrasound imaging from backscatter. Ultrason Imaging, 12:245–267

    Google Scholar 

  • Insana MF, Wagner RF, Brown DG, Hall TJ (1990b) Describing small-scale structure in random media using pulse-echo ultrasound. J Acoust Soc Am, 87:179–192

    Google Scholar 

  • Lavarello RJ, Sanchez JR, Oelze ML (2008) Improving the quality of QUS imaging using full angular spatial compounding. In: Proceedings 2008 IEEE Ultrasonics Symposium, pp 32–35

    Google Scholar 

  • Lizzi FL, Ostromogilsky M, Feleppa EJ, Rorke MC, Yaremko MM (1987) Relationship of ultrasonic spectral parameters to features of tissue microstructure. IEEE Trans Ultrason, Ferroelect, Freq Contr, 34:319–329

    Google Scholar 

  • Lizzi FL, Astor M, Feleppa EJ, Shao M, Kalisz A (1997a) Statistical framework for ultrasonic spectral parameter imaging. Ultrasound Med Biol, 23:1371–1382

    Google Scholar 

  • Lizzi FL, Feleppa EJ, Astor M, Kalisz A (1997b) Statistics of ultrasonic spectral parameters for prostate and liver examinations. IEEE Trans Ultrson, Ferroelec, Freq Contr, 44:935–942

    Google Scholar 

  • Lizzi FL, Alam SK, Mikaelian S, Lee P, Feleppa EJ (2006) On the statistics of ultrasonic spectral parameters. Ultrasound Med Biol, 32:1671–1685

    Google Scholar 

  • Oelze ML, O’Brien Jr WD (2002) Method of improved scatterer size estimation and application Method of improved scatterer size estimation and application. J Acoust Soc Am, 112:3053–3063

    Google Scholar 

  • Oelze ML, O’Brien Jr WD (2004a) Improved scatterer property estimates from ultrasound backscatter for small gate lengths using a gate-edge correction factor. J Acoust Soc Am, 116:3212–3223

    Google Scholar 

  • Oelze ML, O’Brien Jr. WD (2004b) Defining optimal axial and lateral resolution for estimating scatterer properties from volumes using ultrasound backscatter. J Acoust Soc Am, 115:3226–3234

    Google Scholar 

  • Oelze ML, Zachary JF, Obrien JR WD (2002) Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor. J Acoust Soc Am, 112:1202–1211

    Google Scholar 

  • Papoulis A (1991) Probability, random variables, and stochastic processes. Mcgraw-Hill, New York

    Google Scholar 

  • Slepian J (1978) Prolate spheroidal wave-functions, Fourier-analysis, and uncertainty. V. The discrete case. Bell Syst Tech J, 57:1371–1430

    Google Scholar 

  • Thomson DJ (2001) Multi-taper analysis of nonstationary and nonlinear. In: Fitzgerald R, Smith R, Walden A, Young P, Nonlinear and nonstationary signal processing. Cambridge University Press, Cambridge

    Google Scholar 

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust, 15:70–73

    Google Scholar 

  • Weng L, Reid JM, Shankar PM, Soetanto K (1991) Ultrasound speckle analysis based on the K distribution. J Acoust Soc Am, 89:2992–2995

    Google Scholar 

  • Wu L, Zagzebski JA (2010) Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations. IEEE Trans Ultrason, Ferroelect, Freq Contr, 57:340–352

    Google Scholar 

  • Yao LY, Zagzebski JA, Madsen EL (1991) Statistical uncertainty in ultrasonic backscatter and attenuation coefficients determined with a reference phantom. Ultrasound Med Biol, 17:187–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Oelze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oelze, M.L. (2013). Statistics of Scatterer Property Estimates. In: Mamou, J., Oelze, M. (eds) Quantitative Ultrasound in Soft Tissues. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6952-6_3

Download citation

Publish with us

Policies and ethics