Skip to main content

Recent Applications of Acoustic Microscopy for Quantitative Measurement of Acoustic Properties of Soft Tissues

  • Chapter
  • First Online:
Quantitative Ultrasound in Soft Tissues

Abstract

High resolution biomedical imaging using high frequency ultrasound is possible because both wavelength and beamwidth are inversely proportional to ultrasonic frequency. Scanning acoustic microscopy (SAM) uses 100 MHz or higher frequency ultrasound. The spatial resolution achieved by a 100 MHz and 1 GHz ultrasound SAM are 15 and 1.5 μm, respectively. This level of detail enables cellular imaging. There are three unique features of SAM compared with other microscopy modalities such as optical, electron and atomic force microscopy. First, SAM can be applied for easy and simple histopathological examinations because it does not require special staining techniques. The contrast observed in SAM images depends on the acoustic properties (i.e., density, stiffness, and attenuation) and on the topographic contour of the tissue. Second, microscopic acoustic properties obtained with high frequency ultrasound can be used for assessing echo intensity and texture in clinical echography with lower frequency ultrasound. Third, SAM data can provide the basic data for assessing biomechanics of tissues and cells. Ultrasound is transmitted through a coupling medium and focused on the surface of the substrate. Transmitted ultrasound is reflected at both the surface of the biological material and the interface between the biological material and the substrate. The transducer receives the sum of these two reflections. The interference of these two reflections is determined by acoustic properties of the biological material. The interference signal as a function of the frequency depends on the thickness and sound speed of the sample. The interference signal as a function of the intensity depends on the amplitude of the surface reflection and attenuation of ultrasound propagating through the tissue. For bone, cartilage, tendon and cardiovascular tissues, microacoustic properties can provide important information on biomechanical properties. Biomechanic evaluation of these tissues is especially important for assessing the pathophysiology. Cells are considered to consist of viscoelastic materials and SAM has provided information on viscosity by ultrasonic attenuation estimates and information on elasticity by sound speed estimates. Instead of stretching cells or using atomic force microscopy for measuring biomechanical properties, SAM can be used to measure precise mechanical property distributions without contact to the cells. Thus, SAM provides a new paradigm of pathology that is based on the mechanical properties of is the object being imaged. Recent developments such as ultrasound speed microscopy, 3D ultrasound microscopy and high frequency array transducers may provide a clinically applicable SAM in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando A, Suda H, Hagiwara Y, Onoda Y, Chimoto E, Saijo Y, Itoi E (2011) Reversibility of immobilization-induced articular cartilage degeneration after remobilization in rat knee joints. Tohoku J Exp Med 224(2):77–85

    Article  PubMed  Google Scholar 

  • Bereiter-Hahn J (1985) Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheor 34(2–4):139–148

    Article  PubMed  CAS  Google Scholar 

  • Bereiter-Hahn J, Lüers H (1998) Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion. Cell Biochem Biophys 29(3):243–262

    Article  PubMed  CAS  Google Scholar 

  • Brand S, Weiss EC, Lemor RM, Kolios MC (2008) High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound Med Biol 34(9):1396–1407

    Article  PubMed  Google Scholar 

  • Briggs GA, Wang J, Gundle R (1993) Quantitative acoustic microscopy of individual living human cells. J Microsc 172(Pt 1):3–12

    Article  PubMed  CAS  Google Scholar 

  • Chandraratna PA, Whittaker P, Chandraratna PM, Gallet J, Kloner RA, Hla A (1997) Characterization of collagen by high-frequency ultrasound: evidence for different acoustic properties based on collagen fiber morphologic characteristics. Am Heart J 133(3):364–368

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara Y, Saijo Y, Ando A, Chimoto E, Suda H, Onoda Y, Itoi E (2009a) Ultrasonic intensity microscopy for imaging of living cells. Ultrasonics 49(3):386–388

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara Y, Ando A, Chimoto E, Saijo Y, Ohmori-Matsuda K, Itoi E (2009b) Changes of articular cartilage after immobilization in a rat knee contracture model. J Orthop Res 27(2):236–242

    Article  PubMed  Google Scholar 

  • Hildebrand JA, Rugar D, Johnston RN, Quate CF (1981) Acoustic microscopy of living cells. Proc Natl Acad Sci USA 78(3):1656–1660

    Article  PubMed  CAS  Google Scholar 

  • Johnston RN, Atalar A, Heiserman J, Jipson V, Quate CF (1979) Acoustic microscopy: resolution of subcellular detail. Proc Natl Acad Sci USA 76(7):3325–3329

    Article  PubMed  CAS  Google Scholar 

  • Kessler LW, Fields SI, Dunn F (1974) Acoustic microscopy of mammalian kidney. J Clin Ultrasound 2(4):317–320

    Article  PubMed  CAS  Google Scholar 

  • Lemons RA, Quate CF (1975) Acoustic microscopy: biomedical applications. Science 188(4191):905–911

    PubMed  CAS  Google Scholar 

  • Litniewski J, Bereiter-Hahn J (1990) Measurements of cells in culture by scanning acoustic microscopy. J Microsc 158(Pt 1):95–107

    Article  PubMed  CAS  Google Scholar 

  • Lythall DA, Bishop J, Greenbaum RA, Ilsley CJ, Mitchell AG, Gibson DG, Yacoub MH (1993) Relationship between myocardial collagen and echo amplitude in non-fibrotic hearts. Eur Heart J 14(3):344–350

    Article  PubMed  CAS  Google Scholar 

  • Mikhailov IG, Soloviev VA, Syrnikov YP (1964) Basics of molecular acoustics. Khimia Publications, Moscow

    Google Scholar 

  • Saijo Y (2009) Acoustic microscopy: latest developments and applications. Imaging Med 1(1):47–63

    Article  Google Scholar 

  • Saijo Y, Tanaka M, Okawai H, Dunn F (1991) The ultrasonic properties of gastric cancer tissues obtained with a scanning acoustic microscope system. Ultrasound Med Biol 17(7):709–714

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Tanaka M, Okawai H, Sasaki H, Nitta SI, Dunn F (1997) Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic microscopy. Ultrasound Med Biol 23(1):77–85

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Ohashi T, Sasaki H, Sato M, Jorgensen CS, Nitta S (2001a) Application of scanning acoustic microscopy for assessing stress distribution in atherosclerotic plaque. Ann Biomed Eng 29(12):1048–1053

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Jørgensen CS, Falk E (2001b) Ultrasonic tissue characterization of collagen in lipid-rich plaques in apoE-deficient mice. Atherosclerosis 158(2):289–295

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Jørgensen CS, Mondek P, Sefránek V, Paaske W (2002) Acoustic inhomogeneity of carotid arterial plaques determined by GHz frequency range acoustic microscopy. Ultrasound Med Biol 28(7):933–937

    Article  PubMed  Google Scholar 

  • Saijo Y, Santos Filho E, Sasaki H, Yambe T, Tanaka M, Hozumi N, Kobayashi K, Okada N (2007) Ultrasonic tissue characterization of atherosclerosis by a speed-of-sound microscanning system. IEEE Trans Ultrasound Ferroelectr Freq Control 54(8):1571–1577

    Article  Google Scholar 

  • Sano H, Saijo Y, Kokubun S (2006) Non-mineralized fibrocartilage shows the lowest elastic modulus in the rabbit supraspinatus tendon insertion: measurement with scanning acoustic microscopy. J Shoulder Elbow Surg 15(6):743–749

    Article  PubMed  Google Scholar 

  • Sasaki H, Tanaka M, Saijo Y, Okawai H, Terasawa Y, Nitta S, Suzuki K (1996) Ultrasonic tissue characterization of renal cell carcinoma tissue. Nephron 74(1):125–130

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Saijo Y, Tanaka M, Nitta S, Yambe T, Terasawa Y (1997a) Characterization of renal angiomyolipoma by scanning acoustic microscopy. J Pathol 181(4):455–461

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Saijo Y, Tanaka M, Nitta S, Terasawa Y, Yambe T, Taguma Y (1997b) Acoustic properties of dialysed kidney by scanning acoustic microscopy. Nephrol Dial Transplant 12(10):2151–2154

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Bing H, Sugawara T, Matsuda Y, Tabata T, Hoshikawa Y, Saijo Y, Kondo T (2004) Paclitaxel prevents loss of pulmonary endothelial barrier integrity during cold preservation. Transplantation 78(4):524–529

    Article  PubMed  CAS  Google Scholar 

  • Tabel GM, Whittaker P, Vlachonassios K, Sonawala M, Chandraratna PA (2006) Collagen fiber morphology determines echogenicity of myocardial scar: implications for image interpretation. Echocardiography 23(2):103–107

    Article  PubMed  Google Scholar 

  • Taggart LR, Baddour RE, Giles A, Czarnota GJ, Kolios MC (2007) Ultrasonic characterization of whole cells and isolated nuclei. Ultrasound Med Biol 33(3):389–401

    Article  PubMed  Google Scholar 

  • Tanaka M, Neyazaki T, Kosaka S, Sugi H, Oka S, Ebina T, Terasawa Y, Unno K, Nitta K (1971) Ultrasonic evaluation of anatomical abnormalities of heart in congenital and acquired heart diseases. Br Heart J 33(5):686–698

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Nitta S, Nitta K, Sogo Y, Yamamoto A, Katahira Y, Sato N, Ohkawai H, Tezuka F (1985) Non-invasive estimation by cross sectional echocardiography of myocardial damage in cardiomyopathy. Br Heart J 53(2):137–152

    Article  PubMed  CAS  Google Scholar 

  • Uusimaa P, Risteli J, Niemelä M, Lumme J, Ikäheimo M, Jounela A, Peuhkurinen K (1997) Collagen scar formation after acute myocardial infarction: relationships to infarct size, left ventricular function, and coronary artery patency. Circulation 96(8):2565–2572

    Article  PubMed  CAS  Google Scholar 

  • Veselý P, Lücers H, Riehle M, Bereiter-Hahn J (1994) Subtraction scanning acoustic microscopy reveals motility domains in cells in vitro. Cell Motil Cytoskelet 29(3):231–240

    Article  Google Scholar 

  • Weiss EC, Lemor RM, Pilarczyk G, Anastasiadis P, Zinin PV (2007a) Imaging of focal contacts of chicken heart muscle cells by high-frequency acoustic microscopy. Ultrasound Med Biol 33(8):1320–1326

    Article  PubMed  Google Scholar 

  • Weiss EC, Anastasiadis P, Pilarczyk G, Lemor RM, Zinin PV (2007b) Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy. IEEE Trans Ultrason Ferroelectr Freq Control 54(11):2257–2271

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Saijo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saijo, Y. (2013). Recent Applications of Acoustic Microscopy for Quantitative Measurement of Acoustic Properties of Soft Tissues. In: Mamou, J., Oelze, M. (eds) Quantitative Ultrasound in Soft Tissues. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6952-6_12

Download citation

Publish with us

Policies and ethics