Nanomechanical Properties and Deformation Mechanism in Metals, Oxides and Alloys

  • Elias P. Koumoulos
  • Dimitrios A. Dragatogiannis
  • Constantinos A. Charitidis
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 203)


Metals, oxides and alloys are widely used in transport and industry-engineering applications, due to their functionality. In this work, the nanomechanical properties (namely hardness and elastic modulus) and nanoscale deformation of metals, oxides and alloys (elastic and plastic deformation at certain applied loads) are investigated, together with pile-up/sink-in deformation mechanism analysis, subjected to identical condition parameters, by a combined Nanoindenter—Scanning Probe Microscope system. The study of discrete events including the onset of dislocation plasticity is recorded during the nanoindentation test (extraction of high-resolution load–displacement data). A yield-type pop-in occurs upon low applied load representing the start of phase transformation, monitored through a gradual slope change in the load–displacement curve. The ratio of surface hardness to hardness in bulk is investigated, revealing a clear higher surface hardness than bulk for magnesium alloys, whereas lower surface hardness than bulk for aluminium alloys; for metals and oxides, the behavior varied. The deviation from the case of Young’s modulus being equal to reduced modulus is analyzed, for all three categories of materials, along with pile-up/sink in deformation mechanism. Evidence of indentation size effect is found and quantified for all three categories of materials.


Indentation Depth Indentation Size Effect Indentation Modulus Nanomechanical Property High Applied Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the EU FP7 Project “Micro and Nanocrystalline Functionally Graded Materials for Transport Applications” (MATRANS) under Grant Agreement no. 228869 and partially supported by NTUA funded project for basic research PEVE-NTUA-2010/65187900.


  1. Aifantis KE, Konstantinidis AA (2009) Hall-Petch revisited at the nanoscale. Mater Sci Eng, B 163:139–144CrossRefGoogle Scholar
  2. Barrett CR, Nix WD, Tetelman AS (1973) The principles of engineering materials. Printice-Hall Incorporation, New JerseyGoogle Scholar
  3. Bei H, George EP, Hay JL, Pharr GM (2005) Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys Rev Lett 95(045501):1–4Google Scholar
  4. Bei H, Gao YF, Shim S, George EP, Pharr GM (2008) Strength differences arising from homogeneous versus heterogeneous dislocation nucleation. Phys Rev B 77(6060103):1–4Google Scholar
  5. Bridgman PW (1949) The physics of high pressure. Bell, LondonGoogle Scholar
  6. Callister WD (1990) Materials science and engineering. Wiley, New YorkGoogle Scholar
  7. Cavaliere P (2009) Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int J Fatigue 31(10):1476–1489CrossRefGoogle Scholar
  8. Charitidis CA (2010) Nanomechanical and nanotribological properties of carbon-based thin films: A review. Int J Refract Metal Hard Mater 28(1):51–70CrossRefGoogle Scholar
  9. Charitidis CA, Dragatogiannis DA, Koumoulos EP, Kartsonakis IA (2012) Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation. Mater Sci Eng, A 540:226–234CrossRefGoogle Scholar
  10. Cheng YT, Cheng CM (1998) Relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett 73(5):614–616CrossRefGoogle Scholar
  11. Cheng YT, Li Z, Cheng CM (2002) Scaling relationships for indentation measurements. Philos Mag A 82(10):1822–1829CrossRefGoogle Scholar
  12. Chiu YL, Ngan AHW (2002) Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater 50(6):1599–1611CrossRefGoogle Scholar
  13. Cottrell AH (1953) Dislocations and plastic flow in crystals. Clarendon, OxfordzbMATHGoogle Scholar
  14. Cottrell AH (1990) Advances in physical metallurgy, In: Charles JA, Smith GC (eds) Institute of metals, LondonGoogle Scholar
  15. Domnich V, Gogotsi Y (2002) Phase transformations in silicon under contact loading. Rev Adv Mater Sci 3:1–36CrossRefGoogle Scholar
  16. Fischer-Cripps AC (2004) A simple phenomenological approach to nanoindentation creep. Mater Sci Eng A 385(1–2):74–82Google Scholar
  17. Gaillard Y, Tromas C, Woirgard J (2006) Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Mater 54:1409–1417CrossRefGoogle Scholar
  18. Ge D, Domnich V, Juliano T, Stach EA, Gogotsi Y (2004) Structural damage in boron carbide under contact loading. Acta Mater 52:3921–3927CrossRefGoogle Scholar
  19. Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Indentation induced dislocation nucleation: the initial yield point. Acta Mater 44(9):3585–3598CrossRefGoogle Scholar
  20. Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48(1):1–29CrossRefGoogle Scholar
  21. Gogotsi YG, Domnich V, Dub SN, Kailer A, Nickel KG (2000) Cyclic nanoindentation and raman microspectroscopy study of phase transformations in semiconductor. J Mater Res 15:871–879CrossRefGoogle Scholar
  22. Göken M, Kempf M, Nix WD (2001) Hardness and modulus of the lamellar microstructure in PST-TiAl studied by nanoindentations and AFM. Acta Mater 49(5):901–903CrossRefGoogle Scholar
  23. Greaves GN, Meneau F, Kargl F, Ward D, Holliman P, Albergamo F (2007) Zeolite collapse and polymorphism. J Phys: Condens Matt 19(41):415102 1–17Google Scholar
  24. Greaves GN, Wilding MC, Fearn S, Langstaff D, Kargl F, Cox S, Van QV, Majérus O, Benmore CJ, Weber R, Martin CM, Hennet L (2008) Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science 322:566–570CrossRefGoogle Scholar
  25. Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837CrossRefGoogle Scholar
  26. Grima JN, Jackson R, Alderson A, Evans KE (2000) Do Zeolites have negative poisson’s ratios. Adv Mater B 12(24):1912–1917CrossRefGoogle Scholar
  27. Hertz H (1986) Miscellaneous papers. Macmillan, LondonGoogle Scholar
  28. Hill R, Storåkers B, Zdunek AB (1989) A theoretical study of the brinell hardness test. Proc Royal Soc London A 423(1865):301–330zbMATHCrossRefGoogle Scholar
  29. Jang JI, Lance MJ, Wen SQ, Tsui TY, Pharr GM (2005) Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behaviour. Acta Mater 53(6):1759–1770CrossRefGoogle Scholar
  30. Jensen BJ, Cherne FJ, Cooley JC, Zhernokletov MV, Kovalev AE (2010) Shock melting of cerium. Phys Rev B 81(21):214109 1–8Google Scholar
  31. Jiang MQ, Dai LH (2010) Short-range-order effects on intrinsic plasticity of metallic glasses. Philos Mag Lett 90(4):269–277CrossRefGoogle Scholar
  32. Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18:115–126CrossRefGoogle Scholar
  33. Juliano T, Gogotsi Y, Domnich V (2003) Effect of indentation unloading conditions on phase transformation induced events in silicon. J Mater Res 18(05):1192–1201CrossRefGoogle Scholar
  34. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58(17):11085–11088CrossRefGoogle Scholar
  35. Kelly A, Tyson WR, Cottrell AH (1967) Ductile and brittle crystals. Phil Mag 15:567–586CrossRefGoogle Scholar
  36. Kese K, Li ZC (2006) Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter. Scripta Mater 55:699–702CrossRefGoogle Scholar
  37. Khan MK, Hainsworth SV, Fitzpatrick ME, Edwards L (2010) A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation. Comput Mater Sci 49:4751–4760CrossRefGoogle Scholar
  38. Kolemen U (2006) Analysis of ISE in micro hardness measurements of bulk MgB2 superconductors using different models. J Alloy Compd 425:429–435CrossRefGoogle Scholar
  39. Kumar KS, Swygenhoven HV, Suresh S (2003) Mechanical behaviour of nanocrystalline metals and alloys. Acta Mater 51(19):5743–5774CrossRefGoogle Scholar
  40. Lakes RS, Wineman A (2006) On Poisson’s ratio in linearly viscoelastic solids. J Elast 85(1):45–63MathSciNetzbMATHCrossRefGoogle Scholar
  41. Ledbetter HM (1977) Ratio of the shear and Young’s moduli for polycrystalline metallic elements. Mater Sci Eng 27(2):133–135CrossRefGoogle Scholar
  42. Lee YH, Baek U, Kim YI, Nahm SH (2007) On the measurement of pile-up corrected hardness based on the early Hertzian loading analysis. Mater Lett 61(19–20):4039–4042CrossRefGoogle Scholar
  43. Leipner HS, Lorenz D, Zecker A, Lei H, Grau P (2001) Nanoindentation pop-in effect in semiconductors. Phys B 308–310:446–449CrossRefGoogle Scholar
  44. Li H, Ghosh A, Han YH, Bradt RC (1993) The Frictional Component of the Indentation Size Effect in Low Hardness Testing. Journal of Materials Research 8(5):1028–1032Google Scholar
  45. Li J, Vliet KJV, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418:307–310CrossRefGoogle Scholar
  46. Lim YY, Chaudhri MM (1999) The effect of the indenter load on the nano hardness of ductile metals: an experimental study on polycrystalline work-hardened and annealed oxygen-free copper. Philos Mag A 79:2979–3000CrossRefGoogle Scholar
  47. Loerting T, Giovambattista N (2006) Amorphous ices: experiments and numerical simulations. J Phys Condens Matt 18: R919–R977Google Scholar
  48. Lu H, Zhang X, Krauss WG (1997) Uniaxial, shear, and Poisson relaxation and their conversion to bulk relaxation: studies on poly (methyl methacrylate). Polym Eng Sci 37:1053–1064CrossRefGoogle Scholar
  49. Maneiro MAG, Rodriguez J (2005) Pile up effect on nanoindentation tests with spherical-conical tips. Scripta Mater 52:593–598CrossRefGoogle Scholar
  50. Mason JK, Lund AC, Schuh CA (2006) Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys Rev B 73(054102):1–15Google Scholar
  51. Masumura RA, Hazzledine PM, Pande CS (1998) Yield stress of fine grained materials. Acta Mater 46(13):4527–4534CrossRefGoogle Scholar
  52. Navamathavan R, Park SJ, Hahn JH, Choi CK (2008) Nanoindentation ‘pop-in’ phenomenon in epitaxial ZnO thin films on sapphire substrates. Mater Charact 59:359–364CrossRefGoogle Scholar
  53. Navarro V, de la Fuente OR, Mascaraque A, Rojo JM (2008) Plastic properties of gold surfaces nanopatterned by ion beam sputtering. Phys Rev Lett B 78(224023):1–14Google Scholar
  54. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425zbMATHCrossRefGoogle Scholar
  55. Nix WD, Greer JR, Feng G, Lilleodden ET (2007) Deformation at the nanometer and micrometer length scales: effects of strain gradients and dislocation starvation. Thin Solid Films 515(6):3152–3157CrossRefGoogle Scholar
  56. Norbury AL, Samuel T (1928) The recovery and sinking-in or piling-up of material in the brinell test, and the effects of these factors on the correlation of the brinell with certain other hardness tests. J Iron Steel Ind 117:673–687Google Scholar
  57. Ogata S, Li J, Hirosaki N, Shibutani Y, Yip S (2004) Ideal shear strain of metals and ceramics. Phys Rev B 70:104104CrossRefGoogle Scholar
  58. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  59. Peng Z, Gong J, Miao H (2004) On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data. J Eur Ceram Soc 24:2193–2201CrossRefGoogle Scholar
  60. Perottoni CA, Jornada JAHDa (2002) First-principles calculation of the structure and elastic properties of a 3D-polymerized fullerite. Phys Rev B 65(224208):1–6Google Scholar
  61. Phani KK, Sanyal D (2008) The relations between the shear modulus, the bulk modulus and Young’s modulus for porous isotropic ceramic materials. Mat Sci Eng, A 490(1–2):305–312CrossRefGoogle Scholar
  62. Poole PH, Grande T, Angell CA, McMillan PE (1997) Polymorphism in liquids and glasses. Science 275:322–323CrossRefGoogle Scholar
  63. Rabkin E, Deuschle JK, Baretzky B (2010) On the nature of displacement bursts during nanoindentation of ultrathin Ni films on sapphire. Acta Mater 58:1589–1598CrossRefGoogle Scholar
  64. Rar A, Sohn S, Oliver WC, Goldsby DL, Tullis TE, Pharr GM (2005) On the measurement of creep by nanoindentation with continuous stiffness techniques. In: Abstracts of symposium on fundamentals of nanoindentation and nanotribology III, Boston, Massachusetts, U.S.A November 29–December 3Google Scholar
  65. Rhee YW, Kim HW, Deng Y, Lawn BR (2001) Brittle fracture versus quasiplasticity in ceramics: a simple predictive index. J Am Ceramic Soc 84:561–565CrossRefGoogle Scholar
  66. Rodriguez R, Gutierrez I (2003) Correlation between nanoindentation and tensile properties: influence of the indentation size effect. Mater Sci Eng, A 361(1–2):377–384Google Scholar
  67. Rosenhain W, Ewen D (1913) The intercrystalline cohesion of metals. J Inst Metals 10:119–148Google Scholar
  68. Sahin O, Uzun O, Kolemen U, Ucar N (2007) Mechanical characterization for β-Sn single crystals using nanoindentation tests. Mater Charact 59(4):427–434CrossRefGoogle Scholar
  69. Samuels LE (1989) ASTM STP 889, American society for testing and materials, Philadelphia, 1986, p 5Google Scholar
  70. Sangwal K (2000) On the reverse indentation size effect and micro hardness measurement of solids. Mater Chem Phys 63:145–152CrossRefGoogle Scholar
  71. Santamaria-Perez D, Ross M, Errandonea D, Mukherjee GD, Mezouar M, Boehler R (2009) X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram. J Chem Phys 130(124509):1–8Google Scholar
  72. Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9(5):32–39CrossRefGoogle Scholar
  73. Schuh CA, Lund AC (2004) Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J Mater Res 19(07):2152–2158CrossRefGoogle Scholar
  74. Schuh CA, Mason JK, Lund AC (2005) Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat Mater 4(8):617–621CrossRefGoogle Scholar
  75. Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater 51(17):5159–5172CrossRefGoogle Scholar
  76. Sevillano JG, Buessler P, Vrieze J, Kaluza W, Bouaziz O, Iung T, Bonifaz E, Meizoso AM, Martinez Esnaola JM, Ocaña I (2000) ECSC Steel RTD Final report, CECA7210-PR-044Google Scholar
  77. Sneddon IN (1948) Boussinesq’s problem for a rigid cone. Math Proc Cambridge 44:492–507MathSciNetzbMATHCrossRefGoogle Scholar
  78. Swadener JG, George EP, Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50(4):681–694zbMATHCrossRefGoogle Scholar
  79. Taljat B, Pharr GM (2000) Measurement of residual stresses by load and depth sensing spherical indentation. Mater Res Symp Proc 594:519–524CrossRefGoogle Scholar
  80. Tromas C, Gaillard Y (2004) Encyclopedia of materials science and technology. Elsevier Science, AmsterdamGoogle Scholar
  81. Valle CS, Lethbridge ZAD, Sinogeikin SV, Williams JJ, Walton R I, Evans KE, Bass JD (2008) Negative Poisson’s ratios in siliceous zeolite MFI-silicalite. J Chem Phys 128(18): 184503 1–5Google Scholar
  82. Venkataraman S, Kohlstedt DL, Gerberich WW (1992) Microscratch analysis of the work of adhesion for Pt thin films on NiO. Mater Res 7:1126–1132CrossRefGoogle Scholar
  83. Vlassak JJ, Nix WD (1994) Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42(8):1223–1245CrossRefGoogle Scholar
  84. Vliet KJV, Li J, Zhu T, Yip S, Suresh S (2003) Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys Rev B 67(104105):1–15Google Scholar
  85. Williams JA (1994) Engineering tribology. Oxford University Press, OxfordGoogle Scholar
  86. Wo PC, Zuo L, Ngan AHW (2005) Time-dependent incipient plasticity inNi3Al as observed in nanoindentation. J Mater Res 20:489–495CrossRefGoogle Scholar
  87. Xi XK, Zhao DQ, Pan MX, Wang WH, Wu Y, Lewandowski JJ (2005) Fracture of brittle metallic glasses: brittleness or plasticity. Phys Rev Lett 94(12):125510 1–4Google Scholar
  88. Zha CS, Hemley RJ, Mao HK, Duffy TS, Meade C (1994) Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B 50:13105–13112CrossRefGoogle Scholar
  89. Zhang SB, Cohen ML, Louie SG (1985) Interface potential changes and Schottky barriers. Phys Rev B 32(3955):3955–3957CrossRefGoogle Scholar
  90. Zhang H, Srolovitz DJ, Douglas JF, Warren JA (2009) Grain boundaries exhibit the dynamics of glass-forming liquids. In: Proceedings of the national academy science, 106:7735–7740, USAGoogle Scholar
  91. Zhou XY, Jiang ZD, Wang HR, Yu RX (2003) Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique. Mater Sci Eng, A 488(1–2):318–322Google Scholar
  92. Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Surface step effects on nanoindentation. Phys Rev Lett 87(16): 165507 1–4Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Elias P. Koumoulos
    • 1
  • Dimitrios A. Dragatogiannis
    • 1
  • Constantinos A. Charitidis
    • 1
  1. 1.School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations