Advertisement

Environmental Nanomechanical Testing of Polymers and Nanocomposites

  • Jian Chen
  • Ben D. Beake
  • Hanshan Dong
  • Gerard A. Bell
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 203)

Abstract

The ever-increasing popularity of nanomechanical testing is being accompanied by the development of more and more novel test techniques and adaptation of existing techniques to work in increasingly environmentally challenging test conditions. Considerable progress has been made and reliable mechanical properties of materials can now be obtained at a range of temperature and surrounding media, greatly aiding development for operation under these environmental conditions. In this chapter several of these developments are reviewed, focussing on their use in the non-ambient nanomechanical testing of polymers and nanocomposites.

Keywords

Strain Rate Sensitivity Prussian Blue Contact Stiffness Creep Compliance Ethylene Propylene Diene Monomer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Altaf K, Ashcroft IA, Hague R (2012) Modelling the effect of moisture on the depth sensing indentation response of a stereolithography polymer. Comput Mater Sci 52:112–117CrossRefGoogle Scholar
  2. Beake BD (2005) Evaluation of the fracture resistance of DLC coatings on tool steel under dynamic loading. Surf Coat Technol 198:90–93CrossRefGoogle Scholar
  3. Beake B (2006) Modelling indentation creep of polymers: a phenomenological approach. J Phys D Appl Phys 39:4478–4485CrossRefGoogle Scholar
  4. Beake BD (2010) Nanomechanical testing under nonambient conditions. American Scientific Publishers, Los AngelesGoogle Scholar
  5. Beake BD, Lau SP (2005) Nanotribological and nanomechanical properties of 5–80 nm tetrahedral amorphous carbon films on silicon. Diamond Relat Mater 14:1535–1542CrossRefGoogle Scholar
  6. Beake BD, Leggett GJ (2002) Nanoindentation and nanoscratch testing of uniaxially and biaxially drawn poly(ethylene terephthalate) film. Polymer 43:319–327CrossRefGoogle Scholar
  7. Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A 82:2179–2186CrossRefGoogle Scholar
  8. Beake BD, Smith JF (2004) Nano-impact testing—an effective tool for assessing the resistance of advanced wear-resistant coatings to fatigue failure and delamination. Surf Coat Technol 188–189:594–598CrossRefGoogle Scholar
  9. Beake BD, Leggett GJ, Alexander MR (2002a) Characterisation of the mechanical properties of plasma-polymerised coatings by nanoindentation and nanotribology. J Mater Sci 37:4919–4927CrossRefGoogle Scholar
  10. Beake BD, Zheng S, Alexander MR (2002b) Nanoindentation testing of plasma-polymerised hexane films. J Mater Sci 37:3821–3826CrossRefGoogle Scholar
  11. Beake BD, Shipway PH, Leggett GJ (2004) Influence of mechanical properties on the nanowear of uniaxially oriented poly(ethylene terephthalate) film. Wear 256:118–125CrossRefGoogle Scholar
  12. Beake BD, Bell GA, Brostow W et al (2007) Nanoindentation creep and glass transition temperatures in polymers. Polym Int 56:773–778CrossRefGoogle Scholar
  13. Beake BD, Goodes SR, Shi B (2009) Nanomechanical and nanotribological testing of ultra-thin carbon-based and MoST films for increased MEMS durability. J Phys D Appl Phys 42:065301Google Scholar
  14. Beake BD (2011) Nanomechanical testing under non-ambient conditions. In: Nalwa HS (ed) Encyclopedia of Nanoscience and Nanotechnology, 2nd edn. Vol. 18. American Scientific Publishers, Valencia, pp 115–120Google Scholar
  15. Bell GA, Bielinski DM, Beake BD (2008) Influence of water on the nanoindentation creep response of Nylon 6. J Appl Polym Sci 107:577–582CrossRefGoogle Scholar
  16. Bell GA, Chen J, Dong HS et al (2011) The design of a novel cryogenic nanomechanical and tribological properties instrumentation. Int Heat Treat Surf Eng 5:21–25Google Scholar
  17. Bermudez DM, Brostow W, Carrion-Vilches FJ et al (2005a) Wear of thermoplastics determined by multiple scratching. E-Polymers 001:1–9Google Scholar
  18. Bermudez MD, Brostow W, Carrion-Vilches FJ et al (2005b) Scratch velocity and wear resistance. E-Polymers 003:1–10Google Scholar
  19. Berthoud P, G’Sell C, Hiver JM (1999) Elastic-plastic indentation creep of glassy poly(methyl methacrylate) and polystyrene: characterization using uniaxial compression and indentation tests. J Phys D Appl Phys 32:2923–2932CrossRefGoogle Scholar
  20. Bower DI (2002) An introduction to polymer physics. Cambridge Univeristy Press, CambridgeCrossRefGoogle Scholar
  21. Briscoe BJ, Sinha SK (2003) Scratch resistance and localised damage characteristics of polymer surfaces—a review. Materialwiss Werkstofftech 34:989–1002CrossRefGoogle Scholar
  22. Brostow W, Cassidy PE, Macossay J et al (2003) Connection of surface tension with multiple tribological properties in epoxy plus fluoropolymer systems. Polym Inter 52:1498–1505CrossRefGoogle Scholar
  23. Brostow W, Clwnkaew W, Menard KP (2006) Connection between dynamic mechanical properties and sliding wear resistance of polymers. Mater Res Innovations 10:109Google Scholar
  24. Brostow W, Chonkaew W, Rapoport L et al (2007) Grooves in scratch testing. J Mater Res 22:2483–2487CrossRefGoogle Scholar
  25. Burris DL, Perry SS, Sawyer WG (2007) Macroscopic evidence of thermally activated friction with polytetrafluoroethylene. Tribol Lett 27:323–328CrossRefGoogle Scholar
  26. Casellas D, Caro J, Molas S et al (2007) Fracture toughness of carbides in tool steels evaluated by nanoindentation. Acta Mater 55:4277–4286CrossRefGoogle Scholar
  27. Chen J, Lu G (2012) Finite element modeling of nanoindentation based methods for mechanical properties of cells. J Biomec 45:2810–2816CrossRefGoogle Scholar
  28. Chen J, Bell GA, Dong HS et al (2010) A study of low temperature mechanical properties and creep behaviour of polypropylene using a new sub-ambient temperature nanoindentation test platform. J Phys D Appl Phys 43:425404CrossRefGoogle Scholar
  29. Chen J, Bell GA, Beake BD et al (2011) Low temperature nano-tribological study on a functionally graded tribological coating using nanoscratch tests. Tribol Lett 43:351–360CrossRefGoogle Scholar
  30. Chinh NQ, Gubicza J, Kovacs Z et al (2004) Depth-sensing indentation tests in studying plastic instabilities. J Mater Res 19:31–45CrossRefGoogle Scholar
  31. Chudoba T, Richter E (2001) Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148:191–198CrossRefGoogle Scholar
  32. Constantinides G, Kalcioglu ZI, McFarland M et al (2008a) Probing mechanical properties of fully hydrated gels and biological tissues. J Biomec 41:3285–3289CrossRefGoogle Scholar
  33. Constantinides G, Tweedie CA, Holbrook DM et al (2008b) Quantifying deformation and energy dissipation of polymeric surfaces under localized impact. Mater Sci Eng, A 489:403–412Google Scholar
  34. Dasari A, Yu ZZ, Mai YW (2009) Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater Sci Eng, R 63:31–80CrossRefGoogle Scholar
  35. Duan ZC, Hodge AM (2009) High-temperature nanoindentation: new developments and ongoing challenges. JOM 61:32–36CrossRefGoogle Scholar
  36. Everitt NM, Davies MI, Smith JF (2011) High temperature nanoindentation—the importance of isothermal contact. Philos Mag 91:1221–1244CrossRefGoogle Scholar
  37. Feng G, Ngan AHW (2002) Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res 17:660CrossRefGoogle Scholar
  38. Fink M, Fabing T, Scheerer M et al (2008) Measurement of mechanical properties of electronic materials at temperatures down to 4.2 K. Cryogenics 48:497–510CrossRefGoogle Scholar
  39. Fischer-Cripps AC (2006) Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Technol 200:4153–4165CrossRefGoogle Scholar
  40. Fox-Rabinovich GS, Beake BD, Endrino JL et al (2006) Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings. Surf Coat Technol 200:5738–5742CrossRefGoogle Scholar
  41. Gray A, Beake BD (2007) Elevated temperature nanoindentation and viscoelastic behaviour of thin poly(ethylene terephthalate) films. J Nanosci Nanotechnol 7:2530–2533CrossRefGoogle Scholar
  42. Gray A, Orecchia D, Beake BD (2009) Nanoindentation of advanced polymers under non-ambient conditions: creep modelling and tan delta. J Nanosci Nanotechnol 9:4514–4519CrossRefGoogle Scholar
  43. Hysitron (2012) Temperature control stages. http://hysitron.com/products/options-upgrades/temperature-control-stages. Accessed 22 Dec 2012
  44. Iwabuchi, A. and T. Shimizu, et al. (1996). The development of a Vickers-type hardness tester for cryogenic temperatures down to 4.2 K. Cryogenics 36: 75–81Google Scholar
  45. Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeGoogle Scholar
  46. Juliano TF, VanLandingham MR, Tweedie CA et al (2007) Multiscale creep compliance of epoxy networks at elevated temperatures. Exp Mech 47:99–105CrossRefGoogle Scholar
  47. Kalcioglu ZI, Qu M, Strawhecker KE et al (2011) Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels. Philos Mag 91:1339–1355CrossRefGoogle Scholar
  48. Kaufman JD, Klapperich CM (2009) Surface detection errors cause overestimation of the modulus in nanoindentation on soft materials. J Mech Behav Biomed Mater 2:312–317CrossRefGoogle Scholar
  49. Korte S, Stearn RJ, Wheeler JM et al (2012) High temperature microcompression and nanoindentation in vacuum. J Mater Res 27:167–176CrossRefGoogle Scholar
  50. Kranenburg JM, Tweedie CA, van Vliet KJ et al (2009) Challenges and progress in high-throughput screening of polymer mechanical properties by indentation. Adv Mater 21:3551–3561CrossRefGoogle Scholar
  51. Li XD, Gao HS, Scrivens WA et al (2004) Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15:1416–1423CrossRefGoogle Scholar
  52. Liu TX, Phang IY, Shen L et al (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222CrossRefGoogle Scholar
  53. Lu YC, Jones DC, Tandon GP et al (2010) High temperature nanoindentation of PMR-15 polyimide. Exp Mech 50:491–499CrossRefGoogle Scholar
  54. Mencik J, He LH, Swain MV (2009) Determination of viscoelastic-plastic material parameters of biomaterials by instrumented indentation. J Mech Behav Biomed Mater 2:318CrossRefGoogle Scholar
  55. MicroMaterials (2012) High and low temperature control. http://www.micromaterials.co.uk/the-nanotest/high-and-low-temperature-control. Accessed 22 Dec 2012
  56. Monclus MA, Jennett NM (2011) In search of validated measurements of the properties of viscoelastic materials by indentation with sharp indenters. Philos Mag 91:1308–1328CrossRefGoogle Scholar
  57. Ngan AHW, Tang B (2002) Viscoelastic effects during unloading in depth-sensing indentation. J Mater Res 17:2604–2610CrossRefGoogle Scholar
  58. Ngan AHW, Tang B (2009) Response of power-law-viscoelastic and time-dependent materials to rate jumps. J Mater Res 24:853–862CrossRefGoogle Scholar
  59. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRefGoogle Scholar
  60. Oyen ML (2005) Spherical indentation creep following ramp loading. J Mater Res 20:2094–2100CrossRefGoogle Scholar
  61. Oyen ML (2006) Analytical techniques for indentation of viscoelastic materials. Philos Mag 86:5625CrossRefGoogle Scholar
  62. Oyen ML (2007) Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater 55:3633CrossRefGoogle Scholar
  63. Oyen ML, Cook RF (2009) A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater 2:396–407CrossRefGoogle Scholar
  64. Phang IY, Liu TX, Mohamed A et al (2005) Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polym Inter 54:456–464CrossRefGoogle Scholar
  65. Round AN, Yan B, Dang S et al (2000) The influence of water on the nanomechanical behavior of the plant biopolyester cutin as studied by AFM and solid-state NMR. Biophys J 79:2761–2767CrossRefGoogle Scholar
  66. Sawant A, Tin S (2008) High temperature nanoindentation of a Re-bearing single crystal Ni-base superalloy. Scripta Mater 58:275–278CrossRefGoogle Scholar
  67. Schmidt DJ, Cebeci FC, Kalcioglu ZI et al (2009) Electrochemically controlled swelling and mechanical properties of a polymer nanocomposite. ACS Nano 3:2207–2216CrossRefGoogle Scholar
  68. Schuh CA, Mason JK, Lund AC et al (2005) High temperature nanoindentation for the study of flow defects. Fundamentals of Nanoindentation and Nanotribology III, BostonGoogle Scholar
  69. Shen L, Phang IY, Chen L et al (2004a) Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect Clay Loading Polym 45:3341–3349Google Scholar
  70. Shen L, Phang IY, Liu TX et al (2004b) Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect Strain Rate Polym 45:8221–8229Google Scholar
  71. Singh SP, Smith JF, Singh RP (2008) Characterization of the damping behavior of a nanoindentation instrument for carrying out dynamic experiments. Exp Mech 48:571–583CrossRefGoogle Scholar
  72. Sinha SK, Lim D (2006) Effects of normal load on single-pass scratching of polymer surfaces. Wear 260:751–765CrossRefGoogle Scholar
  73. Sneddon IN (1965) The relation between load and penetration in axisymmetric Boussinesq problem for punch of arbitrary profile. Int J Eng Sci 3:47–57MathSciNetCrossRefzbMATHGoogle Scholar
  74. Suzuki T, Ohmura T (1996) Ultra-microindentation of silicon at elevated temperatures. Philos Mag A 74:1073–1084CrossRefGoogle Scholar
  75. Tehrani M, Safdari M, Al-Haik MS (2011) Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast 27:887–901CrossRefzbMATHGoogle Scholar
  76. Tehrani M, Al-Haik M, Garmestani H et al (2012) Effect of moderate magnetic annealing on the microstructure, quasi-static, and viscoelastic mechanical behavior of a structural epoxy. J Eng, Mater Technol 134Google Scholar
  77. Tweedie CA, Van Vliet KJ (2006) Contact creep compliance of viscoelastic materials via nanoindentation. J Mater Res 21:1576–1589CrossRefGoogle Scholar
  78. Tweedie CA, Constantinides G, Lehman KE et al (2007) Enhanced stiffness of amorphous polymer surfaces under confinement of localized contact loads. Adv Mater 19:2540–2546CrossRefGoogle Scholar
  79. Xia J, Li CX, Dong H (2003) Hot-stage nano-characterisations of an iron aluminide. Mater Sci Eng, A 354:112–120CrossRefGoogle Scholar
  80. Xu GC, Li AY, De Zhang L et al (2004) Nanomechanic properties of polymer-based nanocomposites with nanosilica by nanoindentation. J Reinf Plast Compos 23:1365–1372Google Scholar
  81. Ye JP, Kojima N, Shimizu S et al (2005) High-temperature nanoindentation measurement for hardness and modulus evaluation of low-k films. Materials, Technology and Reliability for Advanced Interconnects, San FranciscoGoogle Scholar
  82. Yoshino Y, Iwabuchi A, Onodera R et al (2001) Vickers hardness properties of structural materials for superconducting magnet at cryogenic temperatures. Cryogenics 41:505–511CrossRefGoogle Scholar
  83. Zhu Y, Okui N, Tanaka T et al (1991) Low temperature properties of hard elastic polypropylene fibres. Polymer 32:2588–2593CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jian Chen
    • 1
  • Ben D. Beake
    • 2
  • Hanshan Dong
    • 3
  • Gerard A. Bell
    • 2
  1. 1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Micro Materials LtdWrexhamUK
  3. 3.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK

Personalised recommendations