Elastic–Plastic Behaviors of Vertically Aligned Carbon Nanotube Arrays by Large-Displacement Indentation Test

  • Y. Charles Lu
  • Johnson Joseph
  • Qiuhong Zhang
  • Feng Du
  • Liming Dai
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 203)

Abstract

This chapter describes the large-displacement indentation test method for examining elastic–plastic behaviors of vertically aligned carbon nanotube arrays (VA-CNTs). The principle of this test is explained by using a cavity expansion model. The experiments have been performed on VA-CNTs synthesized by the chemical vapor deposition (CVD) method. Under a cylindrical, flat indenter, the VA-CNTs exhibit two distinct deformation stages: a short, elastic deformation at small displacement and a plateau-like, plastic deformation at large displacement. The critical indentation stress, a measure of yield stress or collapsing stress of the VA-CNT arrays, has been obtained. The deformation mechanism of the VA-CNTs at large displacement is revealed with scanning electronic microscope (SEM) images of the deformed VA-CNTs and finite element simulations.

Keywords

Large Displacement Solid Polymer Equivalent Plastic Strain Plastic Collapse Indentation Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. ABAQUS (2010) ABAQUS Theory’ manual. Simulia Inc., PawtucketGoogle Scholar
  2. Bajpai V, Dai L, Ohashi T (2004) Large-scale synthesis of perpendicularly aligned helical carbon nanotubes. J Am Chem Soc 126:5070–5071CrossRefGoogle Scholar
  3. Barquins M, Maugis D (1982) Adhesive contact of axisymmetric punches on an elastic half-space-the modified Hertz-Hubers stress tensor for contacting spheres. J Mec Theo Appl 1:331–357MATHGoogle Scholar
  4. Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures. MRS Bull 32:328–332CrossRefGoogle Scholar
  5. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRefGoogle Scholar
  6. Cao A, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM (2005) Super-compressible foamlike carbon nanotube films. Science 310(5752):1307–1313CrossRefGoogle Scholar
  7. Chen H, Roy A, Baek JB, Zhu L, Qu J, Dai L (2010) Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Mater Sci Eng Rep 70:63–91CrossRefGoogle Scholar
  8. Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8(9):2762–2766CrossRefGoogle Scholar
  9. Cola BA (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transf 52(15–16):3490–3503CrossRefGoogle Scholar
  10. Deshpande VS, Fleck NA (2000) Isotropic constitutive model for metallic foams. J Mech Phys Solids 48:1253–1276MATHCrossRefGoogle Scholar
  11. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes. Springer, BerlinCrossRefGoogle Scholar
  12. Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283:512CrossRefGoogle Scholar
  13. Flores-Johnson EA, Li QM (2010) Indentation into polymeric foams. Int J Solids Struct 47:1987–1995MATHCrossRefGoogle Scholar
  14. Hone J, Whitney M, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Synth Met 103(1–3):2498–2499CrossRefGoogle Scholar
  15. Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotechnol 2(4):207–208CrossRefGoogle Scholar
  16. Hutchens SB, Hall LJ, Greer JR (2010) In situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles. Adv Funct Mater 20(14):2338–2346CrossRefGoogle Scholar
  17. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  18. Ishigami N, Ago H, Imamoto K, Tsuji M, Iakoubovskii K, Minami N (2008) Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. J Am Chem Soc 130(30):9918–9924CrossRefGoogle Scholar
  19. Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  20. Kreupl FGAP, Duesberg GS, Steinhogl W, Liebau M, Unger E, Honlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408CrossRefGoogle Scholar
  21. Krishnan A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B B(58):14013–14019CrossRefGoogle Scholar
  22. Liu Y, Qian WZ, Zhang Q, Cao AY, Li ZF, Zhou WP, Ma Y, Wei F (2008) Hierarchical agglomerates of carbon nanotubes as high-pressure cushions. Nano Lett 8:1323CrossRefGoogle Scholar
  23. Lo JCW, Lu YC, Shinozaki DM (2005) Kink band formation during microindentation of oriented polyethylene. Mater Sci Eng A 396(15):77–86Google Scholar
  24. Lu YC, Shinozaki DM (1998) Deep penetration microindentation testing of high density polyethylene. Mater Sci Eng A 249:134–144CrossRefGoogle Scholar
  25. Lu YC, Shinozaki DM (2008) Characterization and modeling of large displacement micro-/nano-indentation of polymeric solids. ASME J Eng Mater Technol 130:041001CrossRefGoogle Scholar
  26. Lu YC, Kurapati S, Yang F (2008) Finite element analysis of cylindrical indentation for determining plastic properties of materials in small volumes. J Phys D Appl Phys 41:115415CrossRefGoogle Scholar
  27. Lu YC, Joseph J, Zhang Q, Dai L, Baur J (2012) Large-displacement indentation of vertically aligned carbon nanotube arrays. Exp Mech 52(9):1551–1554CrossRefGoogle Scholar
  28. Maschmann MR, Zhang Q, Wheeler R, Du F, Dai L, Baur J (2011) In situ SEM observation of column-like and foam-like CNT array nanoindentation. ACS Appl Mater Interfaces 3:648–653CrossRefGoogle Scholar
  29. McCarter CM, Richards RF, Mesarovic SDJ, Richards CD, Bahr DF, McClain D, Jiao J (2006) Mechanical compliance of photolithographically defined vertically aligned carbon nanotube turf. J Mater Sci 41:7872–7878CrossRefGoogle Scholar
  30. Mesarovic SD, Fleck NA (1987) Spherical indentation of elastic-plastic solids. Proc R Soc Lond 455:2707–2728Google Scholar
  31. Mesarovic SD, McCarter CM, Bahr DF, Radhakrishnan H, Richards RF, Richards CD, McClain D, Jiao J (2007) Mechanical behavior of a carbon nanotube turf. Scripta Mater 56:157–160CrossRefGoogle Scholar
  32. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564CrossRefGoogle Scholar
  33. Olurin OB, Fleck NA, Ashby MF (2000) Indentation resistance of an aluminum foam. Script Mater 43:983–989CrossRefGoogle Scholar
  34. Park YJ, Pharr GM (2004) Nanoindentation with spherical indenters: finite element studies of deformation in the elastic-plastic transition regime. Thin Solid Films 447–448:246–250CrossRefGoogle Scholar
  35. Pathak S, Cambaz ZG, Kalidindi SR, Swadener JG, Gogotsi Y (2009) Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon 47(8):1969–1976CrossRefGoogle Scholar
  36. Patton ST, Zhang Q, Qu L, Dai L, Voevodin AA, Baur J (2009) Electromechanical characterization of carbon nanotube grown on carbon fibers. J Appl Phys 106:104313CrossRefGoogle Scholar
  37. Pop E, Mann D, Wang Q, Goodson K, Dai HJ (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100CrossRefGoogle Scholar
  38. Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI, Robertson J, Gleason KK (2003) Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J Mech Phys Solids 51:2213–2237CrossRefGoogle Scholar
  39. Qu L, Dai L, Stone M, Xia Z, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238CrossRefGoogle Scholar
  40. Riccardi B, Montanari R (2004) Indentation of metals by a flat-ended cylindrical punch. Mater Sci Eng A 381(1–2):281–291Google Scholar
  41. Sager RJ, Klein PJ, Lagoudas DC, Zhang Q, Liu J, Dai L, Baur JW (2009) Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos Sci Technol 69(7–8):898–904CrossRefGoogle Scholar
  42. Shinozaki DM, Lo JCW, Lu YC (2008) Depth-dependnet displacement modulated indentation in oriented polypropylene. Mater Sci Eng A 491:182–191CrossRefGoogle Scholar
  43. Sneddon IN (1946) Boussinesq’s problem for a flat-ended cylinder. Proc Cambridge Philos Soc 42:29MathSciNetMATHCrossRefGoogle Scholar
  44. Tabor D (1996) Indentation hardness: fifty years on a personal view. Philos Mag A 74:1207CrossRefGoogle Scholar
  45. Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K, Cheetham AK, Kroto HW, Walton DRM (1997) Controlled production of aligned-nanotube bundles. Nature 388:52CrossRefGoogle Scholar
  46. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRefGoogle Scholar
  47. Tu JP, Zhu LP, Hou K, Guo SY (2003) Synthesis and frictional properties of array film of amorphous carbon nanofibers on anodic aluminum oxide. Carbon 41:1257–1263CrossRefGoogle Scholar
  48. Tu JP, Jiang CX, Guo SY, Fu MF (2004) Micro-friction characteristics of aligned carbon nanotube film on an anodic aluminum oxide template. Mater Lett 58:1646–1649CrossRefGoogle Scholar
  49. Wilsea M, Johnson KL, Ashby MF (1975) Indentation of foamed plastics. Int J Mech Sci 17:457–460CrossRefGoogle Scholar
  50. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity strength and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRefGoogle Scholar
  51. Wright SC, Huang Y, Fleck NA (1992) Deep penetration of polycarbonate by a cylindrical punch. Mech Mater 13:277CrossRefGoogle Scholar
  52. Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nanotubes. Phys Rev Lett 84:2941–2944CrossRefGoogle Scholar
  53. Zhang Q, Liu J, Sager R, Dai L, Baur J (2009) Hierarchical composites of carbon nanotubes on carbon fiber: influence of growth condition on fiber tensile properties. Compos Sci Technol 69(5):594–601CrossRefGoogle Scholar
  54. Zhang Q, Lu YC, Du F, Dai L, Baur J, Foster DC (2010) Viscoelastic creep of vertically aligned carbon nanotubes. J Phys D: Appl Phys 43:315401CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Y. Charles Lu
    • 1
  • Johnson Joseph
    • 1
  • Qiuhong Zhang
    • 2
  • Feng Du
    • 3
  • Liming Dai
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.University of Dayton Research InstituteUniversity of DaytonDaytonUSA
  3. 3.Department of Macromolecular Science and EngineeringCase Western Reverse UniversityClevelandUSA

Personalised recommendations