Skip to main content

Research Methods for the Biotechnology of Lignocellulose

  • Chapter
  • First Online:

Abstract

Biotechnology for lignocellulose conversion is developed with its research and application. During this process, the research method plays an important role in discovering, exploring, and establishing theories. The research method for lignocellulose conversion is also necessary for industrialization testing and control. In this chapter, research methods for the biotechnology of lignocellulose are presented. According to the biological conversion process of lignocelluloses, research methods are classified into three types: research methods for primary refining, research methods for hydrolysis with microorganisms, and research methods for fermentation engineering. Finally, research methods for the whole biotransformation process are also summarized. In each part, the related research advances of my group are also given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen HZ, Wang L. Research progress on key process and integrated eco-industrial chains of biobased products—proposal of biobased product process engineering. Chin J Process Eng. 2008;8(4):676–81.

    Google Scholar 

  2. Sun DP. Grinder classification and application. Mech Electr Inform. 2004;12:48–49.

    Google Scholar 

  3. Li HP. Plant microscopy technique. Beijing: Science Press; 2009.

    Google Scholar 

  4. Compile Group of Paper Making. Pulp and paper manual, vol. 1. Beijing: Light Industry Press; 1987.

    Google Scholar 

  5. Shi SL, He FW. Analysis and detection for pulp and paper. Beijing: China Light Industry Press; 2003.

    Google Scholar 

  6. Li ZG. Cellulose physical chemistry. Beijing: China Financial and Economic Publishing House; 1965.

    Google Scholar 

  7. Gao J, Tang LG. Cellulose science. Beijing: Science Press; 1996.

    Google Scholar 

  8. Jin SY, Chen HZ. Near-infrared analysis of the chemical composition of rice straw. Ind Crop Prod. 2007;26(2):207–11.

    MathSciNet  Google Scholar 

  9. Xue HF, Meng QX. A comparison of various techniques for determination of NDF, ADF and lignin in ruminant feedstuffs. Chin J Anim Sci. 2006;42(19):41–5.

    Google Scholar 

  10. Fan PC, Tian J, Huang JM, Lei WQ, Qiu HD. On the determination of cellulose and lignin of peanut shells. J Chongqing Univ Sci Technol Nat Sci Ed. 2008;10(5):64–5.

    Google Scholar 

  11. Chen WJ, Chen X, Chen YX, Fang HS, Li MJ, Chen YP. The method of sulfate acid determinate the content of peanut coat lignin. J Minjiang Coll. 2002;23(2):72–3.

    Google Scholar 

  12. Ren Q, Hu YJ, Li ZY, Jin YJ. Content variation of lignin and peroxidase activities from damaged Pinus massioniana. Acta Ecol Sinica. 2007;27(11):4895–4899.

    Google Scholar 

  13. Zhang XY, Wang LX, Liu B. Determination of trace lignin in flax fiber by turbidimetry. Chem Adhes. 2004;6:56–60 (in Chinese).

    MATH  Google Scholar 

  14. Li GY, Huang AM, Wang G, Qin DC, Jiang ZH. Rapid determination of mason lignin content in bamboo by NIR. Spectrosc Spectr Anal. 2007;27(10):1977–80.

    Google Scholar 

  15. Huang YP, Qi HJ, Zheng YJ, Zhao SL, Chen WJ, Li MQ. Study on colorimetric determination of water-soluble total sugar in Nata de coco fermentation broth with 3,5-dinitrosalicylic acid. Guangdong Agric Sci. 2009;12:171–4.

    Google Scholar 

  16. Cao DJ, Huang XM. Indirect determination of pectin content by AAS. J Anhui Agric Univ. 2000;27(2):202–3.

    Google Scholar 

  17. Xiao AP, Li W, Leng J, Tian XL, Cheng Y, Liao LP. Study on rapid determination of pectin content in ramie by near-infrared spectroscopy. Plant Fiber Sci China. 2009;31(4):238–41.

    Google Scholar 

  18. Xiong CD, Hy L, Zeng QF. A new method of determining pectin content in ramie based on microwave-assisted extraction. Plant Fiber Sci China. 2008;30(2):79–83.

    Google Scholar 

  19. Chen HZ. Process engineering in plant-based products. Beijing: Biomedicine Publishing Branch, Chemical Industry Press; 2010.

    Google Scholar 

  20. Chen HZ, Liu LY, Jin SY, Zeng W. Fractionation method for crop stalks component organization. China Patent, 200610075690.2, 2007.

    Google Scholar 

  21. Liu LY, Chen HZ. Prediction of maize stover components with near infrared reflectance spectroscopy. Spectrosc Spectr Anal. 2007;27(2):275–8.

    MATH  Google Scholar 

  22. Zhu YT, Liu WF, Wang LS, Chen GJ. Culture-independent digging of cellulases and genes from natural environments. Chin J Biotechnol. 2009;25(12):1838–43.

    Google Scholar 

  23. Guo XL, Yang XL, Li SY, Wang Y. The screening of straw-decomposing microorganism and strain combination. J Zhengzhou Univ Eng Sci. 2010;31(1):74–7.

    Google Scholar 

  24. Han LR, Zhang SX, Zhu CS, Zhang X. Screening and identification of superior fungus degraded cellulose. J Northwest Agric For Univ Nat Sci Ed. 2008;36(9):169–74.

    Google Scholar 

  25. Quan GJ, Zhao H. Screening hemicellulase producing strains and enzyme production conditions. J Shenyang Univ Chem Technol. 2010;24(1):20–3.

    Google Scholar 

  26. Zeng T, Chen HQ, Zeng HC. Screening and breeding of ligninolytic enzyme system and its producers. Genomic Appl Biol. 2009;28(3):578–82.

    Google Scholar 

  27. Cai L, Yin JF, Yang LP, Zhang KQ. Several qualitative methods for the screening of fungi to decompose lignin. Microbiology. 2002;29(1):67–9.

    Google Scholar 

  28. Wu W, Tian SH, Dun BQ, Li GY, Gao ZJ, Lu M. Separation and filtration of a strain of high effective lignin-modifying enzymes production. Food Sci Technol. 2010;1:10–4.

    Google Scholar 

  29. Zhou DQ. Microbiology course. Beijing: Higher Education Press; 2002.

    Google Scholar 

  30. Zhao Y, Li W, Zhu ZH, Zhang XJ, Pan YJ, Zhao LP. Changes of microbial community structure in straw amended soil. J Agro-Environ Sci. 2005;24(6):1114–8.

    Google Scholar 

  31. McMahon SK, Williams MA, Bottomley PJ, Myrold DD. Dynamics of microbial communities during decomposition of carbon-13 labeled ryegrass fractions in soil. Soil Sci Soc Am J. 2005;69(4):1238–47.

    Google Scholar 

  32. Uz I, Ogram AV. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades. FEMS Microbiol Ecol. 2006;57(3):396–408.

    Google Scholar 

  33. Jacobsen J, Lydolph M, Lange L. Culture independent PCR: an alternative enzyme discovery strategy. J Microbiol Method. 2005;60(1):63–71.

    Google Scholar 

  34. Schulze WX, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze ED. A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia. 2005;142(3):335–43.

    Google Scholar 

  35. Shinkai T, Kobayashi Y. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Appl Environ Microbiol. 2007;73(5):1646–52.

    Google Scholar 

  36. Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol. 2006;58(3):572–82.

    Google Scholar 

  37. Gao ZN, Lu WJ, Xie H, Lin J. Screening and breeding by induced mutation of cellulose-degrading strains. J Fuzhou Univ. 2010;40(3):450–55.

    Google Scholar 

  38. Qiu YL, Zeng Y, Hu SY, Xia FB. Screening and identifying of protoplasts fusion progeny. Biotechnology. 2004;13(6):17–9.

    Google Scholar 

  39. Wu HW, Zhang Z, Li XQ, Li X. Directed evolution for significantly increasing high temperature resistant beta-glucanase activity by error-prone PCR. Food Ferment Ind. 2010;36(5):1–4.

    Google Scholar 

  40. Gao FQ, Zhen LL. Research progress of RNA. Ai Shanxi Med J. 2008;6:738–9.

    Google Scholar 

  41. Wen SB, Li QF, Hou XW, Li GY, Deng X. Recent advances in microbial degradation of cellulose. Chin Agr Sci Bull. 2010;26(1):231–6.

    Google Scholar 

  42. Wood B, Beall D, Ingram L. Production of recombinant bacterial endoglucanase as a co-product with ethanol during fermentation using derivatives of Escherichia coli KO11. Biotechnol Bioeng. 2000;55(3):547–55.

    Google Scholar 

  43. Zhou S, Davis F, Ingram L. Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol. 2001;67(1):6–14.

    Google Scholar 

  44. Lin YJ, Liu ZJ, Gong WM. The research of protein structure. Chin Bull Life Sci. 2007;19(3):289–93.

    Google Scholar 

  45. Deng QC, Huang QD, Huang FH, Xie BJ. Process of research method on protein solution conformation. Acta Biophys Sin. 2009;25(4):237–46.

    Google Scholar 

  46. Zhang YZ. SPM research of cellulose structure and its enzymatic hydrolysis process. In: 2003 Nanometer and Surface Science and Technology National Conference; 2003.

    Google Scholar 

  47. Yan BX, Qi F. Progress in structure function studies of cellulases. Prog Biochem Biophys. 1999;26(3):233–237.

    Google Scholar 

  48. Wang HL, Li ZY. The important enzymes for lignin degradation. J Biol. 2004;20(5):9–11.

    Google Scholar 

  49. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem. 1994;269(52):32759–67.

    Google Scholar 

  50. Edwards SL, Raag R, Wariishi H, Gold MH, Poulos TL. Crystal structure of lignin peroxidase. Prog Biochem Biophys. 1993;90(2):750–4.

    Google Scholar 

  51. Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez ÁT. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem. 1999;274(15):10324–30.

    Google Scholar 

  52. Haj-Yehia A, Benet L. 2-(4-N-Maleimidophenyl)-6-methoxybenzofuran: a superior derivatizing agent for fluorimetric determination of aliphatic thiols by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1995;666(1):45–53.

    Google Scholar 

  53. Zhang L, Shao XX, Han DY. Review on ligninolytic enzymes of the white rot fungi. Jilin Anim Sci Vet Med. 2009;23:6–8.

    MATH  Google Scholar 

  54. Gao PJ. Progress in degradation mechanisation and structure function studies of cellulases. Prog Nat Sci. 2003;13(1):21–9.

    Google Scholar 

  55. Song GH, Sun CY, Wang ZN. Recovery of cellulose. Biochem Eng J. 1988;4:65–9.

    Google Scholar 

  56. Yang B, Lv YP, Gao KR, Deng ZX. Studies on the bagasse cellulolysis II. Studies on the properties of cellulose in Penicillium notatum YB7. J Hua Zhong Agric Univ. 1997;16(5):361–6.

    Google Scholar 

  57. Yang S, Ding W, Chen H. Enzymatic hydrolysis of steam-exploded rice straw in membrane bioreactor. Environ Sci. 2005;26(5):162–3.

    Google Scholar 

  58. Li Q, Zhang MJ, Su RX, Qi W, He ZM. Process optimization of cellulase re-adsorption for reutilization. Chem Eng. 2010;38(2):62–5.

    Google Scholar 

  59. Chen HZ, Xu J. A method for enzymatic hydrolysis straw cellulose with cellulase absorption. China Patent 200610011216.3, 2006.

    Google Scholar 

  60. Liu HZ, Zhang YY, Zhang GG, Niu BH. Research progress on preparative technique of immobilize enzyme. J Chem Ind Eng. 2009;30(1):21–3.

    Google Scholar 

  61. Wu HX. A study on immobilized cellulase. J Southwest China Norm Univ Nat Sci. 2008;33(2):83–6.

    Google Scholar 

  62. Kou LM, Li B, Guo SY, Li L, Huang CJ. Preparation of magnetic immobilized cellulase and its characteristics under external magnetic field. Food Sci. 2006;27(12):335–338, 339.

    Google Scholar 

  63. Huo SH, Xue JL, Zhuang XM, Yu Q, Yuan ZH, Yang XS. Study on cellulase immobilization with supermagnetic nanoparticles. Mod Chem Ind. 2009;29(2):188–90.

    Google Scholar 

  64. Li HX, Zhang XR, Yu S, Dong YS, Bao XM. Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose—a review. Chin J Biotechnol. 2009;25(9):1321–8.

    Google Scholar 

  65. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82(4):340–9.

    Google Scholar 

  66. Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25–33.

    Google Scholar 

  67. Fang X, Huang W, Xia L. Effects of inhibitors in hemicellulosic hydrolysate on xylitol production. J Zhejiang Univ. 2005;39(4):547–51.

    Google Scholar 

  68. Liu N, Li S, Yan LS, He H, Ji SY. Effects of inhibitors in hemicellulose hydrolysate on production of fumaric acid by Rhizopus arrhizus. Mod Chem Ind. 2008;2(28):271–4.

    Google Scholar 

  69. Liu YH, Zheng DD, Jiang QM, Wan YQ, Luo AX, Ruan RS. Chemical analysis of the distillates of bamboo residue and its main components with low temperature pyrolysis and acid hydrolysis. For Sci. 2006;42(9):96–101.

    Google Scholar 

  70. Li W, Xu GQ, Zhang XM, Lei Y, Lv JP, Chen LJ. Analysis of 5-hydroxymethylfurfural in milk by HPLC. Sci Technol Food Ind. 2004;25(5):131–3.

    Google Scholar 

  71. Chang C, Ma XJ, Cen PL. Spectrophotometric determination of 5-hydroxyfurfural and furfural in the hydrolyzed liquor of cellulose. Phys Test Chem Anal. 2008;44(3):223–5.

    Google Scholar 

  72. Zhang C, Chai XS, Luo XL, Fu SY, Zhan HY. Rapid method for determination of furfural and 5-hydroxymethyl furfural in pre-extraction stream of biomass using UV spectroscopy. Spectrosc Spectr Anal. 2010;30(1):247–50.

    Google Scholar 

  73. Wang YH, Zhang Y, Zhu J, Deng LH, Ma RY. Study of the removal of phenolic compounds from lignocellulosic hydrolysate. J Beijing Univ Chem Technol Nat Sci Ed. 2006;33(2):37–40.

    Google Scholar 

  74. Mohagheghi A, Ruth M, Schell DJ. Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem. 2006;41(8):1806–11.

    Google Scholar 

  75. Jönsson L, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol. 1998;49(6):691–7.

    Google Scholar 

  76. Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Rèczey K. Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzym Microb Technol. 1997;20(4):286–93.

    Google Scholar 

  77. Palmqvist E, Hahn-Hägerdal B, Galbe M, Zacchi G. The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzym Microb Technol. 1996;19(6):470–6.

    Google Scholar 

  78. Wilson JJ, Deschatelets L, Nishikawa NK. Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS 5776. Appl Microbiol Biotechnol. 1989;31(5):592–6.

    Google Scholar 

  79. Grzenia DL, Schell DJ, Wickramasinghe SR. Membrane extraction for removal of acetic acid from biomass hydrolysates. J Membr Sci. 2008;322(1):189–95.

    Google Scholar 

  80. Clark TA, Mackie KL. Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chem Technol Biotechnol. 1984;34(2):101–10.

    Google Scholar 

  81. Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res. 2002;41(24):6132–8.

    Google Scholar 

  82. Jiang CW, Peng X, Xiao H. Study on decolorization and detoxification of straw acid hydrolyzate. Appl Chem Ind. 2009;38(12):1756–9.

    Google Scholar 

  83. Villarreal M, Prata A, Felipe M, Almeida e Silva J. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzym Microb Technol. 2006;40(1):17–24.

    Google Scholar 

  84. Van Zyl C, Prior BA, Du Preez JC. Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Appl Biochem Biotechnol. 1988;17(1):357–69.

    Google Scholar 

  85. Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol. 1999;77(1):91–103.

    Google Scholar 

  86. Olsson L, Hahn‐Hägerdal B, Zacchi G. Kinetics of ethanol production by recombinant Escherichia coli KO11. Biotechnol Bioeng. 2004;45(4):356–65.

    Google Scholar 

  87. Palmqvist E, Grage H, Meinander NQ, Hahn‐Hägerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng. 2000;63(1):46–55.

    Google Scholar 

  88. Xue J, Pu H, Sun C. Methods of the elimination of the inhibitors in the lignocellulosic hydrolysates. J Cell Sci Technol. 2004;12(3):48–53, 60.

    Google Scholar 

  89. Yu XB, Ju RM. Cellulase production by Trchoderma reesei rut C 30 with batch and fermentation. Food Ferment Ind. 1999;25(1):16–9.

    Google Scholar 

  90. Yong Q, Xu Y, Song XY, Yao CC, Yu SY. Cellulase production by fed-batch fermentation. J Nanjing For Univ Nat Sci Ed. 2004;28(1):9–12.

    Google Scholar 

  91. Yao XY, Chu XH, Zhuang YP, Liang JG, Wang YH, Chu J, Zhang SL. Effect of inoculation methods on avermectin fermentation by Streptomyces avermilitis. J Food Sci Biotechnol. 2009;28(5):682–7.

    Google Scholar 

  92. Xia LM. Cellulase production by solid state fermentation on corncob residue from xylose manufacture. Chem Ind For Prod. 1999;19(1):6–10.

    Google Scholar 

  93. Mao LS, Song XY, Yong Q, Yao CC. Effects of the ratio of carbon to nitrogen on xylanase synthesis by Trichoderma reesei. Chem Ind For Prod. 2002;22(3):41–4.

    Google Scholar 

  94. Han F, Yu W, Sun C, Song X, Song G. Induction and repression of cellulases production from Trichoderma pseudokoningii UV III. Ind Microbiol. 2003;33(1):23–6.

    Google Scholar 

  95. Wang YL, Yan JF. Surfactant on cellulase produced by Trichoderma. Biotechnology. 2002;12(3):37–8.

    MathSciNet  Google Scholar 

  96. Mao L, Song X, Yong Q, Yao C, Yu S. Effects of temperature on synthesis of xylanase and cellulase by Trichoderma reesei rut C-30. Chem Ind For Prod. 2003;23(1):67–70.

    Google Scholar 

  97. Zhang Y, Zhang P, Zhao YR. Liquid state fermentation of plant power. J Beijing Inst Chem Technol Nat Sci Ed. 1994;21(3):8–13.

    Google Scholar 

  98. Zhang DY, Zhang T, Xiao D, Zhang RL. Factors affecting cellulase in deep liquid ferment. J Inn Mong Polytech Univ Nat Sci Ed. 2004;22(1):22–6.

    Google Scholar 

  99. Patil SR, Dayanand A. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Bioresour Technol. 2006;97(18):2340–4.

    Google Scholar 

  100. Patil SR, Dayanand A. Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. Bioresour Technol. 2006;97(16):2054–8.

    Google Scholar 

  101. Joshi VK, Parmar M, Rana NS. Pectin esterase production from apple pomace in solid-state and submerged fermentations. Food Technol Biotechnol. 2006;44(2):253–6.

    Google Scholar 

  102. Azeredo LAI, Lima MB, Coelho R, Freire D. Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentations using feather meal. J Appl Microbiol. 2006;100(4):641–7.

    Google Scholar 

  103. Sandhya C, Sumantha A, Szakacs G, Pandey A. Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 2005;40(8):2689–94.

    Google Scholar 

  104. Fenice M, Giovannozzi Sermanni G, Federici F, D’Annibale A. Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol. 2003;100(1):77–85.

    Google Scholar 

  105. Papagianni M, Nokes SE, Filer K. Submerged and solid-state phytase fermentation by Aspergillus niger: effects of agitation and medium viscosity on phytase production, fungal morphology and inoculum performance. Food Technol Biotechnol. 2001;39(4):319–26.

    Google Scholar 

  106. Ashokkumar B, Kayalvizhi N, Gunasekaran P. Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem. 2001;37(4):331–8.

    Google Scholar 

  107. Noé Aguilar C, Augur C, Favela-Torres E, Viniegra-González G. Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochem. 2001;36(6):565–70.

    Google Scholar 

  108. Romero-Gomez S, Augur C, Viniegra-González G. Invertase production by Aspergillus niger in submerged and solid-state fermentation. Biotechnol Lett. 2000;22(15):1255–8.

    Google Scholar 

  109. Taragano VM, Pilosof AMR. Application of Doehlert designs for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production in solid-state and submerged fermentation. Enzym Microb Technol. 1999;25(3):411–9.

    Google Scholar 

  110. Gouda MK, Omar SH. Production of xylanolytic enzymes in solid-state and submerged fermentation by a local isolate of Aspergillus tamarii. Egypt J Microbiol. 1999;34(3):465–77.

    Google Scholar 

  111. Maldonado M, Strasser de Saad A. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol. 1998;20(1):34–8.

    Google Scholar 

  112. George S, Raju V, Subramanian T, Jayaraman K. Comparative study of protease production in solid substrate fermentation versus submerged fermentation. Bioprocess Biosyst Eng. 1997;16(6):381–2.

    Google Scholar 

  113. Sudo S, Ishikawa T, Sato K, Oba T. Comparison of acid-stable α-amylase production by Aspergillus kawachii in solid-state and submerged cultures. J Ferment Bioeng. 1994;77(5):483–9.

    Google Scholar 

  114. Chen HZ, Xu J. Principle and application of modern solid state fermentation. Beijing: Chemical Industry Press; 2004.

    Google Scholar 

  115. Zhang LX, Xu R, Shi GY, Zhang KC. Cellulase production by solid state fermentation of distiller’s wheat. Chem Ind For Prod. 2000;20(3):27–32.

    MATH  Google Scholar 

  116. Su HD, Sun JS, Zhang D, Shi J, Liu P. Effect of the operation parameter of bioreactor on alcoholic fermentation with corn stalk. China Brew. 2005;5:18–20.

    Google Scholar 

  117. Chen HZ, Li ZH. Technology and equipment of solid-state fermentation with double dynamic of gas phase. China Patent 02100176.6, 2002.

    Google Scholar 

  118. Chen HZ, Li ZH. Gas dual-dynamic solid state fermentation technique and apparatus. U.S. Patent 7,183.074B2, 2003.

    Google Scholar 

  119. Li HQ, Chen HZ. The periodic change of environment factors in solid state fermentation and effect on microorganism fermentation. Chin J Biotechnol. 2005;21(3):440–5.

    Google Scholar 

  120. Zhou XH, Chen HZ, Li ZH. Experimental observation on cellulosic biodegradation in solid state fermentation. Chin J Process Eng. 2003;3(5):447–52.

    Google Scholar 

  121. Pandey A. Effect of particle size of substrate of enzyme production in solid-state fermentation. Bioresour Technol. 1991;37(2):169–72.

    Google Scholar 

  122. Ghildyal N, Gowthaman M, Raghava Rao K, Karanth N. Interaction of transport resistances with biochemical reaction in packed-bed solid-state fermentors: effect of temperature gradients. Enzym Microb Technol. 1994;16(3):253–7.

    Google Scholar 

  123. Ramesh M, Lonsane B. Regulation of alpha-amylase production in Bacillus licheniformis M27 by enzyme end-products in submerged fermentation and its overcoming in solid state fermentation system. Biotechnol Lett. 1991;13(5):355–60.

    MATH  Google Scholar 

  124. Wu HQ, Huang XL, Li JY, Wu QP. Cellulase extraction using tannin-PEG method. Food Ferment Ind. 2001;27(8):41–4.

    Google Scholar 

  125. Zhang DY, Zhang RL, Zhang T. Separation of cellulose from deep liquid fermentation and enzymatic treatment of coarse fodder. J Inn Mong Polytech Univ Nat Sci Ed. 2002;21(2):94–7.

    Google Scholar 

  126. Amritkar N, Kamat M, Lali A. Expanded bed affinity purification of bacterial α-amylase and cellulase on composite substrate analogue–cellulose matrices. Process Biochem. 2004;39(5):565–70.

    Google Scholar 

  127. Chen J. Studies of the extraction technique and application on glycyrrhizic acid and cellulose by the aqueous two-phase [dissertation]. Nanning: Guangxi University; 2002.

    Google Scholar 

  128. Ma YH. Biorefineries-industrial processes and products. Beijing: Chemical Industry Press; 2007.

    Google Scholar 

  129. Zhang KC. Alcohol and distillation technology. Beijing: China Light Industry Press; 1995.

    Google Scholar 

  130. Iranmahboob J, Nadim F, Monemi S. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy. 2002;22(5):401–4.

    Google Scholar 

  131. Körbitz W. Biodiesel production in Europe and North America, an encouraging prospect. Renew Energ. 1999;16(1):1078–83.

    Google Scholar 

  132. Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog. 2008;17(3):474–80.

    Google Scholar 

  133. Zhang G, Li JY, Chen XW, Miao F, Hou JG. Study on the determination mixed sugar in hydrolysate solution of plant cellulose. Phys Test Chem Anal B Chem Anal. 2002;38(2):81–2.

    Google Scholar 

  134. Chen HZ. Process engineering in plant-based products, Environmental science, engineering and technology series. New York: Nova Science Publishers, Inc.; 2009.

    Google Scholar 

  135. Saeman JF. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem. 1945;37(1):43–52.

    Google Scholar 

  136. Zhuang X, Wang S, Yuan Z, Luo Z, Wu C, Cen K. Analysis of cellulose hydrolysis products in extremely low acids. Trans Chin Soc Agric Eng. 2007;23(2):177–82.

    Google Scholar 

  137. Fang X, Huang W, Xia L. Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp. Chin J Biotechnol. 2004;20(2):295–8.

    Google Scholar 

  138. Wang L, Yuan QP, Chang Z, Fan XG. Polyurethane foam immobilization of Candida tropicalis for xylitol production. Microbiology. 2009;36(7):943–8.

    Google Scholar 

  139. Gauss WF, Suzuki S, Takagi M. Manufacture of alcohol from cellulosic materials using plural ferments. U.S. Patent 3,990,994, 1976.

    Google Scholar 

  140. Chen HZ, Li ZH, Chen ZZ. Solid state simultaneous saccharogenic fermentative ethanol from cellulose. J Wuxi Univ Light Ind. 1999;5:78–81.

    Google Scholar 

  141. Chen HZ. Theory and application of ecological high value of straw resource. Beijing: Chemical Industry Press; 2006.

    Google Scholar 

  142. Chen HZ. Method and equipment to prepare ethanol by coupling air-lift fermentation with separation. China Patent 01131184.3, 2001.

    Google Scholar 

  143. Ding WY. Synergistic enzymatic hydrolysis and ethanol production of steam-exploded straw by nonisothermal simultaneous saccharification and fermentation [dissertation]. Beijing: Institute of Process Engineering, Chinese Academy of Science; 2010.

    Google Scholar 

  144. Yang S, Ding WY, Chen HZ. Enzymatic hydrolysis of rice straw in a tubular reactor coupled with UF membrane. Process Biochem. 2006;41(3):721–5.

    MathSciNet  Google Scholar 

  145. Xu L, Shen Y, Bao X. Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae. Chin J Biotechnol. 2010;26(7):870–9.

    Google Scholar 

  146. Kim SY, Oh DK, Kim JH. Evaluation of xylitol production from corn cob hemicellulose hydrolysate by Candida parapsilosis. Biotechnol Lett. 1999;21(10):891–5.

    Google Scholar 

  147. Chen HZ, Liu J, Li ZH. Production of single cell protein by fermentation of extracts from hemicellulose autohydrolysis. Eng Chem Metall. 1999;20(4):428–31.

    Google Scholar 

  148. Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog. 2008;17(2):287–93.

    Google Scholar 

  149. Ding X, Xia L, Xue P. Key factors affecting xylitol fermentation from hemicellulosic hydrolysate by Candida sp. zu-04. J Zhejiang Univ Eng Sci. 2007;41(4):683–7.

    Google Scholar 

  150. Zhang YH, Wang J, Zhang W, Li CW, Ma L, Zhou W. Research progress of hemicellulose fermentation to produce fuel alcohol. Liquor Mak Sci Technol. 2004;12(4):72–4.

    Google Scholar 

  151. Nakano K, Katsu R, Tada K, Matsumura M. Production of highly concentrated xylitol by Candida magnoliae under a microaerobic condition maintained by simple fuzzy control. J Biosci Bioeng. 2000;89(4):372–6.

    Google Scholar 

  152. Li XF, He XS. Microbial hydrolyzing of lignin. J Cell Sci Technol. 2004;12(2):41–6.

    Google Scholar 

  153. Yu RY, Ceng GM, Yu HY, Huang GH, Huang HL, Chen FR. Lignin degradation mechanism by microbes. J Microbiol. 2008;28(3):59–63.

    MATH  Google Scholar 

  154. Fu SY, Yu HS, Wen XH, Huang XY. Investigations related to biodegradation of lignin in rice straw by Panus conchatus-I. Isolation and characterization of low-molecular weight fractions of the lignin degradation product. J Cell Sci Technol. 1997;5(1):21–8.

    Google Scholar 

  155. Fu SY, Yu HS, Wen XH, Huang XY. Investigations related to biodegradation of lignin in rice straw by Panus conchatus-III. Structural features of low-molecular weight aromatic acids of the lignin degradation products. J Cell Sci Technol. 1998;6(4):50–5.

    Google Scholar 

  156. Yu HS, Fu SY. Investigations related to biodegradation of lignin in rice straw by Panus conchatus-II. Structural features of high-molecular weight fractions of the lignin degradation products. J Cell Sci Technol. 1998;6(4):41–9.

    MathSciNet  Google Scholar 

  157. Jia SR. Bioreaction engineering principles. Beijing: Science Press; 2003.

    Google Scholar 

  158. Chen HZ, Li ZH. Bioreactor engineering. Prog Biotechnol. 1998;18(4):46–49.

    Google Scholar 

  159. Shuler MI, Kargi F. Bioprocess engineering basic concepts (Trans: Tao C, Xueming Z). Beijing: Chemical Industry Press; 2008.

    Google Scholar 

  160. Zheng DH, Hu SY, Li YR, Shen JZ, Wang JT. Mass integration for eco-industrial parks. Comput Appl Chem. 2004;21(1):6–10.

    Google Scholar 

  161. Luo XC, Zhang AZ. On information integrated analysis. Inform Stud Theory Appl. 2002;25(2):102–4.

    MathSciNet  Google Scholar 

  162. Bai J, Feng X. Analysis of technologies for water system integration. Chem Ind Eng Prog. 2006;25(12):1471–6.

    Google Scholar 

  163. Chen HZ, Fu XG. Process engineering of biomass raw material and its ecological industry integration—biomass·energy·wisdom. Beijing: Science Press; 2010.

    Google Scholar 

  164. Chen HZ, Liu LY. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol. 2007;98(3):666–76.

    Google Scholar 

  165. Chen HZ, Liu LY, Yang X, Li ZH. New process of maize stalk amination treatment by steam explosion. Biomass Bioenergy. 2005;28(4):411–7.

    Google Scholar 

  166. Zhai W, Chen HZ, Ma RY. Structural characteristics of cellulose after dissolution and regeneration from the ionic liquid [Bmim]Cl. J Beijing Univ Chem Technol Nat Sci Ed. 2007;34(2):138–41.

    Google Scholar 

  167. Sun FB, Chen HZ. Comparison of atmospheric aqueous glycerol and steam explosion pretreatments of wheat straw for enhanced enzymatic hydrolysis. J Chem Technol Biotechnol. 2008;83(5):707–14.

    Google Scholar 

  168. Jin SY, Chen HZ. Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem Eng J. 2006;30(3):225–30.

    MathSciNet  Google Scholar 

  169. Chen HZ, Fu XG, Zhang ZF. A method to produce pulp and ethanol simultaneously from forest wild grass. China Patent 200710121392.7, 2007.

    Google Scholar 

  170. Chen HZ. Officinal plant process engineering and its ecological industry integration. Beijing: Science Press; 2010.

    Google Scholar 

  171. Chen HZ. Biomass science and engineering. Beijing: Chemical Industry Press; 2008.

    Google Scholar 

  172. Chen HZ. Biochemical engineering equipment. Beijing: Chemical Industry Press; 2004.

    Google Scholar 

  173. Ma HG. Technological economics. Beijing: Science Press; 2007.

    Google Scholar 

  174. Fu JJ, Tong YH. Industrial technology economics. Beijing: Tsinghua University Press; 1996.

    Google Scholar 

  175. Cao HL. Theory and methodology of life cycle assessment (LCA). J Southwest Univ Natl. 2004;25(2):281–4.

    Google Scholar 

  176. Huang CL, Zhang JQ, Shen ST. Summarize of cycle assessment. Environ Technol. 2004;22(1):29–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Chemical Industry Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2014). Research Methods for the Biotechnology of Lignocellulose. In: Biotechnology of Lignocellulose. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6898-7_11

Download citation

Publish with us

Policies and ethics