Skip to main content

Function of Peroxisomes in Plant-Pathogen Interactions

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Peroxisomes are ubiquitous organelles of eukaryotic cells that accomplish a variety of biochemical functions, including β-oxidation of fatty acids, glyoxylate cycle, etc. Many reports have been accumulating that indicate peroxisome related metabolic functions are essential for pathogenic development of plant pathogenic fungi. They include peroxisome biogenesis proteins, peroxins and preferential destruction of peroxisomes, pexophagy. Gene disrupted mutants of anthracnose disease pathogen Colletotrichum orbiculare or rice blast pathogen Magnaporthe oryzae defective in peroxins or pexophagy showed deficiency in pathogenesis. Woronin body, a peroxisome related cellular organelle that is related to endurance of fungal cells against environmental damage has essential roles in pathogenesis of M. oryzae. Also, peroxisome related metabolisms such as β-oxidation and glyoxylate cycle are essential for pathogenesis in several plant pathogenic fungi. In addition, secondary metabolisms including polyketide melanin biosynthesis of C. orbiculare and M. oryzae, and host selective toxins produced by necrotrophic pathogen Alternaria alternata have pivotal roles in fungal pathogenesis. Every such factor was listed and their functions for pathogenesis were demonstrated (Table 18.1 and Fig. 18.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y (2009) Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21:1291–1304

    Article  PubMed  CAS  Google Scholar 

  • Asakura M, Okuno T, Takano Y (2006) Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Appl Environ Microbiol 72:6345–6354

    Article  PubMed  CAS  Google Scholar 

  • Asakura M, Yoshino K, Hill AM, Kubo Y, Sakai Y, Takano Y (2012) Primary and secondary metabolism regulates lipolysis in appressoria of Colletotrichum orbiculare. Fungal Genet Biol 49:967–975

    Article  PubMed  CAS  Google Scholar 

  • Bertoni G (2009) Pexophagy in fungal pathogenesis. Plant Cell 21:1030

    Article  PubMed  CAS  Google Scholar 

  • Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y (2012) Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae. PLoS One 7:e36266

    Article  PubMed  CAS  Google Scholar 

  • Bhambra GK, Wang ZY, Soanes DM, Wakley GE, Talbot NJ (2006) Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol Microbiol 61:46–60

    Article  PubMed  CAS  Google Scholar 

  • Bonnet C, Espagne E, Zickler D, Boisnard S, Bourdais A, Berteaux-Lecellier V (2006) The peroxisomal import proteins PEX2, PEX5 and PEX7 are differently involved in Podospora anserina sexual cycle. Mol Microbiol 62:157–169

    Article  PubMed  CAS  Google Scholar 

  • Brown LA, Baker A (2008) Shuttles and cycles: transport of proteins into the peroxisome matrix. Mol Membr Biol 25:363–375

    Article  PubMed  CAS  Google Scholar 

  • Chumley FG, Valent B (1990) Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143

    Article  CAS  Google Scholar 

  • Choi J, Kim Y, Kim S, Park J, Lee YH (2009) MoCRZ1, a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol 46:243–254

    Article  PubMed  CAS  Google Scholar 

  • de Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245

    Article  Google Scholar 

  • Eastmond PJ, Germain V, Lange PR, Bryce JH, Smith SM, Graham IA (2000) Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc Natl Acad Sci USA 97:5669–5674

    Article  PubMed  CAS  Google Scholar 

  • Erdmann R, Blobel G (1996) Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol 135:111–121

    Article  PubMed  CAS  Google Scholar 

  • Farré JC, Subramani S (2004) Peroxisome turnover by micropexography: an autophagy-related process. Trends Cell Biol 14:515–523

    Article  PubMed  Google Scholar 

  • Fujihara N, Sakaguchi A, Tanaka S, Fujii S, Tsuji G, Shiraishi T, O’Connell R, Kubo Y (2010) Peroxisome biogenesis factor PEX13 is required for appressorium-mediated plant infection by the anthracnose fungus Colletotrichum orbiculare. Mol Plant Microbe Interact 23:436–445

    Article  PubMed  CAS  Google Scholar 

  • Fujii I, Mori Y, Watanabe A, Kubo Y, Tsuji G, Ebizuka Y (2000) Enzymatic synthesis of 1,3,6,8-tetrahydoxynaphthalene solely from malonyl coenzyme A by a fungal iterative type I polyketide synthase PKS1. Biochemistry 39:8853–8858

    Article  PubMed  CAS  Google Scholar 

  • Goh J, Jeon J, Kim KS, Park J, Park SY, Lee YH (2011) The PEX7-mediated peroxisomal import system is required for fungal development and pathogenicity in Magnaporthe oryzae. PLoS One 6:e28220

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Kalish JE, Morrell JC, Bjorkman J, Urquhart AJ, Crane DI (1996) Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J Cell Biol 135:85–95

    Article  PubMed  CAS  Google Scholar 

  • Heiland I, Erdmann R (2005) Biogenesis of peroxisomes: topogenesis of the peroxisomeal membrane and matrix proteins. FEBS J 272:2362–2372

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Howlett BJ (2002) Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot Cell 1:719–724

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Giles SS, Perfect JR, Heitman J (2007) Peroxisome function regulates growth on glucose in the Basidiomycete fungus Cryptococcus neoformans. Eukaryot Cell 6:60–72

    Article  PubMed  CAS  Google Scholar 

  • Imazaki A, Tanaka A, Harimoto Y, Yamamoto M, Akimitsu K, Park P, Tsuge T (2010) Contribution of peroxisomes to secondary metabolism and pathogenicity in the fungal plant pathogen Alternaria alternata. Eukaryot Cell 9:682–694

    Article  PubMed  CAS  Google Scholar 

  • Jedd G, Chua NH (2000) A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat Cell Biol 2:226–231

    Article  PubMed  CAS  Google Scholar 

  • Jeon J, Goh J, Yoo S, Chi MH, Choi J, Rho HS, Park J, Han SS, Kim BR, Park SY, Kim S, Lee YH (2008) A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol Plant Microbe Interact 21:525–534

    Article  PubMed  CAS  Google Scholar 

  • Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA 106:15967–15972

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, van den Berg M, Bovenberg RA, van der Klei IJ, Veenhuis M (2004) Penicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha. Fungal Genet Biol 41:708–720

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, van der Klei IJ, van den Berg MA, Bovenberg RA, Veenhuis M (2005) Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum. Fungal Genet Biol 42:154–164

    Article  PubMed  CAS  Google Scholar 

  • Kiel JA, Veenhuis M, van der Klei IJ (2006) PEX genes in fungal genomes: common, rare or redundant. Traffic 7:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Willger SD, Park SW, Puttikamonkul S, Grahl N, Cho Y, Mukhopadhyay B, Cramer RA Jr, Lawrence CB (2009) TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. PLoS Pathog 5:e1000653

    Article  PubMed  Google Scholar 

  • Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13: 1945–1957

    PubMed  CAS  Google Scholar 

  • Kionka C, Kunau WH (1985) Inducible β-oxidation pathway in Neurospora crassa. J Bacteriol 161:153–157

    PubMed  CAS  Google Scholar 

  • Klose J, Kronstad JW (2006) The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot Cell 5:2047–2061

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov FA, Koonin EV, Morgunov IG, Finogenova TV, Kondrashova MN (2006) Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct 1:31

    Article  PubMed  Google Scholar 

  • Kretschmer M, Klose J, Kronstad JW (2012) Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot Cell 11: 1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y (2012) Appressorium function in Colletotrichum orbiculare and prospect for genome based analysis. In: Pérez-Martín J, Di Pietro A (eds) Morphogenesis and pathogenicity in fungi, vol 22, Topics in Current Genetics, pp 115–131

    Chapter  Google Scholar 

  • Kubo Y, Furusawa I (1991) Melanin biosynthesis: prerequisite for successful invasion of the plant host by appressoria of Colletotrichum and Pyricularia. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum Publishing, New York

    Google Scholar 

  • Kubo Y, Nakamura H, Kobayashi K, Okuno T, Furusawa I (1991) Cloning of a melanin biosynthetic gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant Microbe Interact 4:440–445

    Article  CAS  Google Scholar 

  • Kubo Y, Suzuki K, Furusawa I, Ishida N, Yamamoto M (1982) Relation of appressorium pigmentation and penetration of nitrocellulose membranes by Colletotrichum lagenarium. Phytopathology 72:498–501

    Article  CAS  Google Scholar 

  • Kubo Y, Takano Y, Endo N, Yasuda N, Tajima S, Furusawa I (1996) Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Appl Environ Microbiol 62:4340–4344

    PubMed  CAS  Google Scholar 

  • Kubo Y, Tanaka S (2010) Pathogenesis and plant basal resistance in Colletotrichum orbiculare and Magnaporthe oryzae infection. In: Wolpert T, Shiraishi T, Allen C, Glazebrook J, Akimitsu K (eds) Genome-enabled integration of research in plant pathogen systems. APS Press, St. Paul Minnesota

    Google Scholar 

  • Liu F, Ng SK, Lu Y, Low W, Lai J, Jedd G (2008) Making two organelles from one: woronin body biogenesis by peroxisomal protein sorting. J Cell Biol 180:325–339

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Maggio-Hall LA, Keller NP (2004) Mitochondrial beta-oxidation in Aspergillus nidulans. Mol Microbiol 54:1173–1185

    Article  PubMed  CAS  Google Scholar 

  • Markham P, Collinge AJ (1987) Woronin bodies in filamentous fungi. FEMS Microbiol Rev 46:1–11

    Article  Google Scholar 

  • Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40

    Article  PubMed  CAS  Google Scholar 

  • Momany M, Richardson E, Van Sickle C, Jedd G (2002) Mapping Woronin body function in Aspergillus nidulans. Mycologia 94:260–266

    Article  PubMed  Google Scholar 

  • Nakashima T, Ueno T, Fukami H, Taga T, Masuda H, Osaki K, Otani H, Kohmoto K, Nishimura S (1985) Isolation and structures of AK-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria alternata Japanese pear pathotype. Agric Biol Chem 49:807–815

    Article  CAS  Google Scholar 

  • Perpetua NS, Kubo Y, Yasuda N, Takano Y, Furusawa I (1996) Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant Microbe Interact 9:323–329

    Article  PubMed  CAS  Google Scholar 

  • Pollack JK, Harris SD, Marten MR (2009) Autophagy in filamentous fungi. Fungal Genet Biol 46:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ramsay RR, Naismith JH (2003) A snapshot of carnitine acetyltransferase. Trends Biochem Sci 28:343–346

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Pamplona M, Naqvi NI (2006) Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol Microbiol 61:61–75

    Article  PubMed  CAS  Google Scholar 

  • Rauyaree P, Choi W, Fang E, Blackmon B, Dean RA (2001) Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol Plant Pathol 2:347–354

    Article  PubMed  CAS  Google Scholar 

  • Schadeck RJ, Leite B, de Freitas BD (1998) Lipid mobilization and acid phosphatase activity in lytic compartments during conidium dormancy and appressorium formation of Colletotrichum lagenarium. Cell Struct Func 23:333–340

    Article  CAS  Google Scholar 

  • Schulze-Lefert P, Panstruga R (2003) Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. Annu Rev Phytopathol 41:641–667

    Article  PubMed  CAS  Google Scholar 

  • Solomon PS, Lee RC, Wilson TJ, Oliver RP (2004) Pathogenicity of Stagonospora nodorum requires malate synthase. Mol Microbiol 53:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Soundararajan S, Jedd G, Li X, Ramos-Pamploña M, Chua NH, Naqvi NI (2004) Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16:1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Asakura M, Sakai Y (2009) Atg26-mediated pexophagy and fungal phytopathogenicity. Autophagy 5:1041–1042

    Article  PubMed  Google Scholar 

  • Takano Y, Kubo Y, Shimizu K, Mise K, Okuno T, Furusawa I (1995) Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis of Colletotrichum lagenarium. Mol Gen Genet 249:162–167

    Article  PubMed  CAS  Google Scholar 

  • Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Tsuge T (2000) Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 13:975–986

    Article  PubMed  CAS  Google Scholar 

  • Taylor KM, Kaplan CP, Gao X, Baker A (1996) Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae. Biochem J 319:255–262

    PubMed  CAS  Google Scholar 

  • Tey WK, North AJ, Reyes JL, Lu YF, Jedd G (2005) Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16:2651–2659

    Article  PubMed  CAS  Google Scholar 

  • Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718

    PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (2001) The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2:357–368

    Article  PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (2000) Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J Cell Biol 150:881–886

    Article  PubMed  CAS  Google Scholar 

  • Titorenko VI, Smith JJ, Szilard RK, Rachubinski RA (1998) Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolse in the cytosol and for its targeting to the peroxisome. J Cell Biol 142:403–420

    Article  PubMed  CAS  Google Scholar 

  • Trinci AP, Collinge AJ (1974) Occlusion of the septal pores of damaged hyphae of Neurospora crassa by hexagonal crystals. Protoplasma 80:57–67

    Article  PubMed  CAS  Google Scholar 

  • Valenciano SJ, De Lucas R, Pedregosa A, Monistrol IF, Laborda F (1996) Induction of b-oxidation enzymes and microbody proliferation in Aspergillus nidulans. Arch Microbiol 166:336–341

    Article  PubMed  CAS  Google Scholar 

  • Wanders RJA, Waterman HR (2004) Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorder. Clin Genet 67:107–133

    Article  Google Scholar 

  • Wang ZY, Jenkinson JM, Holcombe LJ, Soanes DM, Veneault-Fourrey C, Bhambra GK, Talbot NJ (2005) The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem Soc Trans 33:384–388

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Soanes DM, Kershaw MJ, Talbot NJ (2007) Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid β-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact 20:475–491

    Article  PubMed  Google Scholar 

  • Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47:1601–1612

    Article  PubMed  CAS  Google Scholar 

  • Weber RW, Wakley GE, Thines E, Talbot NJ (2001) The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma 216:101–112

    Article  PubMed  CAS  Google Scholar 

  • Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Kong L, Chen X, Wang D, Qi L, Zhao W, Zhang Y, Liu X, Peng YL (2012) A carnitine-acylcarnitine carrier protein, MoCrc1, is essential for pathogenicity in Magnaporthe oryzae. Curr Genet 58:139–148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Kubo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kubo, Y. (2013). Function of Peroxisomes in Plant-Pathogen Interactions. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_18

Download citation

Publish with us

Policies and ethics