Skip to main content

Role of Peroxisomes as a Source of Reactive Oxygen Species (ROS) Signaling Molecules

  • Chapter
  • First Online:
Peroxisomes and their Key Role in Cellular Signaling and Metabolism

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Peroxisomes are very dynamic and metabolically active organelles and are a very important source of reactive oxygen species (ROS), H2O2, O2 .− and · OH, which are mainly produced in different metabolic pathways, including fatty acid β-oxidation, photorespiration, nucleic acid and polyamine catabolism, ureide metabolism, etc. ROS were originally associated to oxygen toxicity; however, these reactive species also play a central role in the signaling network regulating essential processes in the cell. Peroxisomes have the capacity to rapidly produce and scavenge H2O2 and O2 .− which allows to regulate dynamic changes in ROS levels. This fact and the plasticity of these organelles, which allows adjusting their metabolism depending on different developmental and environmental cues, makes these organelles play a central role in cellular signal transduction. The use of catalase and glycolate oxidase loss-of-function mutants has allowed to study the consequences of changes in the levels of endogenous H2O2 in peroxisomes and has improved our knowledge of the transcriptomic profile of genes regulated by peroxisomal ROS. It is now known that peroxisomal ROS participate in more complex signaling networks involving calcium, hormones, and redox homeostasis which finally determine the response of plants to their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6PGDH:

6-P-gluconate dehydrogenase

ACX:

Acyl CoA oxidase

ALL:

Allantoin

AO:

Amine oxidase

APX:

Ascorbate peroxidase

ASC:

Reduced ascorbate

CAT:

Catalase

CFP:

Cyan fluorescent protein

DAR:

Dehydroascorbate reductase

DHA:

Dehydroascorbate

ESR:

Electron spin resonance

G6PDH:

Glucose-6-P-dehydrogenase

GFP:

Green fluorescent protein

GOX:

Glycolate oxidase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GSNO:

S-nitrosoglutathione

GSSG:

Oxidized glutathione

GST:

Glutathione S-transferase

HAOX:

2-hydroxy acid oxidase

IAA:

Indole acetic acid

ICDH:

Isocitrate dehydrogenase

JA:

Jasmonic acid

MDAR:

Monodehydroascorbate reductase

NDK:

Nucleoside diphosphate kinase

ONOO :

Peroxynitrite

PA:

Polyamines

PEX:

Peroxins

PMP:

Peroxisomal membrane polypeptide

POX:

Peroxidases

PPAR:

Peroxisome proliferator-activated receptor

Prx:

Peroxiredoxin

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SA:

Salicylic acid

SO:

Sulfite oxidase

SOD:

Superoxide dismutase

SOX:

Sarcosine oxidase

TPX:

Thioredoxin-dependent peroxidase

TRX:

Thioredoxin

UA:

Uric acid

UO:

Urate oxidase or uricase

XDH:

Xanthine dehydrogenase

XOD:

Xanthine oxidase

YFP:

Yelow fluorescent protein

References

  • Aksam EB, Jungwirth H, Kohlwein S, Ring J, Madeo F, Veenhuis M, van der Klei IJ (2008) Absence of the peroxiredoxin Pmp20 causes peroxisomal protein leakage and necrotic cell death. Free Radic Biol Med 45:1115–1124

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Archanbaud C, Nahori MA, Pizarroi-Cerda J, Cossat P, Dussurget O (2006) Control of Listeria superoxide dismutase by phosphorylation. J Biol Chem 281:31812–31822

    Article  CAS  Google Scholar 

  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: β-oxidation in signalling and development. Trends Plant Sci 11:124–132

    Article  PubMed  CAS  Google Scholar 

  • Bowditch MI, Donaldson RP (1990) Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol 94:531–537

    Article  PubMed  CAS  Google Scholar 

  • Byrne RS, Hansche R, Mendel RR, Hille R (2009) Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: generation of superoxide by a peroxisomal enzyme. J Biol Chem 284:35479–35484

    Article  PubMed  CAS  Google Scholar 

  • Castillo MC, León J (2008) Expression of the β-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. J Exp Bot 59:2171–2179

    Article  PubMed  CAS  Google Scholar 

  • Castillo MC, Sandalio LM, del Río LA, León J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant Cell Environ 31:492–505

    Article  PubMed  CAS  Google Scholar 

  • Chaouch S, Queval G, Vanderauwera S, Mhamdi A, Vandorpe M, Langlois-Meurinne M, van Breusegem F, Saindrenan P, Noctor G (2010) Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiol 153:1692–1705

    Article  PubMed  CAS  Google Scholar 

  • Coca M, San Segundo B (2010) AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J 63:526–540

    Article  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, Palma JM, Lupiáñez JA, del Río LA (1999) Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. Plant Physiol 121:921–928

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Río LA (2008) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L) leaves. J Plant Physiol 165:1319–1330

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Drago IO, Behera S, Zottini M, Pizzo P, Schroeder JI, Pozzan T, Lo Schiavo F (2010) H2O2 in plant peroxisomes: an in vivo analysis uncovers a Ca2+-dependent scavenging system. Plant J 62:760–772

    Article  PubMed  CAS  Google Scholar 

  • Dammann C, Ichida A, Hong B, Romanowsky M, Hrabak EM, Hamon AC, Pickard BG, Harper JF (2009) Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol 132:1840–1848

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breussegem F (2000) Dual action of active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • de Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • de la Fuente van Bentem S, Roitinger E, Anrather D, Csaszar E, Hirt H (2006) Phosphoproteomics as a tool to unravel plant regulatory mechanisms. Physiol Plant 126:110–119

    Article  Google Scholar 

  • del Río LA (2011) Redox pioneer: Professor Christine Helen Foyer. Antioxid Redox Signal 15:2383–2391

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Donaldson RP (1995) Production of superoxide radicals in glyoxysomal membranes from castor bean endosperm. J Plant Physiol 146:283–287

    Article  Google Scholar 

  • del Río LA, Lyon DS, Olah I, Glick B, Salin ML (1983) Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 158:216–224

    Article  Google Scholar 

  • del Río LA, Fernández VM, Rupérez FL, Sandalio LM, Palma JM (1989) NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol 89:728–731

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Palma JM (1990) A new cellular function for peroxisomes related to oxygen free radicals? Experientia (Cell Mol Life Sci) 46:989–992

    Article  Google Scholar 

  • del Río LA, Pastori GM, Palma JM, Sandalio LM, Sevilla F, Corpas FJ, Jiménez A, Hernández JA (1998) The activated oxygen role of peroxisomes in senescence. Plant Physiol 116:1195–1200

    Article  PubMed  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107

    Article  PubMed  CAS  Google Scholar 

  • Distefano S, Palma JM, Gómez M, del Río LA (1997) Characterization of endoproteases from plant peroxisomes. Biochem J 327:399–405

    PubMed  CAS  Google Scholar 

  • Distefano S, Palma JM, McCarthy I, del Río LA (1999) Proteolytic cleavage of plant proteins by peroxisomal endoproteases from senescent pea leaves. Planta 209:308–313

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzymes activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    Article  PubMed  CAS  Google Scholar 

  • Donaldson RP (2002) Peroxisomal membrane enzymes. In: Baker A, Graham IA (eds) Plant peroxisomes. Kluwer Academic, The Netherlands, pp 259–278

    Chapter  Google Scholar 

  • Fahnenstich H, Scarpeci TE, Valle EM, Flügge UI, Maurino VG (2008) Generation of hydrogen peroxide in chloroplasts of Arabidopsis overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol 148:719–729

    Article  PubMed  CAS  Google Scholar 

  • Fang TK, Donaldson RP, Vigil EL (1987) Electron transport in purified glyoxysomal membranes from castor bean endosperm. Planta 172:1–13

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen species in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2010) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    Article  CAS  Google Scholar 

  • Fukamatsu Y, Yabe N, Hasunuma K (2003) Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol 44:982–989

    Article  PubMed  CAS  Google Scholar 

  • Fukao Y, Hayashi M, Hara-Nishimura I, Nishimura M (2003) Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana. Plant Cell Physiol 44:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Goyer A, Johnson TL, Olsen LJ, Collakova E, Shachar-Hill Y, Rhodes D, Hanson AD (2004) Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J Biol Chem 279:16947–16953

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Helm M, Lück C, Prestele I, Hiertl G, Huesgen PF, Frölich T, Arnold GJ, Adamuka I, Görg A, Lottspeich F, Gietl C (2007) Dual specificities of the glyoxysomal/peroxisomal processing protease Deg15 in higher plants. Proc Natl Acad Sci USA 104:11501–11506

    Article  PubMed  CAS  Google Scholar 

  • Hesberg C, Hansch R, Mendel RR, Bittner F (2004) Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities. J Biol Chem 279:13547–13554

    Google Scholar 

  • Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem 276:14279–14288

    PubMed  CAS  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  PubMed  CAS  Google Scholar 

  • Inzé A, Vanderauwera S, Hoeberichts FA, Vandorpe M, Van Gaever T, Van Breusegem F (2012) A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ 35:308–320

    Article  PubMed  CAS  Google Scholar 

  • Irar S, Brini F, Goday A, Masmoudi K, Pagès M (2010) Proteomic analysis of wheat embryos with 2-DE and liquid-phase chromatography (ProteomeLab PF-2D) -a wider perspective of the proteome. J Proteomics 73:1707–1721

    Article  PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Kamada-Nobusada T, Hayashi M, Fukazawa M, Sakakibara H, Nishimura M (2008) A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolisma in Arabidopsis thaliana. Plant Cell Physiol 49:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. Arabidopsis Book 7:e0123f

    Google Scholar 

  • Kayyali US, Donaldson C, Huang H, Abdelnou R, Hassoun PM (2001) Phosphorylation of xanthine dehydrogenase/oxidase in hypoxia. J Biol Chem 276:14359–14365

    Article  PubMed  CAS  Google Scholar 

  • Keller GA, Warner TG, Steimer KS, Hallewell RA (1991) Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci USA 88:7381–7385

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  PubMed  CAS  Google Scholar 

  • Leterrier M, Corpas FJ, Barroso JB, Sandalio LM, del Río LA (2005) Peroxisomal monodehydroascorbate reductase Genomic clone characterization and functional analysis under environmental stress conditions. Plant Physiol 138:2111–2123

    Article  PubMed  CAS  Google Scholar 

  • Lingard MJ, Bartel B (2009) Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiol 151:1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Lingard M, Monroe-Augutus M, Bartel B (2009) Peroxisome associated-matrix protein degradation is Arabidopsis. Proc Natl Acad Sci USA 106:4561–4566

    Article  PubMed  CAS  Google Scholar 

  • Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900–914

    Article  PubMed  CAS  Google Scholar 

  • López-Huertas E, Corpas FJ, Sandalio LM, del Río LA (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536

    Article  PubMed  Google Scholar 

  • López-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  PubMed  Google Scholar 

  • Matre P, Meyer C, Lillo C (2009) Diversity in subcellular targeting of the PP2A Bή subfamily members. Planta 230:935–945

    Article  PubMed  CAS  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gómez M, del Río LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • McCarthy-Suárez I, Gómez M, del Río LA, Palma JM (2011) Role of peroxisomes in the oxidative injury induced by the auxin herbicide 2,4-D in leaves of pea plants. Biol Plant 55:485–492

    Article  CAS  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  PubMed  CAS  Google Scholar 

  • Mhamdi A, Noctor G, Baker A (2012) Plant catalases: peroxisomal redox guardians. Arch Biochem Biophys 525:181–194

    Article  PubMed  CAS  Google Scholar 

  • Mitsuya S, El Shami M, Sparkes IA, Charlton WL, de Marcos LC, Jonshon B, Baker A (2011) Salt stress causes peroxisome proliferation, but inducing peroxisome proliferation does not improve NaCl tolerance in Arabidopsis thaliana. PLoSOne 5:e9408

    Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicum pennellii. J Exp Bot 55:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux PM, Karpinski S, Baker NR (2006) Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol 141:346–350

    Article  PubMed  CAS  Google Scholar 

  • Nguyen AT, Donaldson RP (2005) Metal-catalyzed oxidation induces carbonylation of peroxisomal proteins and loss of enzymatic activities. Arch Biochem Biophys 439:25–31

    Article  PubMed  CAS  Google Scholar 

  • Nila AG, Sandalio LM, López MG, Gómez M, del Río LA, Gómez-Lim MA (2006) Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224:569–581

    Article  PubMed  CAS  Google Scholar 

  • Nowak K, Luniak N, Witt C, Wüstefeld Y, Wachter A, Mendel RR, Hänsch R (2004) Peroxisomal localization of sulfite oxidase separates it from chloroplast sulfur assimilation. Plant Cell Physiol 43:1493–1501

    Google Scholar 

  • Ohdate T, Inoue Y (2012) Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium. Biochim Biophys Acta 1821:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Oksanen E, Haikio E, Sober J, Karnosky DF (2003) Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol 161:791–799

    Article  CAS  Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Osno Y, Kim DW, Watanabe K, Sasaki A, Niitsu M, Berberich T, Kusano T, Takahasi Y (2012) Constitutively and highly expressed Oryza sativa polyamine oxidases localize in peroxisomes and catalyze polyamine back conversion. Amino Acids 42:867–876

    Article  CAS  Google Scholar 

  • Palma JM, Garrido M, Rodríguez-García MI, del Río LA (1991) Peroxisome proliferation and oxidative stress mediated by activated oxygen species in plant peroxisomes. Arch Biochem Biophys 15:68–74

    Article  Google Scholar 

  • Pazmiño DM (2009) Contribución de las especies de oxígeno y nitrógeno reactivo, y de los peroxisomas a la toxicidad del 2,4-D en plantas. PhD Thesis, University of Granada

    Google Scholar 

  • Pellinen R, Palva T, Kangasjärvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20:349–356

    Article  PubMed  CAS  Google Scholar 

  • Petrova V, Uzunov Z, Kujumdzieva A (2009) Peroxisomal localization of Mn SOD enzyme in Saccharomyces cerevisiae yeasts: in silico analysis. Biotechnol Biotechnol Equip 23:1531–1536

    Article  CAS  Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakière B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylenght-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52:640–657

    Article  PubMed  CAS  Google Scholar 

  • Reddy JK, Hashimoto T (2001) Peroxisomal β-oxidation and peroxisome proliferator–activated receptor α: an adaptive metabolic system. Annu Rev Nutr 21:193–230

    Article  PubMed  CAS  Google Scholar 

  • Reumann S (2002) The photorespiratory pathway of leaf peroxisomes. In: Baker A, Graham IA (eds) Plant peroxisomes. Biochemistry, cell biology and biotechnological applications. Kluwer Academic, Dordrecht, The Netherlands, pp 141–189

    Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenbeg R, Wilkerson CG, Weber APM, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon. J Exp Bot 58:2417–2427

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Sparkes I, Hawes C, del Río LA, Sandalio LM (2009) Peroxisome dynamics in Arabidopsis plants under oxidative stress induced by cadmium. Free Radic Biol Med 47:1632–1639

    Article  PubMed  CAS  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Wang K, Ryu C-M, Kaundal A, Mysore K (2012) Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336–352

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, Gómez M, del Río LA (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31(Suppl):S25–S32

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Palma JM, Gómez M, del Río LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Gómez M, Sandalio LM, Corpas FJ, del Río LA, Palma JM (2004a) Reactive oxygen species-mediated enzymatic systems involved in the oxidative action of 2,4-dichlorophenoxyacetic acid. Plant Cell Environ 27:1135–1148

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodríguez Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004b) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  PubMed  CAS  Google Scholar 

  • Rosenwasser S, Rot I, Sollner E, Meyer AJ, Smith Y, Leviatan N, Fluhr R, Friedman H (2011) Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol 156:185–201

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, del Río LA (1988) Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and peroxisomes). Plant Physiol 88:1215–1218

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Palma JM, del Río LA (1987) Localization of manganese superoxide dismutase in peroxisomes isolated from Pisum sativum L. Plant Sci 51:1–8

    Article  CAS  Google Scholar 

  • Sandalio LM, Fernández VM, Rupérez FL, del Río LA (1988) Superoxide free radicals are produced in glyoxysomes. Plant Physiol 87:1–4

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, López-Huertas E, Bueno P, del Río LA (1997) Immunocytochemical localization of copper, zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res 26:187–194

    Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Gupta DK, Archilla A, Romero-Puertas MC, del Río LA (2012) Reactive oxygen species and nitric oxide in plants under cadmium stress. In: Amad P, Prassad MNV (eds) Toxicity to signaling. Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, Dordrecht/Heidelberg, pp 199–215

    Chapter  Google Scholar 

  • Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 275:20346–20354

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59:231–242

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Chen Z, Du H, Liu Y, Klessig DF (1997) Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J 11:993–1005

    Article  PubMed  CAS  Google Scholar 

  • Taler D, Galperin M, Benjamion I, Cohen Y, Kenigsbuch D (2004) Plant eR genes that encode photorespiratory enzymes confer resistance against disease. Plant Cell 16:172–184

    Article  PubMed  CAS  Google Scholar 

  • Tognetti VB, Mühlenbock P, Van Breusegem F (2012) Stress homeostasis – the redox and auxin perspective. Plant Cell Environ 35:321–333

    Article  PubMed  CAS  Google Scholar 

  • Tolbert NE (1980) Microbodies – peroxisomes and glyoxysomes. In: Tolbert NE (ed) The biochemistry of plants. Academic Press, New York, pp 359–388

    Google Scholar 

  • Valenzuela-Soto JH, Iruegas-Bocardo F, Martínez-Gallardo NA, Molina-Torres J, Gómez-Lim MA, Délano-Frier JP (2011) Transformed tobacco (Nicotiana tabacum) plants over-expressing a peroxisome proliferator-activated receptor gene from Xenopus laevis (xPPARα) show increased susceptibility to infection by virulent Pseudomonas syringae pathogens. Planta 233:507–521

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  PubMed  CAS  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  PubMed  CAS  Google Scholar 

  • Vanderauwera S, Hoeberichts FA, Van Breusegem F (2009) Hydrogen peroxide-responsive genes in stress acclimation and cell death. In: del Río LA, Puppo A (eds) Reactive oxygen species in plant signaling. Springer, Dordrecht/Heidelberg, pp 149–164

    Chapter  Google Scholar 

  • Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat J-L, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MCE, Van Breusegem F, Mittler R (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci USA 108:1711–1716

    Article  PubMed  CAS  Google Scholar 

  • Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274:19714–19722

    Article  PubMed  CAS  Google Scholar 

  • Waller JC, Dhanoa PK, Schumann U, Mullen RT, Snedden WA (2010) Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis. Planta 231:305–317

    Article  PubMed  CAS  Google Scholar 

  • Werner AK, Witte CP (2011) The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci 16:381–387

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Nishimura M (2000) Reduction to below threshold levels of glycolate oxidase activities in transgenic tobacco enhances photoinhibition during irradiation. Plant Cell Physiol 41:1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Ohlrogge JB (2009) Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis β-oxidation mutants. Plant Physiol 150:1981–1989

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci USA 99:4097–4102

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors apologize to those colleagues whose work was not cited due to space limitations. The work in the laboratory was supported by ERDF-cofinanced grants BIO2008-04067 and BIO2012-36742 from the Ministerio de Economía y Competitividad, Spain. M. Rodríguez-Serrano acknowledges a European Social Fund-cofinanced JAE-DOC contract from the CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa M. Sandalio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sandalio, L.M., Rodríguez-Serrano, M., Romero-Puertas, M.C., del Río, L.A. (2013). Role of Peroxisomes as a Source of Reactive Oxygen Species (ROS) Signaling Molecules. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_13

Download citation

Publish with us

Policies and ethics