Skip to main content

Biosynthesis of Vitamin K1 (Phylloquinone) by Plant Peroxisomes and Its Integration into Signaling Molecule Synthesis Pathways

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 69))

Abstract

Vitamin K1 (phylloquinone) is a substituted membrane-anchored naphthoquinone that functions as an essential electron carrier in photosystem I in photosynthetic organisms. While plants can synthesize phylloquinone de novo, humans rely on vitamin K1 uptake from green leafy vegetables as a precursor for the synthesis of its structural derivative, menaquinone-4 (vitamin K2). In vertebrates, menaquinone-4 serves as an enzymatic co-factor that is required for posttranslational protein modification, i.e. the γ-carboxylation of glutamate residues in specific proteins involved in blood coagulation, bone metabolism and vascular biology. Comprehensive knowledge of the subcellular compartmentalization of vitamin K biosynthesis in plants, pathway regulation and its integration in cellular metabolic networks is important to design functional food with elevated vitamin levels and health benefits to human consumers. It had long been assumed that plants obtained all enzymes for phylloquinone biosynthesis from the ancient cyanobacterial endosymbiont and that, upon gene transfer to the nucleus, all biosynthetic enzymes were re-directed to the plastid. This view, however, has been recently challenged by the exclusive localization of the 6th pathway enzyme (MenB/NS) to peroxisomes in Arabidopsis. Soon afterwards, not only the preceding enzyme, acyl-activating enzyme 14 (MenE/AAE14), but also the succeeding thioesterase (DHNAT) were also shown to be peroxisomal. Phylogenetic analysis revealed a heterogeneous evolutionary origin of the peroxisomal enzymes. Phylloquinone biosynthesis reveals several branching points leading to the synthesis of important defence signalling molecules, such as salicylic acid and benzoic acid derivatives. Recent research data demonstrate that, of the two phenylalanine-dependent pathways for benzoic and salicylic acid biosynthesis, the CoA-dependent β-oxidative pathway, which is peroxisomal, is the major route. Hence, peroxisomes emerge as an important cell compartment for the interconnected networks of phylloquinone, benzoic and salicylic acid biosynthesis. Numerous mechanisms to regulate intermediate flux and the fine-tuned inducible production of secondary metabolites, including signalling molecules, await their characterization at the molecular level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAE14:

Acyl-CoA activating enzyme isoform 14

BA:

Benzoic acid

BZO1:

Benzoate:CoA ligase

CFP:

Cyan fluorescent protein

CNL:

Cinnamate:CoA ligase

DHNA-CoA:

1,4-dihydroxy-2-naphthoyl-CoA

DHNAT:

Dihydroxynaphthoate thioesterase

DsRed:

Discosoma sp. red fluorescent protein

EYFP:

Enhanced yellow fluorescent protein

GGCX:

Gamma-glutamyl carboxylase

Gla:

γ-carboxyglutamate

Men:

Menaquinone

MK-4/7:

Menaquinone-4/7

NS:

Naphthoate synthase

OSB:

o-succinyl benzoate

PTM:

Posttranslational modification

PTS1/2:

Peroxisomal targeting signal type 1/2

ROS:

Reactive oxygen species

SA:

Salicylic acid

References

  • Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441–1453

    Article  PubMed  CAS  Google Scholar 

  • Booth SL (2009) Roles for vitamin K beyond coagulation. Annu Rev Nutr 29:89–110

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary G, Kataya AR, Lingner T, Reumann S (2012) Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis. BMC Plant Biol 12:142

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun TA, Marciniak DM, Wedde AE, Kim JY, Schwieterman ML, Levin LA, Van Moerkercke A, Schuurink RC, Clark DG (2012) A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petuniaxhybrida cv. ‘Mitchell Diploid’ flower. J Exp Bot 63:4821–4833

    Article  PubMed  CAS  Google Scholar 

  • Dam H (1929) Cholesterinstoffwechsel in Hühnereiern und Hühnchen. Biochem Z 215:475–492

    Google Scholar 

  • Dam H (1935) The antihaemorrhagic vitamin of the chick. Biochem J 29:1273–1285

    PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna D, Fraser PD, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Fernie AR (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395–414

    Article  PubMed  CAS  Google Scholar 

  • Furie B, Bouchard BA, Furie BC (1999) Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood 93:1798–1808

    PubMed  CAS  Google Scholar 

  • Gaid MM, Sircar D, Muller A, Beuerle T, Liu B, Ernst L, Hansch R, Beerhues L (2012) Cinnamate: CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures. Plant Physiol 160:1267–1280

    Article  PubMed  CAS  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Cho WK, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J (2006) A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 281:17189–17196

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Meurer J, Bhattacharya D (2008) Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. BMC Evol Biol 8:117

    Article  PubMed  Google Scholar 

  • Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007) SUBA: the Arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  PubMed  CAS  Google Scholar 

  • Ibdah M, Pichersky E (2009) Arabidopsis Chy1 null mutants are deficient in benzoic acid-containing glucosinolates in the seeds. Plant Biol (Stuttgart, Germany) 11:574–581

    Article  CAS  Google Scholar 

  • Johnson TW, Zybailov B, Jones AD, Bittl R, Zech S, Stehlik D, Golbeck JH, Chitnis PR (2001) Recruitment of a foreign quinone into the A1 site of photosystem I. In vivo replacement of plastoquinone-9 by media-supplemented naphthoquinones in phylloquinone biosynthetic pathway mutants of Synechocystis sp. PCC 6803. J Biol Chem 276:39512–39521

    Article  PubMed  CAS  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro EM, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63:1619–1636

    Article  PubMed  Google Scholar 

  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. The American Society of Plant Biologists, Rockville, pp 1–41

    Google Scholar 

  • Kim HU, van Oostende C, Basset GJ, Browse J (2008) The AAE14 gene encodes the Arabidopsis o-succinylbenzoyl-CoA ligase that is essential for phylloquinone synthesis and photosystem-I function. Plant J 54:272–283

    Article  PubMed  CAS  Google Scholar 

  • Klempien A, Kaminaga Y, Qualley A, Nagegowda DA, Widhalm JR, Orlova I, Shasany AK, Taguchi G, Kish CM, Cooper BR, D’Auria JC, Rhodes D, Pichersky E, Dudareva N (2012) Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. Plant Cell 24: 2015–2030

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, D’Auria JC, Behere AS, Kim JH, Gunderson KL, Breen JN, Lee G, Gershenzon J, Last RL, Jander G (2007) Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Plant J 51:1062–1076

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kaminaga Y, Cooper B, Pichersky E, Dudareva N, Chapple C (2012) Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis. Plant J 72:411–422

    Article  PubMed  CAS  Google Scholar 

  • Lingner T, Kataya AR, Antonicelli GE, Benichou A, Nilssen K, Chen X-Y, Siemsen T, Morgenstern B, Meinicke P, Reumann S (2011) Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses. Plant Cell 23:1556–1572

    Article  PubMed  CAS  Google Scholar 

  • Lohmann A, Schottler MA, Brehelin C, Kessler F, Bock R, Cahoon EB, Dormann P (2006) Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J Biol Chem 281:40461–40472

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  PubMed  CAS  Google Scholar 

  • Presnell SR, Stafford DW (2002) The vitamin K-dependent carboxylase. Thromb Haemost 87:937–946

    PubMed  CAS  Google Scholar 

  • Qualley AV, Dudareva N (2008) Aromatic volatiles and their involvement in plant defense. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Berlin, pp 409–432

    Chapter  Google Scholar 

  • Qualley AV, Widhalm JR, Adebesin F, Kish CM, Dudareva N (2012) Completion of the core beta-oxidative pathway of benzoic acid biosynthesis in plants. Proc Natl Acad Sci USA 109: 16383–16388

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Ehmann A, Melander WR, Meeuse BJ (1987) Salicylic acid: a natural inducer of heat production in arum lilies. Science 237:1601–1602

    Article  PubMed  CAS  Google Scholar 

  • Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135:783–800

    Article  PubMed  CAS  Google Scholar 

  • Reumann S (2011) Toward a definition of the complete proteome of plant peroxisomes: where experimental proteomics must be complemented by bioinformatics. Proteomics 11:1764–1779

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Weber AP (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled–others remain. Biochim Biophys Acta 1763:1496–1510

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Ma C, Lemke S, Babujee L (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. Plant Physiol 136:2587–2608

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Luder F, Weckwerth W, Jahn O (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  PubMed  CAS  Google Scholar 

  • Reumann S, Buchwald D, Lingner T (2012) PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins. Front Plant Sci 3:194

    Article  PubMed  Google Scholar 

  • Shearer MJ, Fu X, Booth SL (2012) Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr 3:182–195

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Ohno R, Shibata M, Ikegami I, Onai K, Ohto MA, Takamiya K (2005) Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T-DNA mutant of Arabidopsis. Plant J 41:627–637

    Article  PubMed  CAS  Google Scholar 

  • Sørhagen K, Laxa M, Peterhänsel C, Reumann S (2013) The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defense. Plant Biol (in press). doi:10.1111/j.1438-8677.2012.00723.x

  • Stafford DW (2005) The vitamin K cycle. J Thromb Haemost 3:1873–1878

    Article  PubMed  CAS  Google Scholar 

  • Suttie JW (1985) Vitamin K-dependent carboxylase. Annu Rev Biochem 54:459–477

    Article  PubMed  CAS  Google Scholar 

  • Suttie JW, Booth SL (2011) Vitamin K. Adv Nutr 2:440–441

    Article  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Tie JK, Stafford DW (2008) Structure and function of vitamin K epoxide reductase. Vitam Horm 78:103–130

    Article  PubMed  CAS  Google Scholar 

  • Tie JK, Jin DY, Straight DL, Stafford DW (2011) Functional study of the vitamin K cycle in mammalian cells. Blood 117:2967–2974

    Article  PubMed  CAS  Google Scholar 

  • Van Moerkercke A, Schauvinhold I, Pichersky E, Haring MA, Schuurink RC (2009) A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J 60:292–302

    Article  PubMed  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Walker K, Croteau R (2000) Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2alpha-O-benzoyltransferase cDNA from taxus and functional expression in Escherichia coli. Proc Natl Acad Sci USA 97:13591–13596

    Article  PubMed  CAS  Google Scholar 

  • Widhalm JR, van Oostende C, Furt F, Basset GJ (2009) A dedicated thioesterase of the Hotdog-fold family is required for the biosynthesis of the naphthoquinone ring of vitamin K1. Proc Natl Acad Sci USA 106:5599–5603

    Article  PubMed  CAS  Google Scholar 

  • Widhalm JR, Ducluzeau AL, Buller NE, Elowsky CG, Olsen LJ, Basset GJ (2012) Phylloquinone (vitamin K(1)) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-coa. Plant J 71:205–215

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Wu SM, Cheung WF, Frazier D, Stafford DW (1991) Cloning and expression of the cDNA for human gamma-glutamyl carboxylase. Science 254:1634–1636

    Article  PubMed  CAS  Google Scholar 

  • Zolman BK, Monroe-Augustus M, Thompson B, Hawes JW, Krukenberg KA, Matsuda SP, Bartel B (2001) chy1, an Arabidopsis mutant with impaired beta-oxidation, is defective in a peroxisomal beta-hydroxyisobutyryl-CoA hydrolase. J Biol Chem 276:31037–31046

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Reumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reumann, S. (2013). Biosynthesis of Vitamin K1 (Phylloquinone) by Plant Peroxisomes and Its Integration into Signaling Molecule Synthesis Pathways. In: del Río, L. (eds) Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Subcellular Biochemistry, vol 69. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6889-5_12

Download citation

Publish with us

Policies and ethics